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Abstract
Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treat-
ment of ovarian, breast, pancreatic, and/or prostate cancer. Poly (ADP-ribose) polymerase inhibitors are potent inhibitors of 
the PARP enzymes with comparable half-maximal inhibitory concentrations in the nanomolar range. Olaparib and rucaparib 
are orally dosed twice a day, extensively metabolized by cytochrome P450 enzymes, and inhibitors of several enzymes and 
drug transporters with a high risk for drug–drug interactions. Niraparib and talazoparib are orally dosed once a day with a 
lower risk for niraparib and a minimal risk for talazoparib to cause drug–drug interactions. All four PARP inhibitors show 
moderate-to-high interindividual variability in plasma exposure. Higher exposure is associated with an increase in toxicity, 
mostly hematological toxicity. For talazoparib, exposure–efficacy relationships have been described, but for olaparib, nira-
parib, and rucaparib this relationship remains inconclusive. Further studies are required to investigate exposure–response 
relationships to improve dosing of PARP inhibitors, in which therapeutic drug monitoring could play an important role. In 
this review, we give an overview of the pharmacokinetic properties of the four PARP inhibitors, including considerations 
for patients with renal dysfunction or hepatic impairment, the effect of food, and drug–drug interactions. Furthermore, we 
focus on the pharmacodynamics and summarize the available exposure–efficacy and exposure–toxicity relationships.
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Key Points 

The approved poly (ADP-ribose) polymerase inhibitors 
olaparib, niraparib, rucaparib, and talazoparib show moder-
ate-to-high interindividual variability in plasma exposure.

Olaparib and rucaparib have a high potential for drug–
drug interactions, while this risk is lower for niraparib 
and minimal for talazoparib.

Exposure has been associated with toxicity for all poly 
(ADP-ribose) polymerase inhibitors, mainly with hema-
tological toxicity.

Exposure–efficacy relationships have been described 
for talazoparib, but remain inconclusive for olaparib, 
niraparib, and rucaparib.

1 Introduction

A relatively new class of targeted anticancer agents are the 
poly (ADP-ribose) polymerase (PARP) inhibitors. Poly 
(ADP-ribose) polymerase inhibitors primarily inhibit the 
catalytic activity of PARP-1 and PARP-2 enzymes, which 
are involved in base excision repair of DNA single-strand 
breaks. Poly (ADP-ribose) polymerase inhibition leads to 
accumulation of single-strand breaks, ultimately resulting 
in double-strand breaks (DSBs) [1]. In addition to catalytic 
inhibition, PARP inhibitors trap the PARP enzyme-DNA 
complex on single-strand breaks resulting in DSBs [2]. Poly 
(ADP-ribose) polymerase trapping is considered the major 
mechanism of anti-tumor activity [3]. While PARP inhibi-
tion is not effective in healthy cells, as they alternatively 

http://orcid.org/0000-0002-0300-8281
http://crossmark.crossref.org/dialog/?doi=10.1007/s40262-022-01167-6&domain=pdf


1650 M. A. C. Bruin et al.

can utilize the functional homologous recombination repair 
mechanism for repair of DSBs, it is particularly effective 
in cells harboring homologous recombination deficien-
cies (HRD), such as pathogenic breast cancer (BRCA)-1 
or BRCA-2 mutations [2]. This concept is called synthetic 
lethality: simultaneous loss of function of two or more key 
molecules results in cell death, while a deficiency in only 
one is not lethal (Fig. 1) [1].

The introduction of PARP inhibitors has accomplished 
many breakthroughs in the treatment of ovarian, breast, 
pancreatic, and prostate cancer. It improved progression-
free survival (PFS) and quality of life, but there are still 
challenges to overcome. Drug resistance and adverse effects 
are common and can limit long-term treatment. Poly (ADP-
ribose) polymerase inhibitors are orally administered, given 
in a fixed dose, and are substrates for different metabolizing 
enzymes and drug transporters [4–7]. Consequently, large 
variability in pharmacokinetic exposure between patients is 
not exceptional. Low exposure may lead to suboptimal effi-
cacy, while high exposure can cause toxicities. This gives the 
opportunity for precision dosing, for example, by therapeu-
tic drug monitoring [8–11]. Indications of PARP inhibitors 
are rapidly expanding from monotherapy in patients with 
BRCA mutations, to patients with other HRD and no HRD, 
to combination therapy with DNA-damaging agents, radia-
tion, targeted therapies, and immunotherapy [1, 12]. In this 
review, we aim to summarize the available pharmacokinetic 

and pharmacodynamic data for the approved PARP inhibi-
tors olaparib, niraparib, rucaparib, and talazoparib.

2  Methods

A comprehensive literature search was performed using 
PubMed and EMBASE. The term ‘pharmacokinetics’ was 
combined with the different PARP inhibitors and relevant 
studies were selected. The snowballing method was used to 
find additional relevant studies. The Committee for Medici-
nal Products for Human Use Assessment Reports from the 
European Medicines Agency (EMA) and the US Food and 
Drug Administration Clinical Pharmacology and Biophar-
maceutics review of niraparib, olaparib, rucaparib, and tala-
zoparib were consulted as well.

3  Pharmacokinetics and Pharmacodynamics 
of PARP Inhibitors

Table 1 gives an overview of the EMA-approved PARP 
inhibitors and indications. Information on the preclinical 
pharmacology of PARP inhibitors is shown in Table 2. The 
clinical pharmacokinetics at steady state is summarized in 
Table 3. Tables 4 and 5 describes the impact of renal and 
hepatic impairment, respectively, and other potential factors 

Fig. 1  Mechanism of action of 
poly (ADP) ribose polymerase 
(PARP) inhibitors. Single-strand 
breaks in DNA are repaired 
through base excision repair 
mediated by PARP enzymes. 
Inhibition of PARP or trap-
ping of PARP on the DNA 
by PARP inhibitors, result in 
double-strand breaks in DNA. 
In normal cells harboring the 
homologous recombination 
repair mechanism, double-
strand breaks are repaired and 
the cell survives. In cells with 
an homologous recombination 
deficiency (HRD), includ-
ing breast cancer (BRCA) 1 
and 2 mutations, this repair 
mechanism is absent leading to 
accumulation of double-strand 
breaks and cell death
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influencing the pharmacokinetics of PARP inhibitors are dis-
cussed as well. The results of food-effect studies are shown 
in Table 6 and drug–drug interaction (DDI) studies are sum-
marized in Table 7. The data and the implications of the 
data presented in the tables are further discussed for each 
compound.

3.1  Olaparib

Olaparib was the first approved PARP inhibitor by the 
EMA in 2014 (Table 1). In study 19, maintenance treatment 
of olaparib capsules in patients with platinum-sensitive, 
relapsed, high-grade epithelial ovarian cancer, in response 
to platinum-based chemotherapy, improved median PFS in 
the overall population compared with placebo (8.4 vs 4.8 
months; hazard ratio [HR] 0.35 (95% confidence interval 
[CI] 0.25–0.49), p < 0.0001) [13]. The greatest benefit was 
found in germline (g) or somatic (s) BRCA1/2 mutated 
patients [11.2 vs 4.3 months; HR 0.18 (95% CI 0.10–0.31), 
p < 0.0001] with a lower benefit for patients with wild-type 
BRCA (BRCA variants of unknown significance and no 
known or reported BRCA mutation) [7.4. vs 5.5 months; HR 
0.54 (95% CI 0.34–0.85), p < 0.0075] [14]. The approved 
dose of 400 mg twice a day was the maximum tolerated dose 
(MTD) [15]. The high administration burden of the 50-mg 
capsules has led to the development of an alternative solid 
dispersion tablet formulation (100 and 150 mg). Because 
capsules and tablets are not bioequivalent, Study 24 was 
performed resulting in an optimal tablet dose of 300 mg BID 
[16]. The tablet formulation was approved in 2018 based on 
the SOLO2 trial with prolonged PFS in patients using olapa-
rib compared with placebo [19.1 vs 5.5 months; HR 0.30 
(95% CI 0.22–0.41), p < 0.0001] [17]. Approval was granted 
regardless of BRCA status, as overall survival in study 19 
was prolonged irrespective of BRCA status [HR 0.73 (95% 
CI 0.55‒0.95), p = 0.02138] [18]. Indications expanded to 
breast, pancreas, and prostate cancer. The tablet formulation 
will mainly be discussed in this review, as capsules are being 
phased out of the marked.

