Skip to main content
Log in

Thromboprophylaxis in Extracorporeal Circuits: Current Pharmacological Strategies and Future Directions

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

The development of extracorporeal devices for organ support has been a part of medical history and progression since the late 1900s. These types of technology are primarily used and developed in the field of critical care medicine. Unfractionated heparin, discovered in 1916, has really been the only consistent form of thromboprophylaxis for attenuating or even preventing the blood–biomaterial reaction that occurs when such technologies are initiated. The advent of regional anticoagulation for procedures such as continuous renal replacement therapy and plasmapheresis have certainly removed the risks of systemic heparinization and heparin effect, but the challenges of the blood–biomaterial reaction and downstream effects remain. In addition, regional anticoagulation cannot realistically be applied in a system such as extracorporeal membrane oxygenation because of the high blood flow rates needed to support the patient. More recently, advances in the technology itself have resulted in smaller, more compact extracorporeal life support (ECLS) systems that can—at certain times and in certain patients—run without any form of anticoagulation. However, the majority of patients on ECLS systems require some type of systemic anticoagulation; therefore, the risks of bleeding and thrombosis persist, the most devastating of which is intracranial hemorrhage. We provide a concise overview of the primary and alternate agents and monitoring used for thromboprophylaxis during use of ECLS. In addition, we explore the potential for further biomaterial and technologic developments and what they could provide when applied in the clinical arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carrel A, Lindbergh CA. The culture of organs. 1st ed. New York: Harper & Brothers, Paul B. Hoeber inc. Medical Department; 1938.

    Google Scholar 

  2. Marcum JA. William Henry Howell and Jay McLean: the experimental context for the discovery of heparin. Perspect Biol Med. 1990;33:214–30.

    Article  CAS  PubMed  Google Scholar 

  3. Marcum JA. The origin of the dispute over the discovery of heparin. J Hist Med Allied Sci. 2000;55:37–66.

    Article  CAS  PubMed  Google Scholar 

  4. Lequier L. Extracorporeal life support in pediatric and neonatal critical care: a review. J Intensive Care Med. 2004;19:243–58.

    Article  PubMed  Google Scholar 

  5. Shekar K, Roberts JA, McDonald CI, Fisquet S, Barnett AG, Mullany DV, et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care. 2012;16(5):R194.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Newall F, Ignjatovic V, Johnston L, Summerhayes R, Lane G, Cranswick N, et al. Clinical use of unfractionated heparin therapy in children: time for a change? Br J Haematol. 2010;150(6):674–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bembea MM, Schwartz JM, Shah N, Colantuoni E, Lehmann CU, Kickler T, et al. Anticoagulation monitoring during pediatric extracorporeal membrane oxygenation. ASAIO J. 2013;59(1):63–8. doi:10.1097/MAT.0b013e318279854a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niimi KS, Fanning JJ. Initial experience with recombinant antithrombin to treat antithrombin deficiency in patients on extracorporeal membrane oxygenation. J Extra Corpor Technol. 2014;46(1):84–90.

    PubMed  PubMed Central  Google Scholar 

  9. Bull BS, Korpman RA, Huse WM, Briggs BD. Heparin therapy during extracorporeal circulation. I. Problems inherent in existing heparin protocols. J Thorac Cardiovasc Surg. 1975;69:674–84.

    CAS  PubMed  Google Scholar 

  10. Ryerson LM, Bruce AK, Lequier L, Kuhle S, Massicotte MP, Bauman ME. Administration of antithrombin concentrate in infants and children on extracorporeal life support improves anticoagulation efficacy. ASAIO J. 2014;60:559–63.

    Article  CAS  PubMed  Google Scholar 

  11. Lanquetot H, Leprince T, Ragot S, Boinot C, Jayle C, Robert R, Macchi L. Antithrombin level and circuit thrombosis during hemofiltration after cardiopulmonary bypass. Intensive Care Med. 2008;34:2068–75.

