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Abstract
The pathophysiology of sepsis alters drug pharmacokinetics, resulting in inadequate drug exposure and target-site concen-
tration. Suboptimal exposure leads to treatment failure and the development of antimicrobial resistance. Therefore, we seek 
to optimize antimicrobial therapy in sepsis by selecting the right drug and the correct dosage. A prerequisite for achieving 
this goal is characterization and understanding of the mechanisms of pharmacokinetic alterations. However, most infections 
take place not in blood but in different body compartments. Since tissue pharmacokinetic assessment is not feasible in daily 
practice, we need to tailor antibiotic treatment according to the specific patient’s pathophysiological processes. The complex 
pathophysiology of sepsis and the ineffectiveness of current targeted therapies suggest that treatments guided by biomark-
ers predicting target-site concentration could provide a new therapeutic strategy. Inflammation, endothelial and coagulation 
activation markers, and blood flow parameters might be indicators of impaired tissue distribution. Moreover, hepatic and 
renal dysfunction biomarkers can predict not only drug metabolism and clearance but also drug distribution. Identification of 
the right biomarkers can direct drug dosing and provide timely feedback on its effectiveness. Therefore, this might decrease 
antibiotic resistance and the mortality of critically ill patients. This article fills the literature gap by characterizing patient 
biomarkers that might be used to predict unbound plasma-to-tissue drug distribution in critically ill patients. Although all 
biomarkers must be clinically evaluated with the ultimate goal of combining them in a clinically feasible scoring system, we 
support the concept that the appropriate biomarkers could be used to direct targeted antibiotic dosing.
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Graphical Abstract

ADAMTS-13 a disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13, ALAT alanine amino transferase, APACHE IV 
Acute Physiology and Chronic Health Evaluation-IV, aPPT activated partial thromboplastin time, ASAT aspartate amino transferase, AT 
antithrombin, Ca-V-O2 oxygen content difference, arterial-venous,CRP C-reactive protein, ELAM endothelial leukocyte adhesion molecule, 
ICAM intercellular adhesion molecule, IL interleukin, INR international normalized ratio, LBP lipopolysaccharide-binding protein, MCP mono-
cyte chemoattractant protein, mHLA monocytic human leukocyte antigen, MIF migration inhibitory factor, MIP macrophage inflammatory pro-
tein, PAI plasminogen activator inhibitor, PCO2 partial pressure of carbon dioxide, PT prothrombin time, RRT  renal replacement therapy, SAPSS 
III Simplified Acute Physiology Score-III, sO2 oxygen saturation, SOFA Sequential [Sepsis-related] Organ Failure Assessment, sTREM soluble 
triggering receptor expressed on myeloid cells 1, TLR toll-like receptor, TNF tumor necrosis factor, VCAM vascular cell adhesion molecule, 
VEGF vascular endothelial growth factor, vWf von Willebrand factor
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Key Points 

Pathophysiological changes in sepsis lead to pharma-
cokinetic variability and altered antibiotic infection site 
concentrations.

Biomarkers reflecting drug pharmacokinetics might help 
optimize antimicrobial dosing.

According to the pathophysiology of sepsis, the follow-
ing host factors might be suitable to predict antibiotic 
target-site exposure in critically ill patients: inflam-
mation, endotheliopathy, blood flow, coagulation, and 
hepatic and renal dysfunction. Prospective pharmacoki-
netic studies are needed.

1 Introduction

Sepsis is a life-threatening organ dysfunction resulting from 
a deregulated host response to infection (Fig. 1) [1]. The 
World Health Organization considers sepsis a global health 
emergency because 11 million sepsis-related deaths world-
wide occur every year [2]. Thus, there is a call for global 

Fig. 1  The Sepsis-3 criteria. “Sepsis should be defined as life-threat-
ening organ dysfunction caused by a dysregulated host response to 
infection [suspected or confirmed]” [192]. The SOFA (Sequential 
[Sepsis-related] Organ Failure Assessment) score can be used to 
determine organ dysfunction. Organ dysfunction representing sepsis 
is defined as an increase in the SOFA score of ≥ 2 points. The SOFA 

score rates the functioning of six organ systems from 0 to 4. A sub-
type of sepsis is septic shock, which requires a vasopressor to pre-
serve a mean blood pressure of ≥ 65 mmHg, and by a serum lactate 
level >  2 mmol/L (>  18 mg/dL) without hypovolemia. MAP mean 
arterial pressure, PaO2/FiO2 ratio of arterial oxygen partial pressure 
to fractional inspired oxygen

action to improve prevention, diagnostic, and treatment tools 
[3–5]. Part of this high mortality in critically ill patients has 
been linked to antibiotic treatment failure [6].

Several factors might lead to this treatment failure, 
including inadequate penetration of the antimicrobial to the 
target site [7–9], since site drug levels may substantially vary 
from the corresponding plasma drug concentrations [15]. 
Suboptimal antibiotic doses in the site of infection may also 
result in adverse reactions, toxicity, resistance, and higher 
costs [10]. Critically ill patient pathophysiology leads to 
highly variable systemic pharmacokinetics and altered tissue 
penetration of antibiotics [11]. Therefore, standardized doses 
might not fit patients in the intensive care unit (ICU), who 
have an increased risk of not receiving target-site therapeutic 
concentrations [10].

Various strategies have been proposed to improve antibi-
otic use, such as antibiotic stewardship [12, 13], therapeu-
tic drug monitoring (TDM), and precision dosing [14–16]. 
Dose adjustments have recently shown promising evidence 
for improved outcomes and reduction of antimicrobial resist-
ance [17]. In recent years, dosing nomograms and popu-
lation-pharmacokinetic dosing software have appeared to 
optimize antibiotic use [18, 19]. However, these techniques 
have a significant limitation: they predict the drug concentra-
tion in plasma, and rarely in the site of infection [20].
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Determining the concentration at the infection site for 
individual patients is challenging, so biomarkers that might 
predict target-site concentrations are needed. Sepsis bio-
markers have already been used to prove infection and help 
confirm a sepsis suspicion [21, 22], and procalcitonin-
guided antibiotic therapy is already a reality [23]. A retro-
spective study examined the accuracy of different markers 
and scoring systems for predicting tissue penetration of anti-
microbials and found that oxygen saturation, serum lactate 
concentration, and the dose per unit time of norepinephrine 
administered were best correlated with tissue penetration 
[24]. Nevertheless, a gap remains in the literature linking 
such time-varying host biomarkers to target-site concentra-
tion and antibiotic exposure. Such knowledge would enable 
the stratification of patients with increased risk of treatment 
failure and individualize antibiotic treatment.

This review aims to characterize biomarkers that predict 
antibiotic pharmacokinetics in critically ill patients. Our 
objective is to summarize the effect of pathophysiological 
changes in critically ill patients on pharmacokinetics and 
how biomarkers might predict them. First, we give an over-
view of drug and host factors influencing pharmacokinetic 
changes. Then we propose and classify biomarkers that can 
predict this pharmacokinetic variability and thus the antibi-
otic concentration at the infection site.