3.1.1  Preclinical Pharmacology

The in vitro interaction of olaparib with enzymes and trans-
porters is shown in Table 2. Olaparib inhibits the organic 
cation transporter (OCT) 2, multidrug and toxin extrusion 
protein (MATE) 1 and MATE2K involved in the tubular 
secretion of creatinine. Inhibition by olaparib has been 
associated with increased creatinine levels without affecting 
renal function. Therefore, the creatinine-derived estimated 
glomerular filtration rate can underestimate the renal func-
tion and an alternative marker such as cystatin C should be 
used to assess renal function [19, 20]. Furthermore, olapa-
rib penetrates the brain in vivo, but is rapidly cleared from 

the brain, probably owing to P-glycoprotein (P-gp) efflux 
transporters [10].

Olaparib is mainly metabolized by cytochrome P450 
(CYP) 3A4/5 with three major metabolites formed (M12, 
M15, and M18). Their potency to inhibit growth of BRCA1 
mutant cells and PARP-1 is 30-fold, 30-fold, and four-fold 
lower, respectively, than olaparib itself [21]. In addition to 
being a substrate to CYP3A, olaparib inhibits and induces 
CYP3A. The net effect on CYP3A is weak inhibition, pos-
sibly increasing exposure to CYP3A substrates, which 
could be important for drugs with a narrow therapeutic 
window [22]. In vivo, olaparib exerts single-agent activity 
in BRCA1-deficeint and BRCA2-deficient cells, but is less 
effective in ovarian and/or breast cancer wild-type models 
[10, 23].

3.1.2  Clinical Pharmacokinetics

Steady-state pharmacokinetic parameters of olaparib cap-
sules and tablets are summarized in Table 3. Formulations 
of capsules and tablets are not bioequivalent [16]. The 300-
mg tablet formulation with improved bioavailability has a 
13% higher mean relative exposure (area under the curve 
[AUC]) at steady state than the 400-mg capsule formulation 
[24]. Absolute bioavailability has not been investigated, but 
is probably low, as olaparib is classified as a Biopharma-
ceutical Classification System (BCS) class IV compound 
(low solubility, low permeability) [23]. Mean protein bind-
ing (albumin and alpha-1 acid glycoprotein) is high (89%), 
which decreases to 82% at concentrations of >10,000 ng/
mL in vitro [5, 25]. Olaparib has an apparent volume of 
distribution of 167 L (capsules) and 158 L (tablets) [23, 26]. 
Olaparib is metabolized by CYP enzymes with three major 
metabolites (M12, M15, and M18) accounting for 9–14% 
of plasma radioactivity [23]. Considering preclinical data 
(Sect. 3.1.1), the clinical activity of these metabolites is neg-
ligible [21]. Olaparib is hepatically and renally cleared, with 
44% (15% unchanged) of the radioactive dose recovered in 
urine and 42% (6% unchanged) in feces [25, 27].

3.1.3  Pharmacokinetics in Special Populations

3.1.3.1 Patients with  Renal Impairment The impact of 
renal impairment on the pharmacokinetics of olaparib 
is shown in Table 4. Area under the curve and maximum 
concentration (Cmax) are significantly increased in patients 
with renal impairment. Although no increase in adverse 
events were observed, higher exposure might eventually 
result in increased toxicity, mainly hematological toxicities 
[28]. Dose adjustments are required in patients with moder-
ate renal impairment and olaparib is not recommended in 
patients with severe renal impairment [28–30]. Dose adjust-
ments during olaparib treatment should be considered care-
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fully, as the creatinine-derived estimated glomerular filtra-
tion rate can underestimate renal function with the risk of 
underdosing [20].

3.1.3.2 Patients with  Hepatic Impairment The impact 
of hepatic impairment on olaparib exposure is shown in 
Table  5. Olaparib exposure was not significantly altered 
in patients with mild or moderate hepatic impairment and 
therefore no dose adjustments are required [31]. Physi-
ologically based pharmacokinetic simulations estimated an 
negligible increase in AUC for patients with severe hepatic 
impairment [32]. Until a dedicated clinical study is per-
formed, olaparib is not recommended in patients with severe 
hepatic impairment [31].

3.1.4  Other Factors Influencing the Pharmacokinetics 
of Olaparib

Olaparib exposure was 50% higher in patients with advanced 
solid tumors [15, 33] compared with patients having a non-
advanced disease state (patients with breast cancer sched-
uled for elective surgery). This can partly be explained by 
the fed versus fasted state, in these studies, but also the dis-
ease state might influence the pharmacokinetics [34]. The 
impact of body weight, age, sex, race, serum creatinine, 
creatinine clearance, line of treatment, Eastern Cooperative 
Oncology Group performance status, and tumor type on the 
pharmacokinetics of olaparib was evaluated in two popu-
lation pharmacokinetic models. Only Eastern Cooperative 
Oncology Group performance status had a significant effect 
on olaparib clearance without a clear biological explanation 
[24, 35]

3.1.5  Food Effect

The results of the two food-effect studies are described in 
Table 6. A small significant increase in olaparib exposure 
was observed when olaparib tablets were administered with 
a high-fat meal. The inter-patient variability was not affected 
and no important differences between adverse events were 
observed under fed/fasted conditions. The current advice is 
that olaparib can be administered with or without food [36].

3.1.6  Drug–Drug Interactions

Table 7 gives an overview of the performed DDI studies. 
Olaparib is metabolized by CYP3A4, and exposure is signif-
icantly changed when combined with strong CYP3A4 inhib-
itors or inducers [37]. It is advised to reduce the olaparib 
tablet dose to 100 and 150 mg BID when co-administered 
with strong and moderate CYP3A4 inhibitors, respectively, 
if avoidance is not possible. Moderate and strong CP3A4 
inducers should be avoided. Furthermore, clinically relevant 

interactions between olaparib and CYP3A4 substrates with 
a narrow therapeutic index (e.g., cyclosporine, tacrolimus) 
occur [32]. However, this was not observed for the CYP3A4 
substrates anastrazole and letrozole [38]. Inhibition is proba-
bly weak, as olaparib is an inhibitor and inducer of CYP3A4 
with a net effect of weak inhibition (Sect. 3.1.1) [22]. Addi-
tionally, interactions with olaparib as a perpetrator could 
occur with substrates to OCT1, OCT2, OATP1B1, OAT3, 
MATE1, and MATE2K (Table 2) [39].

3.1.7  Clinical Pharmacodynamics

3.1.7.1 Exposure Efficacy Inhibition of PARP in periph-
eral blood mononuclear cells is highly variable [34]. Maxi-
mum PARP inhibition (> 90% from baseline) is reached at 
doses of ≥ 60 mg BID (capsules) and tumor responses are 
observed at doses ≥ 100 mg BID [15, 40].

Dose–efficacy relationships were demonstrated; the 
objective response rate (ORR) was 41% versus 22% with 
a median PFS of 5.7 months versus 3.8 months in patients 
with BRCA-mutated breast cancer receiving 400 mg BID 
and 100 mg BID, respectively [41]. A similar result was 
observed in patients with BRCA-mutated ovarian can-
cer (ORR: 33% vs 13%, median PFS: 5.8 months vs 1.9 
months, for 400 mg BID and 100 mg BID, respectively) 
[42].

Exposure–efficacy relationships are not very clear. In 
patients with prostate cancer (PROfound study, n = 74), 
Cox proportional hazard modeling showed no significant 
correlation between exposure and PFS [AUC: HR 0.98 
(95% CI 0.97–1.00), Cmax: HR 0.89 (95% CI 0.75–1.02), 
minimum concentration: HR 0.77 (95% CI 0.56–1.06)]. 
However, patient numbers were small [43]. Results from 
an exposure-PFS Cox proportional hazard model using data 
from patients with solid tumors (n = 410) indicate that 300 
mg BID (steady state Cmax 7.67 µg/mL) is superior to 200 
mg BID (Cmax,ss 6.99 µg/mL) [HR 0.96 (95% CI 0.94–0.99)], 
but the difference is small [44]. In summary, the olaparib 
dose is related to efficacy, but looking at exposure within the 
registered doses, no clear exposure–efficacy relationship has 
been demonstrated.