    Article  CAS  PubMed  Google Scholar 

  12. Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol. 1990;12:95–104.

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich W, Braun S, Spannagl M, Richter JA. Low preoperative antithrombin activity causes reduced response to heparin in adult but not in infant cardiac-surgical patients. Anesth Analg. 2001;92:66–71.

    Article  CAS  PubMed  Google Scholar 

  14. Agati S, Ciccarello G, Salvo D, et al. Use of a novel anticoagulation strategy during ECLS in a pediatric population: single-center experience. ASAIO J. 2006;52:513–6.

    PubMed  Google Scholar 

  15. Niebler RA, Christensen M, Berens R, et al. Antithrombin replacement during extracorporeal membrane oxygenation. Artif Org. 2011;35:1024–8.

    Article  CAS  Google Scholar 

  16. Chernoguz A, Vandersall AE, Burton KS, et al. Antithrombin III infusion improves anticoagulation in CDH patients on ECLS [abstract]. American Academy of Pediatrics National Conference; 2011 October 15; Boston, MA. https://aap.confex.com/aap/2011/webprogram/Paper14013.html Accessed 24 Jan 2013.

  17. Perry R, Stein J, Young G, et al Antithrombin III administration in neonates with congenital diaphragmatic hernia during the first three days of extracorporeal membrane oxygenation. J Pediatr Surg. 2013;48(9):183–42.

  18. Shapiro A. Antithrombin deficiency in special clinical syndromes. I. Neonatal and pediatric/physiologic deficiency: extracorporeal membrane oxygenation. Semin Hematol. 1995;32:33–6.

    CAS  PubMed  Google Scholar 

  19. Marzo A, Ceppi-Monti N, Giusti A, et al. Pharmacokinetic behaviour of antithrombin III following intravenous infusion in healthy volunteers. Arzneimittelforschung. 2002;52:187–93.

    CAS  PubMed  Google Scholar 

  20. Stammers AH, Willett L, Fristoe L, Merrill J, Stover T, Hunt A, et al. Coagulation monitoring during extracorporeal membrane oxygenation: the role of thrombelastography. J Extra Corpor Technol. 1995;27(3):137–45.

    CAS  PubMed  Google Scholar 

  21. Knod JL, Kraus S, Donovan E, Burton KS, Lipinski T, Cherngouz A, Cooper D, Frischer JS. Potential Advantages of Antithrombin III Supplementation during ECLS. 31st Annual CNMC Symposium: ECLS & the Advanced Therapies for Respiratory Failure; Keystone, CO; 22–26 Feb 2015.

  22. Oldenberg G, Shankar V, Berger JT, Sinha P, Diab Y. Continuous recombinant human antithrombin infusion in pediatric patients with cardiac disease requiring extracorporeal membrane oxygenation. 31st Annual CNMC Symposium: ECLS & the Advanced Therapies for Respiratory Failure; Keystone, CO; 22–26 Feb 2015.

  23. Ranucci M. Antithrombin III: key factor in extracorporeal circulation. Minerva Anesthesiol. 2002;68:454–7.

    CAS  Google Scholar 

  24. Garvin S, Fitzgerald D, Muehlschlegel JD, Perry TE, Fox AA, Shernan SK, et al. Heparin dose response is independent of preoperative antithrombin activity in patients undergoing coronary artery bypass graft surgery using low heparin concentrations. Anesth Analg. 2010;111:856–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Na S, Shim JK, Chun DH, Kim DH, Hong SW, Kwak YL. Stabilized infective endocarditis and altered heparin responsiveness during cardiopulmonary bypass. World J Surg. 2009;33:1862–7.