2  Methods

We conducted a literature review in the MEDLINE, Google 
Scholar, and ISI Web of Science databases. We also identi-
fied references from relevant articles and from searches of 
the authors’ extensive files. Search terms used were sepsis, 

Table 1  Physiological antibiotic properties and implications for pharmacokinetics in critical illness

Cmax maximum plasma drug concentration, PB protein binding, Vd volume of distribution, ↑ and ↓ indicate increase and decrease, respectively

Pharmacokinetics Lipid solubility

Hydrophilic antibiotics Lipophilic antibiotics

General ↓  Vd; ↑  Cmax, ↓ intracellular penetration; renal clearance ↑  Vd; ↓  Cmax; ↑ intracellular penetration; hepatic clearance
In critically ill ↑  Vd; ↑/↓ renal clearance; dependent on renal function and PB Unchanged  Vd; ↑/↓ hepatic clearance; dependent on 

hepatic function and PB
Examples β-lactams, aminoglycosides, glycopeptides Fluoroquinolones, macrolides, rifampicin, linezolid

Table 2  Protein binding of 
antibiotics

↑ and ↓ indicate increase and decrease, respectively

Pharmacokinetics Protein binding

High Low

General ↓ Diffusion, ↓ tissue penetration,
↓ antimicrobial activity

↑ Diffusion, ↑ tissue penetration, ↑ antimi-
crobial activity

In the critically ill ↑ Diffusion, ↑ tissue penetration, ↑ 
antimicrobial activity

Unchanged

Examples Ceftriaxone, doxycycline, ertapenem Fluoroquinolones, fosfomycin, meropenem

Table 3  PK/PD index predictors of efficacy in antibiotics

AUC 0–24 area under the plasma concentration–time curve from time zero to 24 h, Cmax maximum plasma drug concentration, MIC minimum 
inhibitory concentration, PK/PD pharmacokinetics/pharmacodynamics, T>MIC time above MIC

PK/PD index predictor PK/PD Objective Antibiotics References

Cmax/MIC Concentration dependent Maximize the concentration Aminoglycosides, fluoroquinolones, 
ketolides, metronidazole, polymyxin

[29]

T>MIC Time dependent Maximize duration of exposure β-lactams, erythromycin, clarithromy-
cin, linezolid, lincosamides

[30]

AUC 0–24/MIC Concentration dependent 
with time dependence

Maximize the amount of drug expo-
sure

Azithromycin, clindamycin, linezolid, 
tetracyclines, daptomycin, fluoroqui-
nolones, aminoglycosides, tigecy-
cline, vancomycin

[31, 32]
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critically ill, pharmacokinetics, pharmacodynamics, bio-
markers, and individual dosing. After the initial revision, we 
conducted individual searches for each relevant biomarker. 
We only reviewed English language articles. No date restric-
tions were set in these searches.

3  Antibiotic Factors

Antibiotics can be classed according to their physico-
chemical properties and pharmacodynamic characteristics 
(Tables 1, 2 and 3).

3.1  Antibiotic Characteristics According 
to Physicochemistry

The physicochemical properties of antibiotics play a signifi-
cant role in achieving target-site concentration by affecting 
the volume of distribution (Vd), unbound concentrations, and 
clearance [25].

3.2  Lipid Solubility

Compounds with higher lipid solubility penetrate more eas-
ily into lipid membranes and, therefore, can be distributed 
intracellularly and in adipose tissues. On the other hand, 
hydrophilic antibiotics have a lower Vd and are predomi-
nantly distributed in the intravascular and interstitial space. 
Lipophilic drugs tend to have higher protein binding than 
hydrophilic drugs and usually need to be metabolized before 
being excreted [26].

3.2.1  Protein Binding

Changes in protein binding (PB) might influence pharma-
cokinetic parameters. Since only the nonbonded drug can 
diffuse into the extracellular space, PB has a significant 
effect on the Vd, so a reduction of PB could lead to higher 
target exposure. On the other hand, only the unbound drug 
can be metabolized and excreted [27]. As such, reduced PB 
might lead to an increase of the unbound ratio (unbound/
bound drug), increasing the amount of drug available for 
clearance. Since this complex interaction is difficult to pre-
dict and might differ between antibiotics, it is important to 
measure both total and free drug in pharmacological studies. 
Usually this is not feasible for clinical TDM.

3.3  Antibiotic Characteristics According 
to Pharmacokinetic/Pharmacodynamic Index

Antibiotics are also classified with the pharmacokinetic/
pharmacodynamic (PK/PD) index using the minimum 
inhibitory concentration (MIC) to measure the potency of 

drug–microorganism interaction. Once the PK/PD ratio has 
been determined, it is possible to tailor the pharmacodynam-
ics target linked to the highest bactericidal activity. PK/PD 
ratios have benefited clinical practice and have been included 
in the development and approval of new antibiotics [28]. 
Antibiotics are classified as follows.

3.3.1  Time‑Dependent Antibiotics

Time-dependent antibiotics are most effective if their con-
centration is maintained for as long as possible above the 
MIC (the lowest concentration should be at least four times 
the MIC) [29].

3.3.2  Concentration‑Dependent Antibiotics

Concentration-dependent antibiotics require high concentra-
tion peaks as bacterial clearance depends on concentration 
rather than duration of exposure [30].

3.3.3  Concentration‑ and Time‑Dependent Antibiotics

The area under the plasma concentration–time curve for 24 
h for the MIC is the PK/PD index used to characterize anti-
microbial efficacy. Dose optimization of these drugs aims to 
maximize overall exposure [31, 32].

3.4  Antibiotic Use in the Intensive Care Unit

Inadequate antimicrobial therapy correlates with reduced 
survival in critically ill patients [33]. The most used antibiot-
ics in European ICUs are β-lactams, glycopeptides, and qui-
nolones, with other antibiotics reserved for severe bacterial 
infections with antibiotic resistance [34]. Table 4 provides 
the characteristics of the most commonly used antibiotics in 
the ICU. Most of these antibiotics are hydrophilic, renally 
cleared, and time dependent. Therefore, their limited tissue 
distribution and the fluctuations of renal function in the criti-
cally ill make these antibiotics very susceptible to pharma-
cokinetic variability and target attainment failure [35, 36].

4  Host Factors

4.1  Sepsis Pathophysiology

Sepsis is caused by a dysregulated immune response (Fig. 2). 
An increase in the production of proinflammatory cytokines 
by the innate immune system can result in a “cytokine 
storm.” This inflammatory state results in endothelial dam-
age and coagulation alterations [37]. Blood flow is impaired, 
leading to heterogeneous organ perfusion, mitochondrial 
dysfunction, cellular hypoxia, and organ dysfunction and 
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failure. Consequently, there is an increased capillary leak, 
resulting in hypotension associated with a hyperdynamic 
cardiovascular state. Moreover, body fluid increases, espe-
cially after resuscitation [38]. Following, there might be an 

immunosuppression phase that fails to control the infection 
[39]. Such inflammatory and immunosuppressive states are 
thought to be overlapping, which further complicates the 
monitoring of the disease [40]. Ultimately, inflammation and 

Table 4  PK/PD characteristics of common antibiotics used in intensive care units

AUC  area under the plasma concentration–time curve, Cmax maximum plasma drug concentration, G+/G− Gram positive/negative, MIC mini-
mum inhibitory concentration, PB protein binding, PK/PD pharmacokinetics/pharmacodynamics, T>MIC time above MIC, t½ elimination half-
life, Vd volume of distribution