3.1.7.2 Exposure Toxicity Hematological toxicities 
were more frequently reported with the 300-mg tablet 
formulation compared with the 400-mg capsule formu-
lation [24]. As exposure of the 300-mg tablet formula-
tion is 13% higher, an exposure–toxicity relationship is 
apparent.

An exposure–toxicity analysis with data from mul-
tiple clinical trials showed an exposure–toxicity rela-
tionship between the probability of grade 1–4 anemia 
and steady-state minimum concentrations (p = 0.001) 
and predicted Cmax (p = 0.013) of the 400-mg capsule 
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Table 3  Pharmacokinetic parameters at steady state

AUC  area under the plasma concentration–time curve, AUC 0–tau AUC from time zero to the end of the dosing interval (tau), BID twice a day, 
Cmax maximum plasma concentration, Cmin minimum plasma concentration, CV% percentage coefficient of variation, N number of subjects, NR 
not reported, SD standard deviation, t½ elimination half-life, Tmax time to maximum plasma concentration, QD once a day
Variability is reported as ± SD, (CV%), (range)
a For olaparib and rucaparib, AUC from 0 to 12 hours, for niraparib and talazoparib AUC from 0 to 24 hours
b Based on 6 patients receiving a single dose of 400 mg
c Japanese patients
d AUC from 0 to 10 hours
e Based on 6 patients receiving a single dose of 400 mg
f Median (range)
g Chinese patients
h Based on 16 patients receiving a single dose of 300 mg
i Based on 7 patients receiving a single dose of 300 mg
j Based on 27 patients
k Based on 26 patients
l Calculated based the molecular weight of 320.4 g/mol
m Based on 4 patients
n Based on 12 patients
o Based on 6 patients receiving a single dose of 1.0 mg

PARP inhibitor N Dose (mg) Tmax (h)
Mean (range)

Cmin (ng/mL) Cmax (ng/mL) AUC 0–tau (ng/
mL*h) a

t1/2 (h) References

Olaparib  
capsules

6 400 BID 2.0 (1.5–3.0) 1290 (76%) 7650 (27%) 44,900 (39%) NR [15]
17 400 BID 1.25 (1.0–8.0)b 1040 (230–8490) 6360 (3880–

13,300)
41,500 (18,700–

147,000)
11.9 ± 4.82b [16]

10 400 BID 1.25 (1.0–8.0)b 1860 (530–6670) 5700 (2380–
10,9000)

43,100 (18,100–
98,600)

11.9 ± 4.82b [16]

5c 400 BID 2.1 (1.5–4.0) NR 5900 (19.7%) 33,300 (22.3%) d 10.7 (3.8–18.9)e [33]
6 400 BID 2.0 (1.5–3.0) NR 7900 (26%) 44,000 (38%) NR [25]
4 400 BID 2.0 (2.0–3.0)f 1600 (46.1%) 9100 (27.2%) 58,100 (29.4%) NR [128]

Olaparib tablets 17 300 BID NR 1840 (340–3830) 
(67%)

9370 (2280–
14,700) (47%)

58,400 (23,100–
96,000) (47%)

NR [16, 25]

15g 300 BID 1.50 (0.97–3.00) 800 (118%) 8270 (35.0%) 44,000 (48.4%) 6.52 ± 1.35h [129]
6c 300 BID 3.00 (1.50–3.93) 1290 (157.6%) 8430 (35.05%) 52,340 (68.17%) 9.43 (6.45–14.7)i [130]
29 300 BID NR 2000 (89.8%)j 9500 (41.5%)j 62,100 (51.6%)k NR [38]

Niraparib 10 300 QD 3.5 (2.0–4.2) 687 ± 303 (44%)l 1399 ± 608 
(43%)l

21,407 ± 9168 
(43%)l

36.2 ±14.6 [46]

12g 300 QD 3.05 (2.9–6.1) NR 2070 (29.3%)l 27,852 (28.6%)l 36.45 ± 17.21 [59]
4c 300 QD 3.7 ±1.6 592.3 ± 138.2 1167 ± 194.9 19,540 ± 3117 NR [131]

Rucaparib 7 600 BID 4 (2.53–10) NR 2420 (45%) 21,400 (61%)m NR [71]
196 600 BID NR 2026 ± 1147 

(57%)
NR NR NR [72]

16 600 BID 2.5 (0.5–3.1) NR 2650 (57%) 25,800 (57%) NR [92]
18 600 BID 1.92 (0–5.98) NR 1940 (54%) 16,900 (54%)n 12.6 (54%)n [91]
375 600 BID NR 1754 ± 805 

(46%)
2169 ± 890 

(41%)
47,507 ± 20,436 

(43%)
NR [88]

Talazoparib 6 1.0 QD 1.02 (0.75–2.00) 3.720 ± 1.590 
(43%)

21.000 ± 7.990 
(38%)

202 ± 54 (27%) 50.0 ± 16.6 
(33%)

[99]

27 1.0 QD 2.00 (0.97–6.00) 4.950 (56%) 16.400 (32%) 208 (37%) NR [132]
6c 1.0 QD 1.03 (0.7–1.9) 3.650 (49%) 32.840 (14%) 244.7 (21%) 50.73 ± 10.1 

(20%)o
[133]
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formulation [25]. In addition, an exposure–safety (cat-
egorical adverse events and hemoglobin) model has 
been developed using data from multiple clinical trials 
(n = 757). The probability of safety events and hemo-
globin decrease were comparable in all exposure groups 

[300-mg BID capsules (Cmax 7.67 µg/mL), 400-mg BID 
capsules (Cmax 6.99 µg/mL), 200-mg BID tablets (Cmax 
6.18 µg/mL)], suggesting a minimal effect of olaparib 
exposure on safety [44].

Table 4  Impact of renal impairment on the pharmacokinetics of PARP inhibitors

AUC  area under the plasma concentration–time curve, AUC 0–∞ AUC from zero to infinity, AUC ss AUC at steady state, AUC 0–24 AUC from 0 to 
24 hours, BID twice a day, CI confidence interval, CL/F apparent oral clearance, Cmax maximum plasma concentration, GLS mean geometric 
least-squares mean, NR not reported, PARP poly (ADP-ribose) polymerase, PBPK physiologically based pharmacokinetic, PK pharmacokinetic, 
PopPK population pharmacokinetic, QD once a day, ↑ indicates increase, ↓ indicates decrease, ↔ indicates no change
a Classification for renal impairment based on the Committee for Medicinal Products for Human Use guidance (CHMP/EWP/225/02 [135]). Nor-
mal renal function: creatinine clearance >80 mL/min; mild renal impairment: creatinine clearance 51–80 mL/min; moderate renal impairment: 
creatinine clearance 31–50 mL/min; severe renal impairment: creatinine clearance ≤30mL/min
b Creatinine clearance calculated according to the Cockcroft–Gault equation
Classification for renal impairment based on the Committee for Medicinal Products for Human Use guidance (EMA/CHMP/83874/2014 [136]). 
Normal renal function: creatinine clearance ≥90 mL/min; mild renal impairment: creatinine clearance 60–89 mL/min; moderate renal impair-
ment: creatinine clearance 30–59 mL/ min; severe renal impairment: creatinine clearance ≤30 mL/min
d Not specified
e Estimated glomerular filtration rate, calculated using the Modification of Diet in Renal Disease formula

PARP 
inhibitor

Method Renal impair-
ment

PK parameter GLS mean 
ratio

90% CI Effect on  
PK  
parameter

Advice References

Olaparib 
tablets

Clinical 
 studya,b

Mild Cmax 1.15 1.04–1.27 ↑ 15% No dose adjustments required [28, 29]
AUC 0–∞ 1.24 1.06–1.47 ↑ 24%

Moderate Cmax 1.26 1.06–1.48 ↑ 26% Decrease the dose to 200 mg 
BIDAUC 0–∞ 1.44 1.10–1.89 ↑ 44%

PBPK  modela Mild Cmax 1.04 1.03–1.04 ↑ 4% No dose adjustments required [29, 32]
AUC 1.40 1.39–1.40 ↑ 40%

Moderate Cmax 1.09 1.07–1.10 ↑ 9% Decrease the dose to 200 mg 
BIDAUC 1.89 1.89–1.90 ↑ 89%

Severe Cmax 1.11 1.10–1.12 ↑ 11% Olaparib is not recommended
AUC 2.21 2.19–2.22 ↑ 121%