    Article  PubMed  Google Scholar 

  26. Mason RG, Chuang HYK, Mohammad SF. Extracorporeal thrombogenesis: mechanisms and prevention. In: Drukker W, Parsons FM, Maher JF, editors. Replacement of renal function by dialysis: a textbook of dialysis. Dordrecht: Springer; 1983, 186–200

  27. Uniyal S, Brash JL. Patterns of adsorption of proteins from human plasma onto foreign surfaces. Thromb Haemost. 1982;47:285–90.

    CAS  PubMed  Google Scholar 

  28. Northrop MS, Sidonio RF, Phillips SE, et al. The use of an extracorporeal membrane oxygenation anticoagulation laboratory protocol is associated with decreased blood product use, decreased hemorrhagic complications, and increased circuit life. Pediatr Crit Care Med. 2015;16:66–74.

    Article  PubMed  Google Scholar 

  29. Webb DP, Deegan RJ, Greelish JP, Byrne JG. Oxygenation failure during cardiopulmonary bypass prompts new safety algorithm and training initiative. J Extra Corp Technol. 2007;39(3):188–91.

    Google Scholar 

  30. Ignjatovic V, Furmedge J, Newall F, Chan A, Berry L, Fong C, et al. Age-related differences in heparin response. Thromb Res. 2006;118:741–5.

    Article  CAS  PubMed  Google Scholar 

  31. Carrell RW, Huntington JA, Mushunje A, Zhou A. The conformational basis of thrombosis. Thromb Haemost. 2001;86:14–22.

    CAS  PubMed  Google Scholar 

  32. Veale JJ, Mccarthy HM, Plamer G, Dyke CM. Use of bivalirudin as an anticoagulant during cardiopulmonary bypass. J Extra Corp Technol. 2005;37:296–302.

    Google Scholar 

  33. Pappalardo F, Agracheva N, Covello RD, et al. Anticoagulation for critically ill cardiac surgery patients: is primary bivalirudin the next step? J Cardiothorac Vasc Anesth. 2014;28(4):1013–7. doi:10.1053/j.jvca.2013.10.004.

    Article  PubMed  CAS  Google Scholar 

  34. Frenkel EP, Shen YM, Haley BB. The direct thrombin inhibitors: their role and use for rational anticoagulation. Hematol Oncol Clin North Am. 2005;19(1):119–45.

    Article  PubMed  Google Scholar 

  35. Madabushi R, Cox DS, Hossain M, Boyle DA, Patel BR, Young G, et al. Pharmacokinetic and pharmacodynamic basis for effective argatroban dosing in pediatrics. J Clin Pharmacol. 2011;51(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  36. Hursting M, Dubb J, Verme-Gibboney CN. Argatroban anticoagulation in pediatric patients. A literature analysis. J Pediatr Hematol Oncol. 2006;28:4–10.

    Article  CAS  PubMed  Google Scholar 

  37. Cornell T, Wyrick P, Fleming G, Pasko D, Han Y, Custer J, Haft J, Annich G. A case series describing the use of argatroban in patients on extracorporeal circulation. ASAIO J. 2007;53(4):460–3.

    Article  CAS  PubMed  Google Scholar 

  38. Beiderlinden M, Treschan T, Görlinger K, Peters J. Argatroban in extracorporeal membrane oxygenation. Artif Org. 2007;31:461–5.

    Article  CAS  Google Scholar 

  39. Skrupky LP, Smith JR, Deal EN, et al. Comparison of bivalirudin and argatroban for the management of heparin-induced thrombocytopenia. Pharmacotherapy. 2010;30(12):1229–38.

    Article  CAS  PubMed  Google Scholar 

  40. Lequier L, Annich G, Massicotte P. Anticoagulation and Bleeding during ECLS. In: Annich GM, Lynch WR, MacLaren G, Wilson JM, Bartlett RH, editors. Ecmo: extracorporeal cardiopulmonary support in critical care. 4th ed. Ann Arbor, MI: Extracorporeal Life Support Organization; 2012.