Antibiotic Gram+/− Mechanism of 
action

PK/PD 
index

Vd (L/kg) PB (%) t½ (h) Clearance Solubility References

β-lactam
Meropenem G+/G− Bactericidal T>MIC 0.25 2 1 Renal Hydrophilic [193, 194]
Cefuroxime G+/G− Bactericidal T>MIC 6.4–9.1 33–50 1.1 Renal Hydrophilic [195]
Cefazolin G+/G− Bactericidal T>MIC 0.14 80–90 1.8 Renal Hydrophilic [196, 197]
Piperacillin/

tazobactam
G+/G− Bactericidal T>MIC 0.38/0.31 25/30 1.14/0.92 Renal Hydrophilic [198, 199]

Ampicillin/sul-
bactam

G+/G− Bactericidal T>MIC 0.16/0.1 28/38 1/1 Renal Hydrophilic [200–202]

Ceftolozane/
tazobactam

G+/G− Bactericidal T>MIC 0.19/0.31 21/30 2.77/0.92 Renal Hydrophilic [203–205]

Glycopeptide
Teicoplanin G+ Bacteriostatic AUC/MIC

T>MIC
0.7–1.4 90 70–100 Renal Hydrophilic [206]

Vancomycin G+ Bactericidal AUC/MIC
T>MIC

0.4–1 10–50 6 Renal Hydrophilic [207]

Lipopeptide
Daptomycin G+ Bactericidal AUC/MIC 

 Cmax/MIC
0.1 90 7.5–9 Renal Hydrophilic core 

lipophilic tail
[208–210]

Fosfomycin G+/G− Bactericidal T>MIC 1.4–2.4 10 2.9–8.5 Renal Hydrophilic [211–213]
Glycylcycline
Tigecycline G+/G− Bacteriostatic AUC/MIC 7–10 71–89 37–67 Hepatic Lipophilic [214, 215]
Fluoroquinolone
Ciprofloxacin G+/G− Bactericidal AUC/MIC 1.74–5 20–30 3–4 Hepatic Lipophilic [216]
Moxifloxacin G+/G− Bactericidal AUC/MIC 1.65 30–50 12 Hepatic Lipophilic [217]
Metronidazole
Metronidazole Anaerobic Bactericidal AUC/MIC 0.51–1.1 <20 6–10 Renal Hydrophilic [218]
Aminoglycosides
Gentamicin G+/G− Bactericidal Cmax/MIC

AUC/MIC
0.22–0.27 0–30 1.25 Renal Hydrophilic [219]

Amikacin G+/G− Bactericidal Cmax/MIC
AUC/MIC

0.22–0.27 <10 2–3 Renal Hydrophilic [220]

Tobramycin G+/G− Bactericidal Cmax/MIC
AUC/MIC

0.25 – 2.2–2.4 Renal Hydrophilic [221]

Macrolides
Azithromycin G+/G− Bacteriostatic AUC/MIC 0.35–0.5 <50 11–14 Hepatic Lipophilic [222, 223]
Erythromycin G+/G− Bacteriostatic AUC/MIC 0.6–1.1 80–90 1.4–2.8 Hepatic Lipophilic [224]
Polymyxins
Colistin G− Bactericidal AUC/MIC 0.2 >50 0.5 Renal (prod-

rug)
Hydrophilic [225]

Oxazolidinones
Linezolid G+ Bactericidal, 

bacteriostatic
AUC/MIC
T>MIC

0.7 31 4–6 Hepatic, renal Lipophilic [226]
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coagulopathy cause the vascular and organ damage charac-
teristic of severe sepsis and septic shock and, lastly, cause 
organ failure and death.

4.2  Pharmacokinetic Alterations in Septic Patients

The unique pathophysiology of sepsis alters the components 
of pharmacokinetics. Figure 2 provides an overview of how 
the sepsis pathogenesis drives pharmacokinetic alterations.

4.2.1  Absorption

Critically ill patients have unpredictable oral bioavailability 
because of their delayed and impaired absorption. Gut motil-
ity is reduced, so gastric emptying is delayed and splanchnic 

blood flow reduced. The delay in gastric emptying prolongs 
the time for the antibiotic to reach the maximum concentra-
tion. An impaired peripheral blood flow also compromises 
absorption from subcutaneous and intramuscular injection. 
Because of these alterations, antibiotics in the ICU are usu-
ally initially administered intravenously [41].

4.2.2  Distribution

The proinflammatory state of sepsis induces endothelial 
damage and increases capillary permeability [42]. This 
results in capillary leak syndrome, which causes fluid 
extravasation and increases the Vd of hydrophilic antibiot-
ics [11]. Therapeutic interventions (e.g., fluid resuscitation, 
extracorporeal circuits, drainages) can also increase the 

Fig. 2  Sepsis pathophysiology and its implications in pharmacoki-
netics. Sepsis occurs when there is a dysregulated immune response. 
During infections, pathogen-associated molecular patterns, such as 
LPS or peptidoglycan, bind to pattern-recognizing receptors, such as 
TLRs, potentiated by the CD14 receptors. As a result, the immune 
system might respond with an exaggerated, uncontrolled, and massive 
release of proinflammatory cytokines. This cytokine storm results in 
the continuous activation and expansion of immune cells, lympho-
cytes, and macrophages from the circulation to the infection, with 
destructive effects on human tissue. Consequently, endothelial cell 
interactions destabilize vascular barrier damages and there is multio-

rgan failure. The overwhelming systemic response causes an increase 
in cardiac output, fluid extravasation, a decrease in protein binding, 
and hepatic and renal dysfunction. Together with the aggressive 
therapeutic interventions in the critically ill, these pathophysiologi-
cal changes might lead to variability in pharmacokinetics (absorption, 
distribution, metabolism, and excretion). DC dendritic cell, ECMO 
extracorporeal membrane oxygenation, IFN interferon, IL interleu-
kin, LPS lipopolysaccharide, MCP monocyte chemoattractant protein, 
MIP macrophage inflammatory protein, PK pharmacokinetics, ROS 
reactive oxygen species, RRT  renal replacement therapy, TLR toll-like 
receptor, TNF tumor necrosis factor, Treg T-regulatory cells



600 M. Sanz Codina, M. Zeitlinger 

Vd [43, 44]. Hypalbuminemia is also common in patients 
with sepsis, resulting in lower PB and higher unbound drug 
concentrations subject to increased clearance. These higher 
unbound drug concentrations may influence the Vd, leading 
to subtherapeutic antibiotic concentrations and ineffective 
microbial clearance [45–47]. Inadequate tissue perfusion 
and tissue hypoxia are typical of critically ill patients, with 
both low and high oxygenation and perfusion areas [48].

4.2.3  Metabolism

Decreased hepatic blood flow, hepatic dysfunction, and 
altered enzyme activity impair metabolism in critically ill 
patients [49]. Tissue metabolism is also impaired by the 
decreased tissue blood flow and hypothermia [50]. Lipo-
philic antimicrobials may require dose adjustment in patients 
with hepatic failure since they are usually highly metabo-
lized [47].