Olaparib 
capsules

PBPK  modela Mild Cmax 1.21 1.19–1.24 ↑ 21% No dose adjustments required [30, 32]
AUC 1.48 1.44–1.52 ↑ 48%

Moderate Cmax 1.28 1.26–1.31 ↑ 28% Decrease the dose to 300 mg 
BIDAUC 1.95 1.92–1.98 ↑ 95%

Severe Cmax 1.31 1.28–1.33 ↑ 31% Olaparib is not recommended
AUC 1.27 2.25–2.29 ↑ 27%

Niraparib PopPK 
 modelc

Mild Exposured NR NR ↔ No dose adjustments required [51, 54, 
134]Moderate Exposured NR NR ↔ No dose adjustments required

Rucaparib PopPK 
 modelc

Mild AUC ss NR NR ↑ 15% No dose adjustments required [84, 88]
Moderate AUC ss NR NR ↑ 32% No dose adjustments required

Talazoparib Clinical 
 studyc,e

Mild Cmax 1.11 0.74–1.66 ↔ No dose adjustments required [107]
AUC 1.12 0.80–1.57 ↔

Moderate Cmax 1.32 0.89–1.94 ↔ Decrease the dose to 0.75 mg 
QDAUC 1.43 1.03–1.98 ↑ 43%

Severe Cmax 1.89 1.27–2.83 ↑ 89% Decrease the dose to 0.5 mg 
QDAUC 2.63 1.88–3.69 ↑ 163%

PopPK 
 modelc

Mild CL/F NR NR ↓ 15% No dose adjustments required [106]

Moderate CL/F NR NR ↓ 38% Decrease the dose to 0.75 mg 
QD
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In a retrospective study (n = 27), olaparib exposure was 
significantly associated with early adverse events in patients 
with BRCA1/2-mutated ovarian cancer. A trough concentra-
tion of 2500 ng/mL was identified as a threshold that can 
help to guide dose adjustments [11].

3.2  Niraparib

In 2017, niraparib has been approved by the EMA for the 
maintenance treatment of platinum-sensitive, recurrent, 
high-grade epithelial ovarian cancer regardless of BRCA 

Table 5  Impact of hepatic impairment on the pharmacokinetics of PARP inhibitors

AUC  area under the plasma concentration–time curve, AUC 0–∞ AUC from zero to infinity, AUC ss AUC at steady state, CI confidence interval, 
CL/F apparent oral clearance,  Cmax maximum plasma concentration, GLS mean geometric least-squares mean, NR not reported, PARP poly 
(ADP-ribose) polymerase, PBPK physiologically based pharmacokinetic, PopPK population pharmacokinetic, PK pharmacokinetic, QD once a 
day, ↑ indicates increase, ↓ indicates decrease, ↔ indicates no change
a Classification for hepatic impairment based on the Committee for Medicinal Products for Human Use guidance (CHMP/EWP/2339/02) [137]. 
Mild hepatic impairment: Child-Pugh class A; moderate hepatic impairment: Child-Pugh class B; severe hepatic impairment: Child-Pugh class 
C
b Classification for hepatic impairment defined by National Cancer Institute Organ Dysfunction Working Group Criteria criteria [138]
c Not specified

PARP 
inhibitor

Method Renal 
impairment

PK parameter GLS 
mean 
ratio

90% CI Effect on 
PK  
parameter

Advice References

Olaparib 
tablets

Clinical  studya Mild Cmax 1.13 0.82–1.56 ↔ No dose adjustment required [31]
AUC 0–∞ 1.15 0.72–1.93 ↔

Moderate Cmax 0.87 0.63–1.22 ↔ No dose adjustment required
AUC 0–∞ 1.08 0.66–1.74 ↔

PBPK  modela Mild Cmax 1.06 1.05–1.07 ↑ 6% No dose adjustment required [32]
AUC 1.26 1.26–1.28 ↑ 26%

Moderate Cmax 0.78 0.77–0.80 ↓ 22% No dose adjustment required
AUC 1.26 1.15–1.32 ↑ 26%

Severe Cmax 0.59 0.58–0.59 ↓ 41% Olaparib is not recommended
AUC 1.06 1.03–1.08 ↑ 6%

Olaparib  
capsules

PBPK  modela Mild Cmax 1.16 1.15–1.16 ↑ 16% No dose adjustment required [32]
AUC 0.95 0.94–0.97 ↓ 5%

Moderate Cmax 1.27 1.26–1.28 ↑ 27% No dose adjustment required
AUC 1.54 1.52–1.56 ↑ 54%

Severe Cmax 1.04 1.03–1.06 ↑ 4% Olaparib is not recommended
AUC 2.20 2.13–2.28 ↑ 120%

Niraparib PopPK  modelb Mild Exposurec NR NR ↔ No dose adjustment required [51, 54]
Clinical  studyb Moderate Cmax 0.93 0.64–1.36 ↔ Decrease the dose to 200 mg 

QD
[57]

AUC 0–∞ 1.56 1.06–2.30 ↑ 56%
Rucaparib PopPK  modelb Mild Cmin NR NR ↔ No dose adjustment required [75, 84, 88]

AUC ss NR NR ↔
Moderate Cmin NR NR ↔ No dose adjustment required

AUC ss NR NR ↑ 32%
Clinical  studyb Moderate Cmax 0.91 0.61–1.36 ↔ No dose adjustment required [87]

AUC 0–∞ 1.45 0.67–3.13 ↔
Talazoparib Clinical study/

PopPKb
Mild Exposurec and 

CL/F
NR NR ↔ No dose adjustment required [108]

Moderate Exposurec and 
CL/F

NR NR ↔ No dose adjustment required

Severe Exposurec and 
CL/F

NR NR ↔ No dose adjustment required

PopPK  modelb Mild CL/F NR NR ↔ No dose adjustment required [106]
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Table 6  Effect of food on the pharmacokinetics of PARP inhibitors after a single dose

PARP inhibi-
tor

Condition N Dose 
 (mg)

t½ (h) Tmax (h) Cmax (ng/mL) AUC 0–last
(ng × h/mL)

AUC 0–∞
(ng × h/mL)

Result meal vs  
fasted state

Refer-
ences

Olaparib 
capsules

High-fat 
meal

31 400 12.20 ± 4.53a 4.03  
(2.00–8.03)a

6,070 (45.1%)a64,620  
(63.3%)a

65,440 (64.2%)a ↓  t½ 34%
↑  Tmax 134%
↔Cmax
↑AUC 0–last 22%
↑AUC 0–∞ 19%

[139]

Standard 
meal

31 400 15.42 ± 5.92a 4.00  
(1.00–8.00)b

6,970 (45.9%)b67,710  
(86.4%)c

70,190 (80.5%)a ↓  t½ 16%
↑  Tmax 133%
↑Cmax 10%
↑AUC 0–last 20%
↑AUC 0–∞ 21%

Fasted 31 400 18.39 ± 6.99b 1.72 (0.92–
4.05)d

6,350 (40.9%)d58,400  
(75.6%)d

61,060 (78.1%)b

Olaparib  
tablets

High-fat 
meal

54 300 11.1 ± 4.09e 4.00 (1.00–12.0)5,480  
(40.5%)

46,000  
(56.6%)e

45,400 (57.1%)e ↔  t½
↑  Tmax 167%
↓Cmax 21%
↑AUC 0–last 8%
↑AUC 0–∞ 8%

[36]

Fasted 55 300 12.2 ± 5.31f 1.50 (0.50–5.85)7,000  
(35.0%)

43,600  
(54.3%)f

43,000 (55.2%)g

Niraparib High-fat 
meal

15 300 47.9 ± 17.5h 8.0 ± 4.9i 582.1  
(39%)

27,186.4  
(52%)

31,194 (54%)h ↔  t½
↑  Tmax 128%
↓Cmax 27%
↔AUC 0–last
↔AUC 0–∞

[61]

Fasted 16 300 50.5 ± 17.9 3.5 ± 1.2i 803.7 (50%) 28,638.1  
(63%)

29,016.1 (63%)j

Rucaparib High-fat 
meal

26 600 16.8 ± 9.5k 7.83 (1.5–24.45)959  
(73%)

13,900l (74%) NR ↔  t½
↑  Tmax 95%
↑Cmax 20%
↑AUC 0–24h 38%

[91]

Fasted 26 600 18.7 ± 9.9m 4.02 (0.53–
24.83)