    Google Scholar 

  41. Greinacher A. The use of direct thrombin inhibitors in cardiovascular surgery in patients with heparin-induced thrombocytopenia. Semin Thromb Hemost. 2004;30(3):315–27.

    Article  CAS  PubMed  Google Scholar 

  42. Shammas NW. Bivalirudin: pharmacology and clinical applications. Cardiovasc Drug Rev. 2005;23:345–60.

    Article  CAS  PubMed  Google Scholar 

  43. Koster A, Spiess B, Chew DP, et al. Effectiveness of bivalirudin as a replacement for heparin during cardiopulmonary bypass in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2004;93:356–9. doi:10.1016/j.amjcard.2003.10.021.

    Article  CAS  PubMed  Google Scholar 

  44. Finks SW. Bivalirudin use in carotid endarterectomy in a patient with heparin-induced thrombocytopenia. Ann Pharmacother. 2006;40:340–3.

    Article  PubMed  Google Scholar 

  45. Stone GW, Witzenbichler B, Guagliumi G, Peruga JZ, Brodie BR, Dudek D, Kornowski R, Hartmann F, Gersh BJ, Pocock SJ, Dangas G, Wong SC, Kirtane AJ, Parise H, Mehran R. HORIZONS-AMI Trial Investigators. Bivalirudin during primary PCI in acute myocardial infarction. N Engl J Med. 2008;358(21):2218–30.

    Article  CAS  PubMed  Google Scholar 

  46. Avery EG, Hilgenberg AD, Cambria RP, Beckerly R, Donnelly AM, Laposata M. Successful use of bivalirudin for combined carotid endarterectomy and coronary revascularization with the use of cardiopulmonary bypass in a patient with an elevated heparin-platelet factor 4 antibody titer. Anesth Analg. 2009;108:1113–5.

    Article  CAS  PubMed  Google Scholar 

  47. Rayapudi S, Torres A Jr, Deshpande GG, et al. Bivalirudin for anticoagulation in children. Pediatr Blood Cancer. 2008;51(6):798–801.

    Article  PubMed  Google Scholar 

  48. Pieri M, Agracheva N, Bonaveglio E, Greco T, De Bonis M, Covello RD, et al. Bivalirudin versus heparin as an anticoagulant during extracorporeal membrane oxygenation: a case-control study. J Cardiothor Vasc Anesth. 2013;27(1):30–4.

    Article  CAS  Google Scholar 

  49. Kastrati A, Neumann FJ, Mehilli J, et al. Bivalirudin versus unfractionated heparin during percutaneous coronary intervention. N Engl J Med. 2008;359:688–96.

    Article  CAS  PubMed  Google Scholar 

  50. Ranucci M, Ballotta A, Kandil H, et al. Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Crit Care. 2011;15:R275.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Robson R, White H, Aylward P, Frampton C. Bivalirudin pharmacokinetics and pharmacodynamics: effect of renal function, dose, and gender. Clin Pharmacol Ther. 2002;71(6):433–9.

    Article  CAS  PubMed  Google Scholar 

  52. Gurm HS, Bhatt DL. Thrombin, an ideal target for pharmacological inhibition: a review of direct thrombin inhibitors. Am Heart J. 2005;149:S43–53.

    Article  CAS  PubMed  Google Scholar 

  53. Annich G, Adachi I. Anticoagulation for pediatric mechanical circulatory support. Pediatr Crit Care Med. 2013;14(5 Suppl 1):S37–42.

    Article  PubMed  Google Scholar 

  54. Reynolds MM, Annich GM. The artificial endothelium. Organogenesis. 2011;7(1):42–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rutledge JM, Cakravarti S, Massicotte P, et al. Antithrombotic strategies in children receiving long-term Berlin heart EXCOR ventricular assist device therapy. J Heart Lung Transplant. 2013;32(5):569–73.

