Skip to main content
Log in

Monitoring of Tobramycin Exposure: What is the Best Estimation Method and Sampling Time for Clinical Practice?

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objectives

The objective of this article is to investigate the influence of blood sampling times on tobramycin exposure estimation and clinical decisions and to determine the best sampling times for two estimation methods used for therapeutic drug monitoring.

Methods

Adult patients with cystic fibrosis, treated with once-daily intravenous tobramycin, were intensively sampled over one 24-h dosing interval to determine true exposure (AUC0–24). The AUC0–24s were then estimated using both log-linear regression and Bayesian forecasting methods for 21 different sampling time combinations. These were compared to true exposure using relative prediction errors. The differences in subsequent dose recommendations were calculated.

Results

Twelve patients, with a median (range) age of 25 years (18–36) and weight of 66.5 kg (50.6–76.4) contributed 96 tobramycin concentrations. Five hundred and eighty-eight estimated AUC0–24s were compared to 12 measured true AUC0–24 values. Median relative prediction errors ranged from − 34.7 to 45.5% for the log-linear regression method and from − 14.46 to 11.23% for the Bayesian forecasting method across the 21 sampling combinations. The most unbiased exposure estimation was provided from concentrations sampled at 100/640 min after the start of the infusion using log-linear regression and at 70/160 min using Bayesian forecasting. Subsequent dosing recommendations varied greatly depending on the estimation method and the sampling times used.

Conclusion

Sampling times markedly influence bias in AUC0–24 estimation, leading to greatly varied dose adjustments. The impact of blood sampling times on dosing decisions is reduced when using Bayesian forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Touw DJ, Vinks AA, Mouton JW, Horrevorts AM. Pharmacokinetic optimisation of antibacterial treatment in patients with cystic fibrosis. Clin Pharmacokinet. 1998;35(6):437–59.

    Article  CAS  PubMed  Google Scholar 

  2. Barclay ML, Kirkpatrick CMJ, Begg EJ. Once daily aminoglycoside therapy. Clin Pharmacokinet. 1999;36(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  3. Kashuba ADM, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother. 1999;43(3):623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouton JW, Jacobs N, Tiddens H, Horrevorts AM. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis. 2005;52(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother. 1999;43(7):1549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Craig WA. Does the dose matter? Clin Infect Dis. 2001;33(Suppl. 3):S233–7.

    Article  CAS  PubMed  Google Scholar 

  7. Paviour S, Hennig S, Staatz CE. Usage and monitoring of intravenous tobramycin in cystic fibrosis in Australia and the United Kingdom. J Pharm Pract Res. 2016;46:15–21.

    Article  Google Scholar 

  8. Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother. 2011;55(10):4619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burkhardt O, Lehmann C, Madabushi R, Kumar V, Derendorf H, Welte T. Once-daily tobramycin in cystic fibrosis: better for clinical outcome than thrice-daily tobramycin but more resistance development? J Antimicrob Chemother. 2006;58(4):822–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hennig S, Norris R, Kirkpatrick CM. Target concentration intervention is needed for tobramycin dosing in paediatric patients with cystic fibrosis; a population pharmacokinetic study. Br J Clin Pharmacol. 2008;65(4):502–10.

    Article  CAS  PubMed  Google Scholar 

  11. Hennig S, Standing JF, Staatz CE, Thomson AH. Population pharmacokinetics of tobramycin in patients with and without cystic fibrosis. Clin Pharmacokinet. 2013;52(4):289–301.

    Article  CAS  PubMed  Google Scholar 

  12. Beringer PM. Vinks AATMM, Jelliffe RW, Shapiro BJ. Pharmacokinetics of tobramycin in adults with cystic fibrosis: implications for once-daily administration. Antimicrob Agents Chemother. 2000;44(4):809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barclay ML, Begg EJ. Aminoglycoside adaptive resistance. Drugs. 2001;61(6):713–21.

    Article  CAS  PubMed  Google Scholar 

  14. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antibiotic Expert Group. Therapeutic guidelines: antibiotic. Version 15. Melbourne: Therapeutic Guidelines Ltd; 2014.

    Google Scholar 

  16. Barras MA, Serisier D, Hennig S, Jess K, Norris RL. Bayesian estimation of tobramycin exposure in patients with cystic fibrosis. Antimicrob Agents Chemother. 2016;60(11):6698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nezic L, Derungs A, Bruggisser M, Tschudin-Sutter S, Krahenbuhl S, Haschke M. Therapeutic drug monitoring of once daily aminoglycoside dosing: comparison of two methods and investigation of the optimal blood sampling strategy. Eur J Clin Pharmacol. 2014;70(7):829–37.