819  
(84%)

10,000l (76%) NR

Talazoparib High-fat 
meal

18 0.5 113.6 ± 38.3 4.00 (0.75–5.00)0.996 (22%) 58.215 (19%) 61.065 (19%) ↔  t½
↑  Tmax 300%
↓Cmax 46%
↔AUC 0–last
↔AUC 0–∞

[102]

Fasted 18 0.5 g 116.7 ± 31.9 1.00 (0.50–1.52)1.849 (41%) 59.694 (19%) 62.551 (18%)
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AUC  area under the plasma concentration–time curve, AUC 0–24h AUC from zero to 24 hours, AUC 0–last AUC from zero to the last measurable 
timepoint, AUC 0–∞ AUC from zero to infinity, Cmax maximum plasma concentration, CV% percentage coefficient of variation, N number of 
subjects, NR not reported, PARP poly (ADP-ribose) polymerase, SD standard deviation, t½ elimination half-life, Tmax time to maximum plasma 
concentration, ↑ indicates increase, ↓ indicates decrease, ↔ indicates no change
Data are presented as mean (CV%) for  Cmax, AUC 0–last and AUC 0–∞, as median (range) for  tmax and mean ± SD for  t1/2
a Based on 27 patients
b Based on 29 patients
c Based on 28 patients
d Based on 30 patients
e Based on 51 patients
f Based on 54 patients
g Based on 52 patients
h Based on 14 patients
i tmax is presented as mean ± SD
j Based on 15 patients
k Based on 11 patients
l AUC 0–24h,

m based on 19 patients

Table 6  (continued)

status (Table 1). In the phase III NOVA trial, niraparib main-
tenance treatment resulted in a prolonged median PFS in the 
gBRCA-mutated cohort [21.0 vs 5.5 months; HR 0.27 (95% 
CI 0.173–0.410), p < 0.001], the cohort with an HRD defi-
ciency [12.9 vs 3.8 months; HR 0.38 (95% CI 0.243–0.586), 
p < 0.001], and the non-gBRCA-mutated cohort [9.3 vs 3.9 
months; HR 0.45 (95% CI 0.338–0.607), p < 0.001] [45]. 
The approved dose of 300 mg once a day (QD) was the MTD 
with fatigue, pneumonitis, and thrombocytopenia as dose-
limiting toxicities [46]. Niraparib was additionally approved 
in 2020 as maintenance treatment following first-line plati-
num therapy based on the PRIMA trial with prolonged PFS 
in the overall niraparib population [13.8 vs 8.2 months; HR 
0.62 (95% CI 0.50–0.76), p < 0.001] [47].

3.2.1  Preclinical Pharmacology

In Table 2, the in vitro interaction of niraparib with enzymes 
and transporters is summarized. Niraparib has the potential to 
cause off-target effects on the cardiovascular and central nerv-
ous systems, as it inhibits the neuronal dopamine, norepineph-
rine, and serotonin transporters. Except for the inhibition of 
MATE-1 and MATE-2 and being a substrate to P-gp and breast 
cancer resistance protein (BCRP), niraparib is no substrate to, 
or inhibitor of other important enzymes or transporters [48].

In vivo, niraparib treatment resulted in tumor regres-
sion in a BRCA-1 mutant mouse xenograft model [49], as 
well as BRCA wild-type models [10]. Although niraparib 
is substrate of P-gp and BCRP, it is able to permeate the 
blood–brain barrier with sustainable brain exposure in mice. 
The high permeability might overcome the transporter-
mediated efflux of niraparib [10, 49]. Concentrations in 

tumor tissue (subcutaneous breast and ovarian cancer xeno-
graft models) three times higher than in plasma have been 
reported. However, niraparib also has the unfavorable prop-
erty of distributing into the bone marrow where platelets are 
generated [10, 49].

3.2.2  Clinical Pharmacokinetics

Table 3 shows the steady-state pharmacokinetic parameters 
of niraparib. Niraparib is classified as a BCS class II com-
pound (low solubility, high permeability) with a high bio-
availability and protein binding (73% and 83%, respectively). 
It has a high volume of distribution of 1220 L and prefer-
ably distributes into red blood cells with a blood-to-plasma 
ratio of 1.6 [48, 50–52]. The intra-individual variability in 
exposure is 36.9%, which has been determined in a popula-
tion pharmacokinetic (PopPK) model [48, 51]. Metabolism 
mainly takes place by carboxylesterases with M1 as the 
main metabolite. M1 undergoes glucuronidation by uridine 
5′-diphospho-glucuronosyltransferase to form M10. The M1 
and M10 metabolites are inactive. Niraparib and its metabo-
lites are eliminated by hepatic and renal routes, with 32% 
and 40% of total administered dose being recovered in feces 
and urine, respectively [51, 53].

3.2.3  Pharmacokinetics in Special Populations

3.2.3.1 Patients with  Renal Impairment The effect of 
renal impairment on the pharmacokinetics of niraparib was 
investigated in a PopPK model (Table 4). As no differences 
were observed in exposure between patients with a normal, 
mild, and moderate renal function, no dose adjustments are 
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required [51, 54]. The effect of severe renal impairment 
has not been assessed. Niraparib itself can mildly affect the 
estimated glomerular filtration rate. This is probably not an 
effect of inhibition of the tubular creatinine secretion, like 
olaparib [20, 39, 55], but of hemodynamic impairment due 
to dopamine and norepinephrine transporter inhibition. As 
the effect is mild and reversible in most cases, this is not an 
indication of treatment discontinuation [56].

3.2.3.2 Patients with Hepatic Impairment Niraparib expo-
sure was significantly increased in patients with moderate 
hepatic impairment (Table 5). Therefore, a starting dose of 
200 mg is recommended [57]. In a PopPK model, exposure 
in patients with mild hepatic impairment (n = 27) was not 
different from exposure in patients with a normal hepatic 
function (n = 351), thus no dose adjustments are advised 
in this group [51, 54]. The effect of severe impaired hepatic 
function on niraparib pharmacokinetics has not been estab-
lished.

3.2.4  Other Factors Influencing the Pharmacokinetics 
of Niraparib

In a PopPK model, the impact of age, sex, ethnicity, and 
body weight on niraparib pharmacokinetics was evaluated. 
These variables could not explain the moderate-to-high 
interindividual variability (e.g., 52.5% for oral clearance) 
[51, 54]. However, clinical studies demonstrated low body-
weight (< 77 kg) to be correlated with a higher exposure 
(Cmax and AUC). These patients might benefit from a lower 
starting dose of 200 mg/day, which is currently advised [58, 
59]. No effect of age was demonstrated in the PopPK model, 
which was confirmed in an efficacy and safety analysis. 
Patients aged > 70 years (n = 61) had comparable PFS ben-
efits and incidence of adverse events, compared to patients 
aged < 70 years (n = 311) [60].

3.2.5  Food Effect

The results of the food-effect study are shown in Table 6. 
A high-fat meal delays the time to Cmax and decreases the 
Cmax of niraparib significantly, but the extent of absorption 
was not altered. The efficacy and safety profile of niraparib 
was not affected, therefore niraparib can be taken with or 
without food [61].

3.2.6  Drug–Drug Interactions

No in vivo DDI studies are performed. The risk of DDIs 
with CYP enzyme inhibitors or inducers is minimal, as the 
major route of metabolism is mediated by carboxylesterases. 
Additionally, gastric-reducing agents are unlikely to alter 
exposure because niraparib solubility is independent of a pH Ta
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below its pKa of 9.95 [51]. Co-administration of niraparib 
with substrates to MATE-1 or MATE-2 (e.g., metformin) 
could potentially result in increased plasma concentrations 
of the co-administered drug [48].

3.2.7  Clinical Pharmacodynamics

3.2.7.1 Exposure Efficacy In patients, efficacious PARP 
inhibition (>  90% inhibition of PARP in tumor tissue) 
was reached at doses of 80 mg/day and above and durable 
responses measured by Response Evaluation Criteria in 
Solid Tumors (RECIST) were observed at doses of 60 mg/
day [46, 62]. Dose–efficacy relationships were investigated 
using data from two clinical trials. In the retrospective anal-
ysis of the NOVA safety population (n = 553), PFS was sim-
ilar in patients using 100, 200, and 300 mg/day in gBRCA-
mutated and non-gBRCA-mutated patients. However, dose 
modifications (80%) and interruptions (73%) were common 
[58]. This is in line with the results of the QUADRA study 
(n = 463). Clinical benefit rate (ORR), disease control rate, 
and clinical benefit rate at 24 weeks (CBR24) was similar 
between patients receiving a mean niraparib dose of ≤ 200 
mg/day (8%, 58%, and 19%, respectively) and patients 
receiving > 200 mg/day (7%, 39%, and 15%, respectively) 
[63].