    Article  PubMed  Google Scholar 

  56. Moncada S, Gryglewskit R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663–5.

    Article  CAS  PubMed  Google Scholar 

  57. Radomski MW, Radomski AS. Regulation of blood cell function by endothelial cells. In: Vallance PJT, Webb DJ, editors. Vascular endothelium in human physiology and pathophysiology. Amsterdam: Harwood Academic Publishers; 2000. p. 95–106.

    Google Scholar 

  58. Vallance PJT, Webb DJ, eds. Vascular endothelium in human physiology and pathophysiology. Amsterdam: Harwood Academic Publishers; 2000; p. 95–104.

  59. Muntean W. Coagulation and anticoagulation in extracorporeal membrane oxygenation. Artif Org. 1999;23:979–83.

    Article  CAS  Google Scholar 

  60. Oliver WC. Anticoagulation and coagulation management for ECLS. Semin Cardiothorac Vasc Anesth. 2009;13:154–75.

    Article  PubMed  Google Scholar 

  61. Bembea MM, Annich GA, Rycus P, Oldenburg G, Berkowitz I, Provonos P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med. 2013;14:e77–84.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hattersley PG. Activated coagulation time of whole blood. JAMA. 1966;196:436–40.

    Article  CAS  PubMed  Google Scholar 

  63. Bull BS, Huse WM, Brauer FS, et al. Heparin therapy during extracorporeal circulation. II. The use of a dose-response curve to individualize heparin and protamine dosage. J Thorac Cardiovasc Surg. 1975;69:685–9.

    CAS  PubMed  Google Scholar 

  64. Sievert AN, Shackelford AG, McCall MM. Trends and emerging technologies in extracorporeal life support: results of the 2006 ECLS survey. J Extra Corpor Technol. 2009;41:73–8.

    PubMed  PubMed Central  Google Scholar 

  65. Baird CW, Zurakowski D, Robinson B, Gandhi S, Burdis-Koch L, Tamblyn J, et al. Anticoagulation and pediatric extracorporeal membrane oxygenation: impact of activated clotting time and heparin dose on survival. Ann Thorac Surg. 2007;83:912.

    Article  PubMed  Google Scholar 

  66. Nankervis CA, Preston TJ, Dysart KC, Wilkinson WD, Chicoine LG, Welty SE, et al. Assessing heparin dosing in neonates on venoarterial extracorporeal membrane oxygenation. ASAIO J. 2007;53:111.

    Article  CAS  PubMed  Google Scholar 

  67. Maul TM, Wolff EL, Kuch BA, Rosendorff A, Morell VO, Wearden PD. Activated partial thromboplastin time is a better trending tool in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2012;13:e363–71.

    Article  PubMed  Google Scholar 

  68. Basu D, Gallus A, Hirsh J, Cade J. A prospective study of the value of monitoring heparin treatment with the activated partial thromboplastin time. N Engl J Med. 1972;287:324–7.

    Article  CAS  PubMed  Google Scholar 

  69. Teruya J. Coagulation tests affected by acute phase reactants such as CRP and factor VIII. In: International conference on hematology and blood disorders; Research Triangle Park, NC; 23–25 Sept 2013.

  70. Maul TM, Wolff EL, Kuch BA, Rosendorff A, Morell VO, Wearden PD. Activated partial thromboplastin time is a better trending tool in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2012;13(6):e363–71.

    Article  PubMed  Google Scholar 

  71. ELSO Anticoagulation Guideline, 2014. Ann Arbor, MI: Extracorporeal Life Support Organization (ELSO). Available online from: https://www.elso.org/portals/0/files/elsoanticoagulationguideline8-2014-tablecontents.pdf. Accessed 15 May 2017.

  72. Irby K, Swearingen C, Byrnes J, Bryant J, Prodhan P, Fiser R. Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for extracorporeal membrane oxygenation circuit/membrane oxygenator change: a retrospective pediatric study. Pediatr Crit Care Med. 2014;15(4):e175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liveris A, Bello RA, Friedmann P, Duffy MA, Manwani D, Killinger JS, et al. Anti-factor Xa assay is a superior correlate of heparin dose than activated partial thromboplastin time or activated clotting time in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2014;15(2):e72–9.