4.2.4  Excretion

The elimination process can be disturbed during critical ill-
ness, as renal clearance can be either enhanced or impaired. 
Biliary excretion is usually less impaired but can be affected 
by biliary stasis and a decreased gut transit leading to recir-
culation. Some critically ill patients have vasodilatation fol-
lowed by a hyperdynamic cardiovascular state and there-
fore develop an augmented glomerular filtration rate (GFR), 
enhanced by the use of resuscitation fluid and vasopressors. 
This augmented renal clearance leads to increased elimina-
tion of hydrophilic drugs [51, 52]. This may lead to under-
dosage, as demonstrated in a study with β-lactams [53]. On 
the other hand, some critically ill patients have acute kidney 
injury (AKI) and need renal replacement therapy (RRT) [54, 
55]. This will result in decreased antimicrobial clearance 
of hydrophilic antibiotics, prolonged half-life, and potential 
toxicity [53]. Therefore, when AKI or RRT are present, dose 
adjustments should be considered.

4.3  Sepsis Biomarkers

Given the complexity of the host response in sepsis, some 
biomarkers may or may not predict these pharmacokinetic 
changes in the critically ill (Fig. 3). A biomarker is a quanti-
fiable biological parameter that indicates a biological, patho-
genic, or pharmacological response to exposure or thera-
peutic intervention. The ideal biomarker must be specific, 
sensitive, predictive, fast, cost effective, stable in vivo and 
in vitro, noninvasive, and sufficiently preclinically and clini-
cally relevant [56]. Biomarkers are valuable because they 
generally occur earlier than clinical outcomes and are meas-
ured by objective methods [57]. Patient-specific response 
biomarkers to infections represent an opportunity to monitor 

treatment response and predict alterations in drug target-site 
exposure and clinical outcomes.

Sepsis biomarkers can predict the severity of sepsis and 
the development of organ failure, differentiate the type or 
prognosis of infection, and assess the response to treatment. 
However, the role of biomarkers in guiding antibiotic dosing 
has not yet been deeply evaluated [58]. Research on procal-
citonin stewardship has been conducted, but other biomark-
ers may outperform it [59, 60]. We have classified the poten-
tial biomarker predictors of pharmacokinetics according to 
pathophysiology: inflammation, endotheliopathy, coagula-
tion, blood flow, and hepatic and renal function (Table 5). 
The diagnostic, prognostic, or therapeutic value of some of 
these biomarkers has been demonstrated, whereas the impact 
on drug pharmacokinetics is insufficiently understood. 
Table 5 displays the important biomarker characteristics. 
Knowledge of the biomarker’s molecular weight (MW) is 
important to determine their reliability during extracorpor-
eal therapies [61]. Comprehension of biomarker kinetics is 
essential because pathophysiological processes are continu-
ously changing, and delayed dynamics may lead to delayed 
clinical decisions.

4.3.1  Inflammation Biomarkers

Sepsis is a “cytokine storm” syndrome. During infections, 
pathogen-associated molecular patterns such as lipopolysac-
charide or peptidoglycan bind to pattern-recognizing recep-
tors (PRRs) such as toll-like receptors, potentiated by the 
CD14 receptors. The immune system might respond to the 
pathogen with an exaggerated, uncontrolled, and massive 
release of proinflammatory cytokines such as interleukin 
(IL)-1β, IL-6, IL-18; interferon, and tumor necrosis factor-α 
[42]. This increase in cytokines results in the continuous 
activation and expansion of immune cells from circulation 
to the infection. Proinflammatory cytokines also mediate the 
production of acute-phase reactants (APRs) by the liver [62, 
63]. Some crucial APRs, such as C-reactive protein or pro-
calcitonin, are routinely available for the identification and 
monitoring of inflammatory states [64, 65]. Conversely, the 
negative APRs, such as albumin and transferrin, decrease in 
response to inflammation [66].

This overwhelming inflammatory response correlates 
with capillary leakage, tissue edema, organ failure, and 
shock that causes the pharmacokinetic variability and 
changed plasma-to-tissue equilibration in sepsis. For exam-
ple, IL-6, presepsin (sCD14 subtype),  proadrenomedullin, 
and soluble triggering expressed receptor on myeloid cells 
(sTREM) have proven to be helpful biomarkers for the early 
diagnosis and prognosis of sepsis [67–71]. Some of these 
innovative biomarkers seem to be superior to the routinely 
used procalcitonin or C-reactive protein [72–74], so com-
binations of biomarkers have been proposed to increase 
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sensitivity and specificity [75, 76]. Immunological biomark-
ers have been found to be indicative of effective antimicro-
bial therapy [77]. They are also promoters of the pathophysi-
ological changes leading to pharmacokinetic variability in 
critically ill patients [78]. Accordingly, the immunological 
cells, cytokines, cell markers, and APRs may be potential 
biomarkers for predicting the tissue penetration and pharma-
cokinetics of antibiotics. The extent to which these inflam-
mation molecules alter the PK/PD of antibiotics is unclear 
[79], but some of these molecules have already been suc-
cessfully used to guide antibiotic treatment [59].

4.3.2  Endothelial Biomarkers

Inflammation, complement activation, and coagulation in 
sepsis induce severe impairment of endothelial functions. 
Endothelial cells are essential for hemostasis regulation, 
vasomotor control, and immune functions and form the 
vascular barrier for solute transport and osmotic balance 
[80–82]. Sepsis is associated with glycocalyx degradation 
and severe endothelial cell dysfunction, leading to dysregu-
lation of hemostasis and vascular reactivity, as well as tis-
sue edema [83]. This endotheliopathy results in excessive 

Fig. 3  Biomarkers that predict tissue pharmacokinetics in sepsis. 
The potential biomarkers and host factor predictors of pharmacoki-
netics are classified according to the different systems activated in 
sepsis: Changes in distribution (blood and tissue), metabolism, and 
excretion. Biomarkers representing each type of pathophysiological 
alteration might be able to predict the inter and intra-pharmacokinetic 
variability. ADAMTS-13 a disintegrin-like and metalloprotease with 
thrombospondin type 1 motif no. 13, ALAT alanine amino transferase, 
APACHE IV Acute Physiology and Chronic Health Evaluation-IV, 
aPPT activated partial thromboplastin time, ASAT aspartate amino 
transferase, AT antithrombin, Ca-V-O2 oxygen content difference, 
arterial-venous, CRP C-reactive protein, ELAM endothelial leukocyte 

adhesion molecule, ICAM intercellular adhesion molecule, IL inter-
leukin, INR international normalized ratio, LBP lipopolysaccharide-
binding protein, MCP monocyte chemoattractant protein, mHLA 
monocytic human leukocyte antigen, MIF migration inhibitory factor, 
MIP macrophage inflammatory protein, PAI plasminogen activator 
inhibitor, PCO2 partial pressure of carbon dioxide, PT prothrombin 
time, RRT  renal replacement therapy, SAPSS III Simplified Acute 
Physiology Score-III, sO2 oxygen saturation, SOFA Sequential [Sep-
sis-related] Organ Failure Assessment, sTREM soluble triggering 
receptor expressed on myeloid cells 1, TLR toll-like receptor, TNF 
tumor necrosis factor, VCAM vascular cell adhesion molecule, VEGF 
vascular endothelial growth factor, vWf von Willebrand factor
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Table 5  Selected biomarkers for predicting antibiotic pharmacokinetics

Biomarkers Pathogenesis Value MW (kDa) Peak (h) t½a Affected 
drug PK

References

Inflammation biomarkers
 Cytokines/chemokines

  IL-1β Proinflammatory cytokine Px 18–25 4 2 D [227]
  IL-6 Proinflammatory cytokine Dx, Px 21 6 2–4 D [228, 229]
  IL-8 Neutrophilic inflammation cytokine Dx, Px 8.4 4–8 4 D [230, 231]
  IL-10 Regulatory cytokine Dx, Px 18 12–24 2–4 D [232]
  TNFα Proinflammatory cytokine, neutro-

philic activation
Px 17.3 6 1–2 D [233]