A pharmacokinetic model was developed using phase 
I and III data (NOVA trial, n = 512) to investigate expo-
sure–efficacy relationships. A trend towards increased 
PFS with increased exposure (AUC) was observed in the 
non-gBRCA group [11.5 vs 7.5 months; HR 0.70 (95% 
CI 0.49–0.99)], while this relationship was absent in the 
gBRCA group [> 15.7 vs 15.9 months; HR 0.91 (95% CI 
0.54–1.52)] [48, 64]. More research should be conducted 
to investigate a possible exposure–efficacy relationship, as 
these data are inconclusive.

3.2.7.2 Exposure Toxicity In the phase I dose-escalation 
trial, hematological toxicities were more often observed at 
higher doses and seemed dose proportional [46]. The inci-
dence of nausea, thrombocytopenia, and fatigue was 74%, 
61%, and 59%, respectively, in patients using the recom-
mended dose of 300 mg/day in the phase III NOVA trial 
(n = 367) [45]. The incidence was significantly lower in 
patients initiating niraparib at 200 mg/day (16%, 14%, and 
24% respectively) in a real-world cohort (n = 153) [65]. 
Furthermore, 66.5% of the patients in the phase III NOVA 
trial needed a dose reduction and 68.9% had dose interrup-
tions. Dose reductions reduced the incidence of grade 3 and 
4 thrombocytopenia, anemia, and neutropenia [45, 66].

A PopPK model was developed to investigate expo-
sure–response relationships using data from the NOVA 
trial. Exposure (AUC, Cmax, minimum concentration) was 

significantly associated with any grade of thrombocytope-
nia and other hematologic and non-hematologic treatment-
emergent adverse events [67].

In addition, patients with a low bodyweight (< 77 kg) 
or low platelet counts (< 150.000/mL) at baseline had a 
higher risk of grade > 3 thrombocytopenia (35% vs 12%) 
[58]. Bodyweight was correlated with higher exposure (Cmax 
and AUC) [59] and it is recommended to start with a dose of 
200 mg/day for patients with a bodyweight < 77 kg and/or 
baseline platelets of < 150.000/mL [58, 59]. This individual-
ized dosing strategy was further investigated in the PRIMA 
trial (n = 733) [47, 68] and NORA trial (n = 177) [69], with 
safety being significantly improved while efficacy not being 
affected. This was confirmed in two real-life cohorts [62, 
67]. In summary, data clearly show a relationship between 
the dose and exposure of niraparib and toxicity.

3.3  Rucaparib

In the ARIEL2 study and study 10, rucaparib treatment 
of patients with g/sBRCA-mutated platinum-sensitive, 
relapsed, high-grade ovarian cancer resulted in an ORR, 
complete response, and partial response of 53.8%, 8.5%, and 
45.3%, respectively, leading to the accelerated first approval 
of rucaparib in 2016 (Table 1) [71–73]. The recommended 
dose of 600 mg BID was selected based on toxicity and 
clinical activity with no MTD [71]. Additional approval 
was granted for the maintenance treatment of platinum-
sensitive, relapsed, high-grade ovarian cancer regardless of 
BRCA status with a prolonged median PFS in the BRCA 
group [16.6 vs 5.4 months; HR 0.23 (95% CI 0.16–0.34), p 
< 0.0001], HRD group [13.6 vs 5.4 months; HR 0.32 (95% 
CI 0.24–0.42), p < 0.0001], and total group [10.8 vs 5.4 
months; HR 0.36, (95% CI 0.30–0.45), p< 0 .0001] [74].

3.3.1  Preclinical Pharmacology

Table 2 shows the in vitro interaction of rucaparib with 
enzymes and transporters. Rucaparib inhibits many enzymes 
and transporters, causing a high risk for DDIs in patients 
(Sect. 3.3.6). Inhibition of the renal transporters OCT2, 
MATE-1, and MATE-2K have been related to an increase 
in creatinine levels without affecting renal function [19, 20]. 
Furthermore, the antagonistic activity towards the non-selec-
tive sigma receptor and several kinases [75] are likely to 
cause off-target side effects (e.g., increase in cholesterol), 
but are unlikely to exert anti-tumor activity [76].

P-glycoprotein and BCRP are restricting oral availability 
and brain accumulation in mice, causing tumor resistance 
and limiting the use against brain metastasis [77]. Despite 
limited brain penetration in glioblastoma xenografts [78], 
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antitumor activity was still observed in an intracranial 
BRCA1-mutated model [79].

3.3.2  Clinical Pharmacokinetics

Steady-state pharmacokinetic parameters of rucaparib are 
shown in Table 3. Rucaparib is a BCS class IV compound 
(low solubility and low permeability). Bioavailability is 
low (36%) with a concentration-independent protein bind-
ing of 70.2% in vitro [80]. Rucaparib has a mean volume 
of distribution of 211 L [81] and preferentially distributes 
into red blood cells with an average blood-to-plasma ratio 
of 1.83 [80]. Rucaparib is extensively metabolized by CYP 
enzymes (Table 2), undergoing phase I and phase II reac-
tions with M324 as the major metabolite. M324 is 30 times 
less potent compared with rucaparib and mainly eliminated 
by the kidneys. In a mass balance study, the mean recovery 
of the administered dose was 17.4% and 71.9% for urine and 
feces, respectively (7.6% and 63.9% unchanged) [82, 83].

3.3.3  Pharmacokinetics in Special Populations

3.3.3.1 Patients with Renal Impairment The effect of renal 
impairment on the pharmacokinetics of rucaparib is sum-
marized in Table  4. Although exposure of rucaparib was 
slightly higher in patients with mild and moderate renal 
impairment, no dose adjustments are required because the 
side effects and efficacy were not affected [84]. In patients 
with severe renal impairment or in patients undergoing dial-
ysis, rucaparib is not recommended [7, 75, 85]. However, 
rucaparib therapy was safe in a single patient with dialysis-
dependent renal failure using trough concentrations for dose 
optimization [86]. Therefore, therapeutic drug monitoring 
might be useful in patients with severe renal impairment or 
patients undergoing dialysis.

3.3.3.2 Patients with  Hepatic Impairment The effect of 
hepatic impairment on rucaparib exposure is shown in 
Table 5. No dose adjustments are required in patients with 
mild or moderate hepatic impairment, but the advice is to 
monitor patients for adverse events [75, 84, 87, 88]. Until 
the effect of severe hepatic impairment is investigated, ruca-
parib is not recommended in patients with severe hepatic 
impairment [7].

3.3.4  Other Factors Influencing Pharmacokinetic 
Parameters

Bodyweight [75, 89], body mass index, race, alpha-1 acid 
glycoprotein, and age have no significant effect on pharma-
cokinetic parameters of rucaparib [75]. Efficacy and safety 
were similar in age subgroups, indicating no effect of age 
on rucaparib pharmacokinetics [90]. Steady-state exposure 

(AUC) at 600 mg BID was not different between CYP2D6 
phenotypes (poor metabolizers, n = 9; intermediate metab-
olizers, n = 71; normal metabolizers, n = 76; ultra-rapid 
metabolizers, n = 4) or CYP1A2 phenotypes (normal metab-
olizers, n = 28, hyper-inducers, n = 136). Therefore, no dose 
adjustments are needed [84].

3.3.5  Food Effect

The results of the food-effect study are summarized in 
Table  6. A high-fat meal delays the time to Cmax and 
increases the AUC and Cmax significantly. This was con-
firmed in a PopPK model with an increase in bioavailability 
from 32.7 to 51.7% when rucaparib was taken with a high-
fat meal [84]. Food might increase intestinal solubility, as 
rucaparib is poorly water soluble. The increase in exposure 
is clinically insignificant because pharmacokinetic variabil-
ity is not reduced and efficacy and safety are acceptable [91]. 
Therefore, rucaparib can be taken with or without food.