    Article  CAS  PubMed  Google Scholar 

  18. Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol. 1995;39:605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pai MP, Rodvold KA. Aminoglycoside dosing in patients by kidney function and area under the curve: the Sawchuk-Zaske dosing method revisited in the era of obesity. Diagn Microbiol Infect Dis. 2014;78(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  20. Bloomfield C, Staatz CE, Unwin S, Hennig S. Assessing predictive performance of published population pharmacokinetic models of intravenous tobramycin in paediatric patients. Antimicrob Agents Chemother. 2016;60(6):3407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duffull SB, Kirkpatrick CMJ, Begg EJ. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br J Clin Pharmacol. 1997;43(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hennig S, Holthouse F, Staatz CE. Comparing dosage adjustment methods for once-daily tobramycin in paediatric and adolescent patients with cystic fibrosis. Clin Pharmacokinet. 2015;54(4):409–21.

    Article  CAS  PubMed  Google Scholar 

  23. Sarem S, Nekka F, Ahmed IS, Litalien C, Li J. Impact of sampling time deviations on the prediction of the area under the curve using regression limited sampling strategies. Biopharm Drug Dispos. 2015;36(7):417–28.

    Article  CAS  PubMed  Google Scholar 

  24. Gao Y, Barras M, Hennig S. Bayesian estimation of tobramycin exposure in patients with cystic fibrosis: an update. Antimicrob Agents Chemother. 2018;62(3):e01972-17.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hennig S, Nyberg J, Fanta S, Backman JT, Hoppu K, Hooker AC, et al. Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. J Clin Pharmacol. 2012;52(3):347–60.

    Article  CAS  PubMed  Google Scholar 

  26. Neely M, Philippe M, Rushing T, Fu X, van Guilder M, Bayard D, et al. Accurately achieving target busulfan exposure in children and adolescents with very limited sampling and the BestDose software. Ther Drug Monit. 2016;38(3):332–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riviere JE. Comparative pharmacokinetics principles, techniques, and applications. North Carolina State University, Raleigh, North Carolina. 2nd ed. Chichester: Wiley-Blackwell; 2011.

    Google Scholar 

  28. Wicha S, Kees M, Solms A, Minichmayr I, Kratzer A, Kloft C. TDMx: a novel web-based open-access support tool for optimising antimicrobial dosing regimens in clinical routine. Int J Antimicrob Agents. 2015;45:442–4.

    Article  CAS  PubMed  Google Scholar 

  29. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  30. Foundation CF. Cystic Fibrosis Foundation patient registry. 2015 annual data report. Bethesda; 2016. https://www.cff.org/Our-Research/CF-Patient-Registry/2015-Patient-Registry-Annual-Data-Report.pdf. Accessed 31 Aug 2018.

  31. Moore RD, Smith CR, Lietman PS. Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med. 1984;77(4):657–62.

    Article  CAS  PubMed  Google Scholar 

  32. Cohen-Cymberknoh M, Shoseyov D, Kerem E. Managing cystic fibrosis: strategies that increase life expectancy and improve quality of life. Am J Respir Crit Care Med. 2011;183(11):1463–71.

    Article  PubMed  Google Scholar 

  33. Phillips JA, Bell SC. Aminoglycosides in cystic fibrosis: a descriptive study of current practice in Australia. Intern Med J. 2001;31(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  34. Coulthard KP, Peckham DG, Conway SP, Smith CA, Bell J, Turnidge J. Therapeutic drug monitoring of once daily tobramycin in cystic fibrosis: caution with trough concentrations. J Cyst Fibros. 2007;6(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  35. Edwards DJ. Therapeutic drug monitoring of aminoglycosides and vancomycin: guidelines and controversies. J Pharm Pract. 1991;4(3):211–24.

    Article  Google Scholar 

  36. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Merle Y, Mentre F. Optimal sampling times for Bayesian estimation of the pharmacokinetic parameters of nortriptyline during therapeutic drug monitoring. J Pharmacokinet Biopharm. 1999;27(1):85–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the staff of the Mater Health Services Pharmacy Department and the medical and nursing staff of the Mater Health Services Adult Respiratory Unit as well as the reviewers of the manuscript for their comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors meet the criteria of authorship. YG was responsible for collecting and analysing the data and drafting the manuscript. SH and MB developed the study concept, supported data collection, reviewed and supported the analyses, and reviewed and edited the manuscript.

Corresponding author

Correspondence to Stefanie Hennig.

Ethics declarations

Funding

No external funding was received for the preparation of this article.

Conflict of interest

Yanhua Gao, Stefanie Hennig and Michael Barras have no conflicts of interest directly relevant to the contents of this article.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Ethics approval was obtained from the Mater Health Services Human Research Ethics Committee.

Consent to participate

Informed consent was obtained from all participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Hennig, S. & Barras, M. Monitoring of Tobramycin Exposure: What is the Best Estimation Method and Sampling Time for Clinical Practice?. Clin Pharmacokinet 58, 389–399 (2019). https://doi.org/10.1007/s40262-018-0707-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0707-9

Navigation