  IFNγ Th1 immune response – 17 6 2 D [234, 235]
  MIP-1, -2 Neutrophil, leukocyte activation Px 440 2 2.5 D [236, 237]
  MCP-1 Monocyte chemoattractant protein Px [238]

 Cell markers/soluble receptors
  Presepsin N-terminal fragment of sCD14 (LPS 

receptor)
Dx, Px, Tx 13 3 4–5 D [239–241]

  CD64 Binds Fc fraction of IgG, induces 
phagocytosis

Dx, Tx 43 4–6 5–17 D [242–244]

  mHLA-DR Expressed on APC, activation of 
T-cells

Px – 24 3–22 D [245, 246]

  TLR2, TLR4 Recognition of bacterial peptidogly-
can (TLR2) or LPS (TLR4)

Dx – – 3 D [247–249]

  sTREM-1 TREM-1 secreted by phagocytes Dx, Px 23.8 6 1.5 D [250–252]
  SuPAR Recruitment of neutrophils and 

monocytes
Dx, Px – 4 (d) 10 (d) D [253–255]

 Acute-phase reactants
  CRP Complement activation, proinflam-

matory effects
Px 20–25 24–48 19 D [256, 257]

  PCT Prohormone stimulated by IL-1, 
IL-6, TNFα

Dx, Px, Tx 14.5 6–24 20–36 D [258, 259]

  LBP Connects CD14 to bacteria LPS Dx, Px 50 12 12–24 D [260]
  Pro-ADM Precursor of adrenomedullin, 

induces vasodilatation
Px 4–5.5 4 2 D [261–263]

  Pentraxin 3 Pathogen recognition and removal Dx, Px 35 – 4 D [264–266]
  C5a, C3a Neutrophil migration, coagulopathy Dx, Px 190 – 4 D [267, 268]
  Albumin Increased vascular permeability Px 66.5 NA 21 (d) D, M [269–271]

Endotheliopathy biomarkers
 Syndecans Glycocalyx component indicates 

damage
Px 30 NA 0.06 D [272]

 Heparan sulfate Polysaccharide Px 30 NA 3–4 D [273]
 Endocan Soluble endothelial peptidoglycan, 

increases microvascular perme-
ability

Px 50 NA – D [94, 274, 275]

 Ang-2/Ang-1 Vascular integrity, Ang-2 is Ang-1 
antagonist

Px 1 NA 30 (s) D [99, 254, 276, 277]

 sVCAM-1 Adhesion protein expressed by 
endothelial cells, which binds to 
lymphocytes

Px 102 NA 4 D [278, 279]

 sICAM-1 Intercellular adhesion molecules Dx, Px 76–114 NA – D [278–281]
 E-selectin Glycoprotein expressed in activated 

endothelial cells
Px 115 NA 1.9 D [279, 281, 282]

 P-selectin Adhesion receptor expressed in 
platelets and endothelial cell

Px 140 NA 2.3 D [283]

 VEGF Endothelial cells proliferation factor Px 23 NA 0.5–1 D [284]
Blood flow biomarkers
  SO2 % Oxygen saturation Px NA NA NA D [285]
 MAP Main global perfusion index Px NA NA NA D [286, 287]
 CO Cardiac output Px NA NA NA D [288]
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Table 5  (continued)

Biomarkers Pathogenesis Value MW (kDa) Peak (h) t½a Affected 
drug PK

References

 HR Heart rate Px NA NA NA D [289]
  ScvO2 Central venous oxygen saturation Px NA NA NA D [290]
  StO2 Tissue oxygen saturation Px NA NA NA D [291]
 Lactate Anaerobic glycolysis end product Px 0.08 – 20 (m) D [286]

Coagulation biomarkers
 vWf Ag Platelet adhesion and accumulation Px 5000–10,000 NA 4–26 D, M [292]
 ADAMTS-13 activity vWf cleaving protease Px 154 NA 48–72 D, M [293–295]

F ibrinogen Low activation of secondary 
fibrinolysis

Px 340 NA 100 D, M [296, 297]

 PT Consumption, depletion of endog-
enous haemostasis factors

Px NA NA – D, M [298, 299]

 aPPT Indicative of CRP activity Dx NA NA – D, M [300–303]
 AT activity Coagulation inhibition and anti-

inflammation
Px 58 NA 72 D, M [296]

 PF-4 Protein secreted by activated 
platelets

Px 29 NA D [304–306]

 D-Dimer Fibrinogen, fibrin breakdown, exces-
sive coagulation

Px 180 NA 8 D, M [304]

 PAI-1 Fibrinolysis inhibition Px 43 NA 2 D [304, 307]
 Protein C Antithrombotic action Dx, Px 62 NA 8 D, M [308–310]
 Thrombomodulin Endothelial cells glycoprotein, 

protein C pathway
Px 74 NA 20 D, M [311–313]

Hepatic function biomarkers
 Bilirubin Product of heme catabolism Px 548.67 NA 2–4 M [314–316]
 ALT Transaminase enzyme, indicates 

liver function
– 110 NA 8 M [316, 317]

 AST Transaminase enzyme, indicates 
liver function

– 90 NA 16 M [316, 317]

 Ceruloplasmin Increases as part of acute-phase 
response

Px 115 - 15 M [318]

 Hyaluronic acid Indicates liver dysfunction Px 1000–8000 NA 4 (m) D, M [319]
Renal function biomarkers
 Creatinine Estimate GFR Px 0.113 NA 3.85 E [320]
 Cystatin C Estimate GFR Px 13.3 NA 2 E [320]
 BUN Urea nitrogen in blood, indicative of 

renal function
Px NA NA NA M, E [321–323]

 NGAL Indicative of kidney injury Px 25 6–12 15 E [320, 324]
 KIM-1 Injured kidney epithelial cells Px 60–90 12–24 6 E [320]

The proposed biomarkers are classified according to the pathophysiological processes. We provide some important characteristics: pathogenesis, 
proved value, MW, biology (peak concentration, half-life), and the proposed pharmacokinetic process affected
ADAMTS-13 a disintegrin-like and metalloprotease with thrombospondin type 1 motif no, 13, ALT alanine transaminase, Ang angiotensin, APC 
activated protein C, aPPT activated partial thromboplastin time, AST aspartate transaminase, AT antithrombin, BUN blood urea nitrogen, CO 
cardiac output, CRP C-reactive protein, d days, D distribution, Dx diagnostic, E excretion, GFR glomerular filtration rate, HR heart rate, ICAM 
intercellular adhesion molecule 1, IFN interferon, IgG immunoglobulin, IL interleukin , KIM-1 kidney injury molecule-1, LBP lipopolysaccha-
ride-binding protein, LPS lipopolysaccharide, M metabolism, m minutes, MAP mean arterial pressure, MCP monocyte chemoattractant protein, 
mHLA monocytic human leukocyte antigen, MIP macrophage inflammatory protein, MW molecular weight, NA not applicable, NGAL Neutro-
phil Gelatinase-Associated Lipocalin, PAI-1 plasminogen activator inhibitor-1, PCT procalcitonin, PF-4 platelet factor 4, PK pharmacokinetics, 
Pro-ADM proadrenomedullin, PT prothrombin time, Px prognostic, s seconds, sCD14 soluble cluster of differentiation 14, ScvO2 central venous 
oxygen saturation, sICAM soluble ICAM, SO2% oxygen saturation, StO2 tissue oxygen saturation, sTREM soluble triggering receptor expressed 
on myeloid cells 1, suPAR soluble urokinase-type plasminogen activator receptor, sVCAM soluble VCAM, t½ elimination half-life, Th1 T helper 
type 1, TLR toll-like receptor, TNF tumor necrosis factor, Tx therapeutic, VCAM vascular cell adhesion molecule, VEGF vascular endothelial 
growth factor, vWf von Willebrand factor
a t½ presented in h unless otherwise indicated
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microvascular permeability to the extravascular space, lead-
ing to interstitial edema [84–86].