3.3.6  Drug–Drug Interactions

The results of DDI studies are summarized in Table 7. Ruca-
parib is extensively metabolized by CYP enzymes; however, 
CYP1A2 or CYP2D6 inhibitors did not impact rucaparib 
exposure. As rucaparib is metabolized by CYP3A4, the 
effect of strong CYP3A4 inhibitors and inducers should be 
explored [75]. Concomitant use of proton pump inhibitors 
showed no meaningful effect on rucaparib pharmacokinet-
ics [85].

In addition, dose adjustments should be considered for 
CYP1A2, CYP2C9, and CYP3A4 substrates with a narrow 
therapeutic window when administered with rucaparib [92]. 
Rucaparib had a marginal effect on digoxin exposure, but 
the effects could be underestimated, as digoxin is not the 
most selective P-gp probe [75, 93, 94]. Rucaparib weakly 
increased exposure to oral contraceptives and rosuvasta-
tin. As hormone levels vary widely between individuals, it 
is unlikely that efficacy is affected and toxicity increased. 
Although no dose adjustments are recommended for rosuv-
astatin, attention should be used in case of genetic polymor-
phisms in genes for BCRP and when extrapolating to other 
BCRP substates [95]. Furthermore, there is a high potential 
for DDIs when rucaparib is co-administered with substrates 
of MATE-1, MATE2-l, OCT1, and OCT2 (e.g., metformin) 
(Table 2) [75].

3.3.7  Clinical Pharmacodynamics

3.3.7.1 Exposure Efficacy Mean PARP inhibition in periph-
eral blood lymphocytes in patients was > 90% and not dose 
dependent between doses of 92 mg QD and 600 mg BID 
[96]. A PopPK model was developed using data from Study 
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10 and ARIEL2 to explore exposure–efficacy relationships 
in patients with BRCA-mutated ovarian cancer (n = 121). 
The AUC averaged by the actual dose received over time 
was correlated with an investigator radiologist review-
assessed RECIST response in the subgroup of platinum-
sensitive recurrent disease (n = 75, p = 0.017). Other effi-
cacy endpoints were not correlated. Sample size was small, 
thus no definite conclusion can be drawn [89, 97].

3.3.7.2 Exposure Toxicity In patients taking the recom-
mended dose of 600 mg BID in the phase I/II ARIEL2 
study and study 10, adverse events were common and fre-
quently led to dose reductions (69%) and treatment interrup-
tions (64%) [71]. In addition, dose-limiting toxicities were 
reported in patients receiving doses above 480 mg BID, 
while doses below were well tolerated [96].

In an exposure–safety analysis with data from Study 10 
and ARIEL2 in patients with BRCA-mutated ovarian cancer 
(n = 393), Cmax,ss was associated with grade ≥2 creatinine 
(p < 0.001), grade ≥3 alanine aminotransferase (p = 0.033), 
grade ≥3 aspartate aminotransferase (p = 0.027), fatigue 
(p = 0.029), platelet decrease (p = 0.04), and a maximum 
hemoglobin change from baseline (p < 0.001) [89, 97]. The 
rise in creatinine levels is likely a result of inhibition of renal 
transporters without an impacting renal function [55]. These 
results indicate a relationship between exposure and toxicity.

3.4  Talazoparib

Talazoparib approval was granted in 2019 by the EMA for 
the treatment of gBRCA-mutated, human epidermal growth 
factor receptor-2 negative metastatic breast cancer (Table 1). 
In the phase III EMBRACA trial, talazoparib treatment 
resulted in a significantly longer median PFS [8.6 vs 5.6 
months; HR 0.54 (95% CI 0.41–0.71), p < 0.001] and a 
higher ORR (62.6% vs 27.2%; OR 5.0, p < 0.001) compared 
with standard therapy [98]. The approved dose of 1.0 mg QD 
was also the MTD [99].

3.4.1  Preclinical Pharmacology

In Table  2, the in  vitro interaction of talazoparib with 
enzymes and transporters is summarized. Talazoparib is 
the most potent catalytic PARP inhibitor with the highest 
trapping potency [100–102]. It inhibits tankyrase 1 and 
tankyrase 2 (PARP5a and b) causing an anti-cancer and 
anti-fibrotic effect, but also the induction of bone loss with 
increased osteoclasts [103]. Talazoparib has no effect on 
enzymes and transporters, but is a substrate to P-gp and 
BCRP. This is confirmed in vivo, with 1.9 times and 15 
times higher plasma and brain concentrations, respectively, 
in P-gp and BCRP knockout mice [102].

3.4.2  Clinical Pharmacokinetics

Pharmacokinetic parameters of talazoparib at steady state 
are described in Table 3. Talazoparib is a BCS class II or IV 
compound (low solubility, moderate permeability) with an 
estimated bioavailability of at least 55% based on a mass bal-
ance study and protein binding of 74% (in vitro) [104, 105]. 
The apparent volume of distribution is 420 L [102, 104] 
with no preferable distribution into red blood cells [105]. 
Metabolism of talazoparib is minimal and the major route 
of elimination is renal excretion. Mean recovery of the total 
administered dose is 68.7% (54.6% unchanged) in urine and 
19.7% (13.6% unchanged) in feces [104, 105].

3.4.3  Pharmacokinetics in Special Populations

3.4.3.1 Patients with Renal Impairment The effect of renal 
impairment on the pharmacokinetics of talazoparib is sum-
marized in Table 4. Dose adjustments are recommended for 
patients with moderate or severe renal impairment, as clear-
ance is decreased [106] and exposure significantly increased 
[107].

3.4.3.2 Patients with Hepatic Impairment 

The effect of hepatic impairment on talazoparib exposure 
is shown in Table 5. No effect of mild, moderate, or severe 
hepatic impairment was observed on talazoparib pharma-
cokinetics. Therefore, no dose adjustments are required 
[106, 108].

3.4.4  Other Factors Influencing Pharmacokinetic 
Parameters

The effect of several covariates on the pharmacokinetics of 
talazoparib was explored by a PopPK model. Age, sex, and 
body weight had no clinical relevant effect on talazoparib 
exposure. Talazoparib clearance was 24.7% higher and expo-
sure approximately 20% lower in Asian patients compared 
with non-Asian patients. P-glycoprotein and BCRP poly-
morphisms are ethnicity dependent with a higher frequency 
of single nucleotide polymorphisms in Asian individuals 
compared with white individuals. This might contribute to 
the lower exposure in Asian individuals, but no dose adjust-
ments are recommended, as 1 mg QD is the MTD [106].

3.4.5  Food Effect

The effect of food on talazoparib pharmacokinetics is 
shown in Table 6. A high-fat meal delays the time to Cmax 
and decreases the Cmax significantly, but does not influence 
the extent of absorption [102]. These findings are consistent 
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with a PopPK analysis where the absorption rate is decreased 
(Ka) without any change in the extent of absorption (F1) 
[106]. In conclusion, talazoparib can be taken with or with-
out food.

3.4.6  Drug–Drug Interactions

Table 7 summarizes the results of DDI studies. Concomitant 
use of potent P-gp inhibitors increases bioavailability and 
exposure of talazoparib significantly. Therefore, a reduced 
dose of 0.75 mg is advised when talazoparib is co-admin-
istered with potent P-gp inhibitors. Gastric-reducing agents 
had no effect on talazoparib exposure, which was expected 
based on the pH-independent solubility [106, 109]. As tala-
zoparib is a substrate to BCRP, the effect of BCRP inhibitors 
cannot be excluded and should be further investigated.

3.4.7  Clinical Pharmacodynamics

3.4.7.1 Exposure Efficacy Talazoparib shows a dose-
dependent and exposure-dependent PARP activity in 
peripheral blood mononuclear cells with sustained PARP 
inhibition at and above doses of 0.6 mg/day [99]. Exposure–
efficacy relationships were demonstrated in the EMBRACA 
and ABRAZO trials. In the EMBRACA trial (n = 281), the 
time-varying average talazoparib concentration (Cavg,t, [to 
account for dose modifications]) was significantly associ-
ated with longer PFS [110]. Dose reductions resulted in a 
trend towards a marginally less favorable PFS outcome com-
pared with patients without dose reductions. However, dose 
reductions itself could lead to a shorter PFS, but it could 
also be a marker of worse prognosis and therefore a shorter 
PFS [111]. An exposure–efficacy analysis using data from 
the phase II ABROZO trial (n = 81) found a trend towards a 
higher ORR with higher exposure, but no relationship with 
PFS. However, patient numbers were small [112]. These 
data suggest an exposure–efficacy relationship is apparent.