    Article  PubMed  Google Scholar 

  74. Bembea MM, Schwartz JM, Shah N, Colantuoni E, Lehmann CU, Kickler T, et al. Anticoagulation monitoring during pediatric extracorporeal membrane oxygenation. ASAIO J. 2013;59:63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Meara LC, Alten JA, Goldberg KG, Timpa JG, Phillips J, Laney D, et al. Anti-Xa directed protocol for anticoagulation management in children supported with extracorporeal membrane oxygenation. ASAIO J. 2015;61(3):339–44.

    Article  PubMed  CAS  Google Scholar 

  76. Northrop MS, Sidonio RF, Phillips SE, Smith AH, Daphne HC, Peitsch JB, et al. The use of an extracorporeal membrane oxygenation anticoagulation laboratory protocol is associated with decreased blood product use, decreased hemorrhagic complications, and increased circuit life. Pediatr Crit Care Med. 2015;16(1):66–74.

    Article  PubMed  Google Scholar 

  77. Kostousov V, Nguyen K, Hundalani SG, Teruya J. The influence of free hemoglobin and bilirubin on heparin monitoring by activated partial thromboplastin time and anti-Xa assay. Arch Pathol Lab Med. 2014;138(11):1503–6.

    Article  PubMed  Google Scholar 

  78. Newall F, Ignjatovic V, Johnston L, Summerhayes R, Lane G, Cranswick N, et al. Clinical use of unfractionated heparin therapy in children: time for a change? Br J Haematol. 2010;150:674–8.

    Article  CAS  PubMed  Google Scholar 

  79. Alexander DC, Butt WW, Best JD, et al. Correlation of thromboelastography with standard tests of anticoagulation in paediatric patients receiving extracorporeal life support. Thromb Res. 2010;125:387–92.

    Article  CAS  PubMed  Google Scholar 

  80. Fabrizio MC. Use of ecarin clotting time (ECT) with lepirudin therapy in heparin-induced thrombocytopenia and cardiopulmonary bypass. J Extra Corpor Technol. 2001;33:117–25.

    CAS  PubMed  Google Scholar 

  81. Hetzer R, Alexi-Meskishvili V, Weng Y, et al. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;9(1): 99–108.

  82. Paden ML, Conrad SA, Rycus PT, Thiagarajan RR. Extracorporeal life support organization registry report 2012. ASAIO J. 2013;59(3):202–10.

    Article  PubMed  Google Scholar 

  83. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  CAS  PubMed  Google Scholar 

  84. Toledo JC, Augusto O. Connecting the chemical and biological properties of nitric oxide. Chem Res Toxicol. 2012;25:975–89.

    Article  CAS  PubMed  Google Scholar 

  85. Butler AR, Williams DLH. The physiological role of nitric oxide. Chem Soc Rev. 1993;22:233.

    Article  CAS  Google Scholar 

  86. Gross SS, Wolin MS. Nitric-oxide-pathophysiological mechanisms. Annu Rev Physiol. 1995;57:737–69.

    Article  CAS  PubMed  Google Scholar 

  87. Knowles RG, Moncada S. Nitric-oxide synthases in mammals. Biochem J. 1994;298(Pt 2):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Radomski MW, Palmer RMJ, Moncada S. The role of nitric-oxide and CGMP in platelet-adhesion to vascular endothelium. Biochem Biophys Res Commun. 1987;148:1482–9.

    Article  CAS  PubMed  Google Scholar 

  90. Vaughn MW, Kuo L, Liao JC. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol Heart Circ Physiol. 1998;274:H2163–76.