Glycocalyx degradation releases components such as 
syndecan-1 [87–89], heparan sulfate [90], and hyaluronan 
[91, 92] into the plasma. Endocan is expressed in human 
endothelial cells in response to proinflammatory cytokines 
and increases microvascular permeability [93–95]. These 
endothelial glycocalyx biomarkers have already been pre-
sented as predictors of death and/or organ dysfunction dur-
ing sepsis. The angiopoietin protein family has been inves-
tigated as a critical mediator of glycocalyx degradation 
since angiopoietin-2-activated endothelial cells increase the 
expression of intercellular adhesion molecule-1 and vascular 
cell adhesion molecule-1 [96, 97]. As a result, endothelial 
cell–cell junctions alter, resulting in microvascular leak. The 
angiopoietin-2/1 ratio has been found to be a good predictor 
of 28-day mortality in patients with sepsis [98–100]. Serum 
vascular endothelial growth factor and its receptor stimulate 
endothelial growth, proliferation, and permeability. Higher 
levels can be found in sepsis and so can be used for progno-
sis [101]. Therefore, these endotheliopathy biomarkers are 
predictors of the capillary leakage that drives the pharma-
cokinetic variability in tissues of patients with sepsis, yet 
the extent of the relevance needs to be established for the 
individual markers.

4.3.3  Coagulation Biomarkers

Coagulopathy and disseminated intravascular coagula-
tion (DIC) are common defense mechanisms in critically 
ill patients [102]. Coagulopathy consists of microvascular 
thrombosis and consumption of platelets and coagulation 
proteins, eventually causing bleeding [103]. DIC is a micro-
vascular thrombosis leading to bleeding and organ dysfunc-
tion, leading to amplified coagulopathy. Although the forma-
tion of microthrombi might prevent microorganisms from 
accessing tissue, it also further enhances tissue ischemia and 
organ damage, contributing to decreased antibiotic distri-
bution [103]. However, it can also lead to capillary leak-
age, promoting an increase in tissue permeability [104]. 
Coagulopathy is also the hallmark of liver failure, an organ 
with a central role in clotting [105]. Different coagulation 
phenotypes in sepsis have been described, with two sepsis 
subgroups showing severe disease and coagulopathy [106].

Various significant players drive the pathogenesis of 
coagulopathy in sepsis: platelets, the coagulation system, 
the endothelium, and the immune system [107]. In sepsis, 
procoagulant mechanisms are upregulated while natural 
anticoagulants are simultaneously downregulated. Tissue 
factor activates the coagulation cascade (including Factor 
VII, Factor X, thrombin, and fibrin) and is amplified by 
proinflammatory cytokines. Sepsis inflammation response 
also activates platelet activating factor and thrombin-induced 

exocytosis of P-selectin and von Willebrand factor (vWf). As 
a result, platelets adhere, activate, and aggregate, leading to 
microvascular obstruction. Cell receptors and adhesive pro-
teins, such as vWf and fibrinogen, mediate this interaction 
between platelets and the vessel wall [108]. Thrombogenesis 
is accelerated when the ADAMTS (a disintegrin and met-
alloproteinase with thrombospondin motifs)-13 protease is 
consumed and cannot cleave the excessive amount of large 
vWf polymers [109], and the microthrombosis leads to 
thrombocytopenia. The inflammatory response impairs the 
three central anticoagulant mechanisms: tissue factor path-
way inhibitor, antithrombin, and activated protein C. Tissue 
factor pathway inhibitor is decreased in sepsis because of 
degradation by proteolytic enzymes produced by the host, 
such as plasmin [110]. Another essential anticoagulant pro-
tein is antithrombin. Most of these coagulation biomarkers 
have been related to a worse prognosis: thrombomodulin 
[111, 112], plasminogen activator inhibitor 1 [113], vWf 
[114–116], ADAMTS-13 [116–118], and thrombocytopenia 
[119, 120]. A prolonged coagulation time is frequent in criti-
cally ill patients, and prothrombin time and activated partial 
thromboplastin time have been found to be predictors of sep-
sis and mortality [107, 121]. Hemolysis (free hemoglobin) 
[122] and D-dimers (excessive coagulation activation) [107, 
123] have also been demonstrated as survival predictors. 
Scoring systems such as sepsis-induced coagulopathy [124] 
and Overt-DIC scoring systems [125] have been described to 
predict coagulopathy in patients with associated disorders. 
A capillary leakage index using albumin and polymerase 
chain reaction has also been described as a prognosis marker 
[126]. Coagulation host factors indicative of tissue penetra-
tion may indicate changes in antibiotic tissue penetration. 
Therefore, both conventional and new molecular markers 
may be used to determine coagulopathy and optimize anti-
biotic dosing.

4.3.4  Blood Flow Biomarkers

Sepsis has variable effects on macro/microvascular blood 
flow, which might lead to simultaneous observation of vaso-
constriction and vasodilatation [127]. Septic shock is charac-
terized by derangement in global hemodynamic parameters, 
such as blood pressure (BP), cardiac output, and heart rate. 
Despite increased cardiac output, the tissues cannot utilize 
oxygen, as evidenced by high lactate levels, deranged acid-
base balance, and increased  CO2 levels [128]. This indicates 
that macrovascular tissue perfusion in severe sepsis is often 
uncoupled from systemic circulation [129]. This discrep-
ancy between macro- and microcirculation of internal organs 
impedes effective hemodynamic monitoring of patients with 
sepsis [130].