3.4.7.2 Exposure Toxicity An exposure–safety analysis 
was performed with pooled data from the EMBRACA (n 
= 285) and ABRAZO trials (n = 82). Patients above the 
median exposure (Cavg,t) experienced more events of ane-
mia and thrombocytopenia. In the final Cox proportional 
hazard model, a higher Cavg,t was associated with a higher 
risk for anemia and thrombocytopenia and there was a trend 
towards a higher log-transformed Cavg,t and risk for neutro-
penia [111, 113]. These results indicate an exposure–toxic-
ity relationship.

4  Discussion

We provided an overview of the (pre)-clinical pharmacol-
ogy, clinical pharmacokinetics, and clinical pharmacody-
namics of the four approved PARP inhibitors. This review 
reveals that PARP inhibitors have overlapping characteristics 
and unique properties as well. While all four PARP inhibi-
tors are potent inhibitors of PARP enzymes with comparable 
half-maximal inhibitory concentration values, they differ in 
their PARP-trapping potency. Talazoparib has the most rigid 
structure with two chiral centers, which likely accounts for 
its potent trapping ability (50–100 times higher) compared 
with olaparib, niraparib, and rucaparib [103]. Cytotoxic-
ity of PARP inhibitors as a single agent is correlated with 
PARP trapping and not with catalytic inhibition of PARP 
[114, 115]. Talazoparib shows the greatest PARP trapping 
potency, which is also correlated with increased toxicity in 
normal cells. Therefore, the MTD of talazoparib is much 
lower than other PARP inhibitors [116, 117]. Furthermore, 
the approved dose of talazoparib is in the range of the half-
maximal inhibitory concentration for PARP inhibition, 
and therefore the only PARP inhibitor showing a dose-
dependent and exposure-dependent inhibition of PARP in 
peripheral blood mononuclear cells. Unbound steady-state 
concentrations of olaparib, niraparib, and rucaparib exceed 
the half-maximal inhibitory concentration for PARP inhi-
bition, which probably means that maximal PARP inhibi-
tion is reached at doses far below the recommended dose 
in patients.

Interestingly, olaparib and niraparib have similar catalytic 
activities and cytotoxicity against BRCA mutant cells and 
xenograft models [114], but niraparib is more efficacious 
in BRCA wild-type models [10]. This is also observed in 
patients with BRCA wild-type ovarian cancer, with a 5.4-
month improvement in PFS for niraparib [45] compared with 
1.9 months for olaparib. [14]. BRCA wild-type cells might 
require higher concentrations of the PARP inhibitor than 
BRCA-mutated cells, which explains the greater efficacy of 
niraparib; niraparib concentrations in wild-type tumors in 
mice were ten times higher compared with olaparib at thera-
peutic and comparable doses [118]. Initially, PARP inhibi-
tor treatment was restricted to BRCA-mutated patients. As 
BRCA wild-type patients with HRD-positive tumors and 
no mutations in homologous recombination repair genes 
also benefit from PARP inhibitor treatment (but to a lesser 
extent), indications are expanding. It becomes more clear 
that biomarkers beyond BRCA, like other deficiencies in 
homologous recombination repair, play a role in the suscep-
tibility to PARP inhibitors [119, 120].
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Olaparib and rucaparib are substrates and inhibitors of 
several enzymes and transporters. Both PARP inhibitors 
increase creatinine without affecting renal function and have 
a high risk for DDIs. Niraparib has less effect on enzymes 
and transporters and the contribution of talazoparib is mini-
mal. This can be an advantage for patients with comorbidi-
ties using multiple drugs. All four PARP inhibitors are sub-
strates of the P-gp efflux transporter causing interactions 
and limiting the brain penetration. However, niraparib is 
classified as a BSC II compound with a high permeability 
that might (partly) overcome the P-gp-mediated efflux that 
could justify its use in the case of brain metastasis.

Poly (ADP-ribose) polymerase inhibitors differ in the way 
they are metabolized and excreted. While olaparib and ruca-
parib are metabolized by CYP enzymes, metabolism of nira-
parib is mainly mediated by carboxylesterase enzymes and 
metabolism of talazoparib is minimal. Poly (ADP-ribose) 
polymerase inhibitors are hepatically and renally cleared 
with no preferred route for olaparib and niraparib and the 
liver being the main route of excretion for rucaparib and the 
kidneys for talazoparib. Dose adjustments are necessary in 
patients with renal dysfunction for olaparib and talazoparib 
and for niraparib in patients with hepatic impairment.

Exposure is dose proportional for all PARP inhibitors, 
except for olaparib capsules because of limited solubility. 
The improved tablet formulation increased bioavailability 
and decreased the high administration burden. Niraparib 
and talazoparib have convenient long half-lives allowing 
QD dosing while olaparib and rucaparib have shorter half-
lives and are dosed BID. All PARP inhibitors are classified 
as BCS class II or IV compounds with low solubility [23, 
48, 75, 121]. This might contribute to the moderate-to-high 
interindividual variability in exposure; however, exposure is 
not drastically affected by intake with food.

While a PARP exposure–efficacy relationship is present 
for talazoparib, this relationship remains inconclusive for 
olaparib, niraparib, and rucaparib. Average unbound steady-
state concentrations of rucaparib at the recommended dose 
of 600 mg BID are much higher than the required exposure 
for durable anti-tumor response in preclinical models [75] 
and exceed the half-maximal effective concentration for 
cytotoxicity. Based on these data and because dose find-
ings of targeted anti-cancer agents are still mostly based on 
toxicity, rather than efficacy, the optimal dose of rucaparib 
might be lower than the current recommended dose. How-
ever, further clinical studies should investigate and confirm 
efficacy at lower dose levels.

Although PARP inhibitors have the same mechanism of 
action, they differ in their toxicity profile. Rucaparib has the 
most reported adverse drug reaction, which could be expected 
based on its many off-target effects (Table 2) [122]. Hyper-
cholesterolemia is specific for rucaparib mediated through 
off-target kinase inhibition [76]. Hypertransaminasemia 

has been reported for rucaparib and niraparib and less for 
olaparib [123]. Niraparib is the only PARP inhibitor causing 
hypertension, due to off-target inhibition of neuronal dopa-
mine, norepinephrine, and serotonin transporters, increasing 
neurotransmitters with inotropic effects on the heart. These 
neurotransmitters are involved in the psychiatric and nervous 
system disorders as well, which explains the association with 
niraparib. Gastrointestinal adverse events are very common 
and a class effect of PARP inhibitors. Furthermore, hema-
tological toxicities, such as anemia, thrombocytopenia, and 
neutropenia are frequently reported and an on-target class 
effect. PARP-1 trapping is not only related to cytotoxicity 
in cancer cells with HRD, but also drives bone marrow tox-
icity [124]. Additionally, inhibition of PARP-2 is directly 
related to anemia, due to impaired differentiation of erythroid 
progenitors and a shortened lifespan of erythrocytes [125]. 
Awareness of the delayed adverse events of myelodysplas-
tic syndrome and acute myeloid leukemia is important, as 
these adverse events can be lethal and occur after several 
months [126]. Niraparib has the highest number of reported 
hematological toxicities followed by rucaparib and olapa-
rib, related to the volume of distribution [123]. Dose reduc-
tions and treatment interruptions occurred frequently with 
niraparib, but efficacy was not affected [58]. Therefore, the 
recommended dose of 300 mg/day is possibly higher than 
necessary for sufficient efficacy, especially for gBRCA-
mutated patients, and lower doses of niraparib might be jus-
tified. While BRCA status is predictive for efficacy, it is not 
related to toxicity [127]. Higher exposure is associated with 
an increase in efficacy for talazoparib and with an increase in 
hematological toxicities for all PARP inhibitors and thereby 
might be a rationale for therapeutic drug monitoring.

5  Conclusions

Poly (ADP-ribose) polymerase inhibitors are valuable 
anticancer agents with rapidly expanding indications. The 
understanding of the overlapping and unique pharmacoki-
netic and pharmacodynamic properties of PARP inhibitors 
can guide the choice of the PARP inhibitor, support treat-
ment optimization, and improve clinical outcomes.
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