    CAS  Google Scholar 

  91. Miller MR, Megson IL. Recent development in nitric oxide donor drugs. Br J Pharmacol. 2007;151:305–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seabra AB, Duran N. Nitric oxide-releasing vehicles for biomedical applications. J Mater Chem. 2010;20:1624–37.

    Article  CAS  Google Scholar 

  93. Al-Sa’doni HH, Ferro A. S-nitrosothiols as nitric oxide-donors: chemistry, biology and possible future therapeutic applications. Curr Med Chem. 2004;11:2679–90.

    Article  PubMed  Google Scholar 

  94. Lutzke A, Neufeld BH, Pegalajar-Jurado A, Reynolds MM. Nitric oxide releasing s-nitrosated derivatives of chitin and chitosan for biomedical applications. J Mater Chem B. 2014;2:7449–58.

    Article  CAS  Google Scholar 

  95. Reynolds MM, Hrabie JA, Oh BK, Politis JK, Citro ML, Keefer LK, Meyerhoff ME. Nitric oxide releasing polyurethanes with covalently linked diazeniumdiolated secondary amines. Biomacromol. 2006;7:987–94.

    Article  CAS  Google Scholar 

  96. Jen MC, Serrano MC, van Lith R, Ameer GA. Polymer-based nitric oxide therapies: recent insights for biomedical applications. Adv Funct Mater. 2012;22:239–60.

    Article  CAS  PubMed  Google Scholar 

  97. Homer KL, Wanstall JC. Inhibition of rat platelet aggregation by the diazeniumdiolate nitric oxide donor MAHMA NONOate. Br J Pharmacol. 2002;137:1071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carpenter AW, Schoenfisch MH. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev. 2012;41:3742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence. 2012;3:271–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Damodaran VB, Leszczak V, Wold KA, Lantvit SM, Popat KC, Reynolds MM. Anti-thrombogenic properties of a nitric oxide-releasing pro-drug: evaluation of platelet activation and whole blood clotting kinetics. RSC Adv. 2013;3(46):24406–14.

    Article  CAS  Google Scholar 

  101. Pegalajar-Jurado A, Wold KA, Joslin JM, Neufeld BH, Arabea KA, Suazo LA, McDaniel SL, Bowen RA, Reynolds MM. Nitric oxide releasing polysaccharide derivative exhibits 8-log reduction against Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus. J Control Release. 2015;217:228–34.

    Article  CAS  PubMed  Google Scholar 

  102. Bohl KS, West JL. Nitric oxide-generating polymers reduce platelet adhesion and smooth muscle cell proliferation. Biomaterials. 2000;21:2273–8.

    Article  CAS  PubMed  Google Scholar 

  103. Fleser PS, Nuthakki VK, Malinzak LE, Callahan RE, Seymour ML, Reynolds MM, Merz SI, Meyerhoff ME, Bendick PJ, Zelenock GB, Shanley CJ. Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg. 2004;40(4):803–11.

    Article  PubMed  Google Scholar 

  104. Giustarini D, Milzani A, Colombo R, Dalle-Donne I, Rossi R. Nitric oxide and S-nitrosothiols in human blood. Clin Chim Acta. 2003;330:85–98.

    Article  CAS  PubMed  Google Scholar 

  105. Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA. 1992;89:7674–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dicks AP, Williams DL. Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem Biol. 1996;3:655–9.

    Article  CAS  PubMed  Google Scholar 

  107. Dicks AP, Swift HR, Williams DLH, Butler AR, AlSadoni HH, Cox BG. Identification of Cu+ as the effective reagent in nitric oxide formation from S-nitrosothiols (RSNO). J Chem Soc Perkin Trans. 1996;2(4):481–7.

    Article  Google Scholar 

  108. Baciu C, Cho KB, Gauld JW. Influence of Cu+ on the RS-NO bond dissociation energy of S-nitrosothiols. J Phys Chem B. 2005;109:1334–6.