The determination of macro/microvascular dysfunction 
can be a prognostic parameter and can guide therapeutic 
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measures in patients with septic shock. We can use some 
objective markers of tissue perfusion to predict global tis-
sue distribution. The main global perfusion index is mean 
arterial pressure, preferably systolic, as it better reflects 
organ perfusion. Oxygen saturation of mixed venous blood 
is another routinely used indicator of the balance between 
oxygen transport and consumption, since its decrease reflects 
a reduction in cardiac output [131]. Although tissue oxygen 
saturation, measured by tissue spectroscopy, is not routinely 
used, it has been found to correlate with central venous satu-
ration [132] and cardiac index in patients with septic shock 
[133]. In addition, the need for vasopressors to maintain BP 
has indicated inadequate antibiotic penetration [24]. Hyper-
lactatemia is a common condition in patients with sepsis and 
may be indicative of changes in microvascular flow. Lac-
tate is the anaerobic glycolysis product, and its blood levels 
increase significantly in hypoperfusion or hypoxia cases 
[134]. Lactate levels have been used to guide resuscitation, 
predict in-hospital mortality, and stratify patient risk [135, 
136]. Moreover, lactate is one of the criteria for diagnosing 
septic shock, as indicated by Sepsis-3 criteria [137]. How-
ever, septic hyperlactatemia is not a straightforward indi-
cation of inadequate oxygen delivery [138]. Lactate over-
production is also a protective response to stress to allow 
cellular energy production to continue when tissue oxygen 
supply is inadequate for aerobic metabolism [139], and 
elevated levels of lactate can also be caused by a decreased 
clearance by the liver [139, 140]. It is suggested that initially 
elevated lactate can indicate an adaptive response to a hyper-
metabolic state during sepsis [139]. Therefore, when assess-
ing tissue perfusion, lactate should be combined with other 
markers. Finally, regional perfusion can also be assessed 
using indices of organ function, such as the SOFA (Sequen-
tial [Sepsis-related] Organ Failure Assessment) score. Other 
nonobjective indicators of tissue hypoperfusion are oliguria, 
impaired sensorium, delayed capillary refill, and skin cold-
ness. All these blood flow markers might predict the vasodil-
atation or vasoconstriction that drives changes in drug Vd, 
especially affecting hydrophilic antibiotics.

4.3.5  Hepatic Function Biomarkers

The liver has a significant role in sepsis response through 
clearance of pathogenic microorganisms, APRs, and release 
of liver-derived cytokines, inflammatory mediators, and 
coagulation cascade components. Of course, it also has a 
central role in all metabolic processes in the body [141, 
142]. Remarkably, liver dysfunction is common in patients 
in the ICU and is found in at least one-third of patients 
with sepsis [143]. Hepatic malfunction results in impaired 
detoxification of drugs that are typically excreted in the bile 
because of phase I and II enzyme deficiency [144, 145]. It 
also contributes to stress hyperglycemia through increased 

hepatic output of glucose, decreased clearance of lactate, 
and increased metabolism of lipids, but cholesterol synthesis 
and turnover are impaired.

Deficiencies in fibrinolytic proteins, anticoagulant pro-
teins, procoagulation factors, and protein synthesis, such 
as albumin, are often present in liver failure, in part due 
to failure of the synthesis and consumption. Hypoalbu-
minemia leads to alterations in PB, which may increase the 
unbound drug fraction in high-PB drugs [146] as described 
in Sect. 4.1. However, ascites are typical of advanced liver 
disease and increase the Vd of hydrophilic antibiotics. There-
fore, hepatic dysfunction may affect not only the metabolism 
of drugs but also their PB and Vd, modifying antibiotic con-
centrations in the site of infection. These pharmacokinetic 
changes have been found in critically ill patients receiving 
meropenem, which required dosing modifications to reach 
target attainment [147].

Various liver dysfunction markers may serve as bio-
markers for predicting pharmacokinetic variability. Biliru-
bin is the standard parameter for assessing hepatic failure, 
has been confirmed as an independent predictor of sepsis 
mortality [148], and is routinely checked with the SOFA 
score. The antimicrobial proteins, inflammatory mediators, 
and coagulation factors produced by the liver during acute-
phase response might also be considered as indicators of 
pharmacokinetic changes. Although these biomarkers lack 
the specificity for liver damage, they may be indicators of 
pathophysiological changes in drug metabolism, distribu-
tion, and clearance, which affects the penetration of anti-
biotics [149–152]. Recently, hyaluronic acid was proposed 
as an indicator of early liver impairment in critically ill 
patients and was identified as a particular risk for mortal-
ity in patients with infections [153]. The Child–Pugh score 
categorizes patients according to the severity of liver func-
tion impairment by incorporating five variables: serum bili-
rubin, serum albumin, prothrombin time, the presence of 
encephalopathy, and the presence of ascites. It is frequently 
used to assess the severity of liver function impairment but 
lacks the sensitivity to quantitate the specific ability of the 
liver to metabolize individual drugs [151]. Moreover, in 
patients in the ICU, the Child–Pugh score may be strongly 
influenced by hypoalbuminemia and thus not be optimal 
to identify hepatic impairment. However, it can be useful 
to identify pharmacokinetic changes, since hypoalbumine-
mia is relevant for altered pharmacokinetics (PB). The liver 
plays a central role in pharmacokinetic processes, so liver 
biomarker-guided dosing may be essential to identify at-risk 
patients and optimize treatment.

4.3.6  Renal Function Biomarkers

Renal injury is typical in the ICU and can be caused by 
ischemia, cellular hypoxia, inflammation, or toxic injury 
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[54, 55]. Many antibiotics are renally cleared or nephrotoxic; 
therefore, kidney disease or augmented renal clearance fur-
ther complicate sepsis treatment as explained in Sect. 4.2.4. 
Alterations in renal function require careful consideration 
of drug dosing. Diagnosis of renal function usually relies 
on biomarkers determining the GFR, which is also used for 
monitoring and calculating drug dosage. The determination 
of GFR is based on the concept of clearance: renal clearance. 
If the marker has no extrarenal elimination, tubular reab-
sorption, or secretion, clearance is given by the formula GFR 
= UV/P, where U is the concentration of the marker in urine, 
V is the urine flow rate, and P is the concentration in plasma. 
Classic biomarkers to determine renal function are blood 
urea nitrogen, urine output, serum creatinine (sCr), and uri-
nary albumin [154–156]. sCr is the most common marker of 
renal function and has been used as a significant covariate in 
pharmacokinetic models for critically ill patients [157–159]. 
However, sCr is prone to error in patients with low muscle 
mass or fluid overload, which is a limitation. Furthermore, 
sCr or blood urea nitrogen levels change late after injury 
since there is a functional reserve. To overcome these limita-
tions, novel biomarkers have been proposed. The correlation 
of cystatin C with GFR is superior to that of sCr and is not 
influenced by changes in muscle mass, which is important 
in hospitalization-associated myopathy [160–162]. Neu-
trophil gelatinase-associated lipocalin (NGAL) and kidney 
injury molecule-1 are innovative biomarkers specific to renal 
ischemia, which leads to renal failure [163, 164]. Moreover, 
NGAL appears to correlate with sepsis severity [165]. GFR 
is already used for individualized dosage adjustments since 
antimicrobial concentrations depend on the extent of renal 
function impairment. Hypoalbuminemia and altered renal 
clearance are pathophysiological processes that have a high 
prevalence in critically ill patients and lead to pharmacoki-
netic-related changes. Yet, the potential impact on tissue 
pharmacokinetics is yet to be established.

4.3.7  Other Factors

Other factors, including specific treatments, influence the 
underlying pathophysiological mechanisms and, therefore, 
pharmacokinetics.

Need for fluid resuscitation During sepsis, the body needs 
extra fluids to help keep the BP from dropping dangerously 
low and causing shock [166, 167]. However, it increases the 
Vd, therefore affecting pharmacokinetics. Moreover, fluid 
resuscitation may significantly affect glycocalyx integrity via 
atrial natriuretic peptide release, leading to capillary leakage 
and drug distribution changes [168, 169].

Need for vasopressive drugs Vasopressor agents are 
used to increase BP and improve tissue perfusion. How-
ever, they may also impair cardiac output and preferentially 
vasoconstrict some vascular beds, particularly the skin and 

splanchnic area [170, 171]. Therefore, drug distribution and 
clearance might be impaired.

RRT  Extracorporeal support is often necessary for the 
critically ill population. However, this exchange of sub-
stances between the blood and other fluid via a semiperme-
able membrane alters Vd and PB and the excretion of the 
drug [172–175]. RRT leads to high pharmacokinetic vari-
ability [176], probably because of the residual organ func-
tion and the changes in dialysate flow rates. Therefore, dose 
adjustment may be indicated [175].

Obesity Lipophilicity is a significant determinant of a 
drug's Vd. Patients with obesity have more lipophilic tissue 
than those included in standardized studies. Lipophilic drugs 
are associated with a higher Vd in patients with obesity, but 
the weight-related Vd of lipophilic drugs can be higher or 
lower in patients with obesity than in those without [177]. 
Therefore, adjustment of dose needs to be considered on a 
case-by-case base for different drugs.

5  Biomarker‑Guided Dosing

Critically ill patients experience a range of these alterations 
in varying degrees of severity, which in turn, also varies 
over time. This results in intra- and interpatient variability in 
antibiotic concentration at the site of infection [7, 8]. A wide 
range of methods might be used to assess penetration at the 
target site in critically ill patients [178, 179], although they 
cannot be used routinely. Instead, we could strengthen anti-
biotic dosing strategies with biomarkers that correlate with 
pharmacokinetic alterations, since they might predict target-
site concentrations (Fig. 4). With model-informed precision 
dosing, clinical and microbiological elements might be used 
in pharmacometric models to optimize dosing in critically ill 
patients [180–183]. The identified biomarkers can be added 
to model-informed precision dosing [58] as covariates.

5.1  Testing Methods

An ideal biomarker should have a fast, widely available, and 
reliable determination method. However, it is challenging 
to obtain pure reference standards for specific biomarkers 
and also complex to validate analytical methods because of 
their heterogeneity. Some of the biomarkers proposed are 
routinely available, whereas some of the promising new ones 
might be more difficult to perform and validate. Recently, 
some of these new biomarkers have been tested in multiplex 
tests [184]. These tests simultaneously measure various bio-
markers from the same biological sample with low sample 
volumes. Obviously, we need to harmonize and standardize 
the immunoassays before incorporating these biomarkers 
into clinical practice [185, 186].



607Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis

5.2  Kinetics of Biomarkers

In addition, sepsis is a rapidly changing condition. The pre-
cise time during which a biomarker is useful varies because 
of the substantial differences in their kinetics. An ideal bio-
marker should rapidly and specifically increase in sepsis, 
rapidly decrease after effective therapy, and have a short 
half life. None of the current biomarkers includes all of these 
specifications. Moreover, in most studies, biomarkers have 
not been measured repeatedly, and static threshold concen-
trations have been used to make clinical decisions [187]. 
This limits their use in antibiotic optimization as the vari-
ability must be assessed and controlled.

5.3  Molecular Weight

An increase in the use of extracorporeal therapies makes us 
consider whether RRT may remove these biomarkers. If so, 
we would need to consider the extent of this, depending on 
the biomarker MW and cut-off value of the membrane and 
RRT technique used [61].

5.4  Combination of Biomarkers

Sepsis is complex and heterogeneous, so no ideal single 
sepsis biomarker exists. The most effective way to optimize 
the treatment of sepsis is the combination of various sepsis 
biomarkers [188]. Over 258 biomarkers have been assessed 
for their use in sepsis [189], but none has shown sufficient 
specificity and sensitivity for routine use in clinical practice. 
Combining these biomarkers will reflect different aspects 
of the host response and help overcome the limitations of 
a single biomolecule for the prediction of the plasma and 
tissue pharmacokinetics of antibiotics [190].

5.5  Missing Evidence

Several biomarkers have been linked to diagnosis or prog-
nosis, but few studies have evaluated their role in antibiotic 
stewardship. Therefore, prospective studies investigating the 
potential role of the expanding field of sepsis biomarkers 
for antimicrobial dose optimization are needed. Moreover, 
clinic-economic data to recommend its introduction into 
clinical practice effectively are lacking.

5.6  Therapeutic Drug Monitoring

TDM allows adjustment of the antibiotic dose based on the 
concentration measured in plasma. This tool can help with 
personalization and optimization of antibiotic doses [191]. 
However, it should be noted that no studies have yet demon-
strated clinical improvements with TDM. Because the anti-
biotic concentration in the plasma is not always the same 
as that at the target site, the proposed biomarkers could be 
applied in TDM based on antibiotic concentrations at the site 
of infection, rather than in plasma.

6  Critical Discussion

Current evidence on biomarkers and pharmacokinetic 
optimization of antibiotics in the critically ill population 
is limited. There is evidence to demonstrate the failure of 
optimal PK/PD exposure in critically ill patients. However, 
robust data on how to predict a therapeutic effect based on 
antimicrobial exposure and how precision dosing improves 
patient outcomes are lacking. In recent years, many new sep-
sis biomarkers have emerged to improve and guide treat-
ment. However, most of the biomarker studies have limited 
evidence, and their clinical significance has yet to be proven. 
The weak evidence of current studies may be due to the 
study design, sample size, risk of bias, and lack of valida-
tion. A biomarker must be able to guide treatment to be use-
ful in clinical practice. Moreover, critically ill patients are a 

Fig. 4  Personalized antibiotic dosing. Antibiotic dosing strategies 
taken by physicians might be strengthened by the levels of biomark-
ers that reflect the drug pharmacokinetics
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very heterogeneous population. Based on current knowledge 
and evidence, it is difficult to design a personalized dosing 
regimen.

With this review, we proposed and discussed how phar-
macokinetic biomarker-guided therapy can optimize anti-
biotic exposure in critically ill patients. The association 
between hepatic and renal biomarkers and pharmacokinet-
ics is clear. We now also propose inflammation, endothe-
lial, coagulation, and blood flow markers to characterize this 
pharmacokinetic variability in critically ill patients. We link 
biomarkers and pharmacokinetic changes based on extrapo-
lation of patient physiological changes during sepsis that 
lead to this pharmacokinetic variability. However, their asso-
ciation with altered pharmacokinetics and their clinical rel-
evance still needs to be characterized. We therefore propose 
potential biomarkers to define antibiotic pharmacokinetics in 
sepsis as a research perspective to improve antibiotic treat-
ment in the ICU.

7  Conclusion

Adequate antimicrobial dosing to achieve PK/PD targets in 
patients with sepsis remains a challenge because of changes 
in Vd, clearance, and PB. On top of changes in systemic 
plasma, exposure to the tissue-to-plasma ratio might dif-
fer from that in a healthier population. This review aimed 
to characterize sepsis biomarkers and propose how they 
can predict the target-site concentrations of antibiotics. We 
categorized the main drivers of altered tissue pharmacoki-
netics into inflammation, coagulopathy, endotheliopathy, 
and organ failure. These sepsis biomarkers might predict 
pharmacokinetic changes and target-site concentrations. 
However, clinical evidence, standardization, and threshold 
definitions for these biomarkers are currently lacking. We 
propose biomarker-based drug monitoring for dose optimi-
zation and encourage new lines of research in this direction. 
Future research should focus on the determination of in vivo 
plasma/tissue distribution, the study of sepsis biomarkers, 
and their correlation and clinical application.
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