    Article  CAS  PubMed  Google Scholar 

  109. Major CT, Brant OD, Burney PC, Amoako AK, Annich MG, Meyerhoff ME, Handa H, Bertlett HR. The hemocompatibility of a nitric oxide generating polymer that catalyzes S-nitrosothiol decomposition in an extracorporeal circulation model. Biomaterials. 2011;32:5957–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:974–86.

    Article  CAS  Google Scholar 

  111. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112:1232–68.

    Article  CAS  PubMed  Google Scholar 

  112. Gimenez-Marques M, Hidalgo T, Serre C, Horcajada P. Nanostructured metal-organic frameworks and their bio-related applications. Coord Chem Rev. 2016;307:342–60.

    Article  CAS  Google Scholar 

  113. Keskin S, Kizilel S. Biomedical applications of metal organic frameworks. Ind Eng Chem Res. 2011;50:1799–812.

    Article  CAS  Google Scholar 

  114. McKinlay AC, Morris RE, Horcajada P, Ferey G, Gref R, Couvreur P, Serre C. BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed. 2010;49:6260–6.

    Article  CAS  Google Scholar 

  115. Taylor-Pashow KML, Della Rocca J, Xie Z, Tran S, Lin W. Postsynthetic modifications of iron-carboxylat nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131:14261–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ke F, Yuan YP, Qiu LG, Shen Y-H, Xie AJ, Zhu JF, Tian XY, Zhang LD. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J Mater Chem. 2011;21:3843–8.

    Article  CAS  Google Scholar 

  117. Harding JL, Reynolds MM. Metal organic frameworks as nitric oxide catalysts. J Am Chem Soc. 2012;134:3330–3.

    Article  CAS  PubMed  Google Scholar 

  118. Harding JL, Metz JM, Reynolds MM. A tunable, stable, and bioactive MOF catalyst for generating a localized therapeutic from endogenous sources. Adv Funct Mater. 2014;24:7503–9.

    Article  CAS  Google Scholar 

  119. Harding JL, Reynolds MM. Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. J Mater Chem B. 2014;2:2530–6.

    Article  CAS  Google Scholar 

  120. Neufeld MJ, Harding JL, Reynolds MM. Immobilization of metal-organic framework copper(II) benzene 1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Appl Mater Interface. 2015;7:26742–50.

    Article  CAS  Google Scholar 

  121. Neufeld MJ, Ware BR, Lutzke A, Khetani SR, Reynolds MM. Water-stable metal-organic framework/polymer composites compatible with human hepatocytes. ACS Appl Mater Interface. 2016;8:19343–52.

    Article  CAS  Google Scholar 

  122. Thrombate III® prescribing information Oct 2013 (revised 02/2016). Research Triangle Park, NC: Grifols Therapeutics, Inc.; Available online from: http://www.thrombate.com/documents/975812/975869/ThrombateIII_PI_3036431_Aug_2013.pdf. Accessed 15 May 2017.

  123. ATryn® prescribing information Nov 2010. GTC Biotherapeutics, Inc.; Available online from: http://www.atryn.com/pdf/ATrynPI_1750-525_Combo_December_2013.pdf. Accessed 15 May 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail M. Annich.

Ethics declarations

Funding

No external funding was used in the preparation of the manuscript.

Conflicts of interest

Drs. Annich, Reynolds, Zaulan, and Wagner and Ms. Neufeld have no conflicts of interest that might be relevant to the contents of this manuscript.

The literature review for this paper included OVID and PubMed searches, the use of the ECMO textbook and review of chapters relevant to anticoagulation, as well as the experience of the authors of this paper with this topic as part of their research and academic work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annich, G.M., Zaulan, O., Neufeld, M. et al. Thromboprophylaxis in Extracorporeal Circuits: Current Pharmacological Strategies and Future Directions. Am J Cardiovasc Drugs 17, 425–439 (2017). https://doi.org/10.1007/s40256-017-0229-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-017-0229-0

Navigation