Skip to main content
Log in

Welding stress control in high-strength steel components using adapted heat control concepts

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input, and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analyzed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behavior, welding, and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Guenther H-P (2005) Use and application of high-performance steels for steel structures. IABSE IVBH, Zürich

    Google Scholar 

  2. Hulka K, Kern A, Schriever U (2005) Application of niobium in quenched and tempered high-strength steels. Mater Sci Forum 500–501:519–526

    Article  Google Scholar 

  3. Schröter F (2003) Höherfeste Stähle für den Stahlbau—Auswahl und Anwendung. Bauingenieur 9:426–432

    Google Scholar 

  4. Gliner RE (2011) Welding of advanced high-strength sheet steels. Weld Int 25:389–396

    Article  Google Scholar 

  5. Hanus F, Schröter F, Schütz W (2005) State of art in the production and use of high-strength heavy plates for hydropower applications. In: High Strength Steel Hydropower Plants. pp 1–13

  6. Uwer D, Hohne H (1992) Determination of suitable minimum preheating temperatures for the cold-crack-free welding of steels. Weld Res Abroad 38:31–35

    Google Scholar 

  7. EN 10025–6: Hot rolled products of structural steels—part 6: technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered conditions, 2018

  8. Grong Ø (1997) Metallurgical modelling of welding. Institute of Materials, London

    Google Scholar 

  9. Masubuchi K (1993) Residual stresses and distortion. In: Davis JR, Ferjutz K, Wheaton ND, Woods MS (eds) ASM Handbook, Welding, Brazing Solder, vol 6. ASM International, Novelty, pp 1092–1102

    Google Scholar 

  10. Lu J (2002) Prestress engineering of structural material: a global design approach to the residual stress problem. In: Totten G, Howes T, Inoue M (eds) Handb. Residual Stress Deform. Steel. pp 11–26

  11. DIN EN 1011–2: Welding—recommendation for welding of metallic materials—part 2: arc welding of ferritic steels, 2001

  12. SEW 088: Weldable non-alloy and low-alloy steels—recommendations for processing, in particular for fusion welding, 2017

  13. DIN-Fachbericht CEN ISO/TR 15608: Schweißen - Richtlinien für eine Gruppeneinteilung von metallischen Werkstoffen, 2005

  14. Florian W Cold cracking in high strength weld metal—possibilities to calculate the necessary preheating temperature, IIW-Doc. IX-2006-01

  15. Yurioka N, Suzuki H, Ohshita S, Saito S (1983) Determination of necessary preheating temperature in steel welding. Weld J 62:147–153

    Google Scholar 

  16. Schwenk C, Kannengiesser T, Rethmeier M (2009) Restraint conditions and welding residual stresses in self-restrained cold cracking tests. In: Trends Weld. Res. Proc. 8th Int. Conf. June, 2008, Callaw. Gard. Resort, Pine Mt. Georg. USA. ASM International, pp 766–773

  17. Wongpanya P, Boellinghaus T, Lothongkum G (2008) Heat treatment procedures for hydrogen assisted cold cracking avoidance in S 1100 QL steel root welds. Weld World 52:671–678

    Article  Google Scholar 

  18. Wongpanya P, Boellinghaus T, Lothongkum G, Kannengiesser T (2008) Effects of preheating and Interpass temperature on stresses in S 1100 QL multi-pass butt-welds. Weld World 52:79–92

    Article  Google Scholar 

  19. Kannengiesser T, Lausch T, Kromm A (2011) Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions. Weld World 55:58–65

    Article  Google Scholar 

  20. Satoh K, Terai K, Yamada S et al (1975) Theoretical study on transient restraint stress in multi-pass welding. Trans Jpn Weld Soc 6:42–52

    Google Scholar 

  21. Wongpanya P, Boellinghaus T, Lothongkum G (2006) Effects of hydrogen removal heat treatment on residual stresses in high strength structural steel welds. Weld World 50:96–103

    Google Scholar 

  22. Drepper M (2009) Neues Bewertungskonzept zur Charakterisierung des Temperatur-Zeit-Verlaufes bei höchstfesten Feinkornbaustählen. RWTH, Aachen

    Google Scholar 

  23. Heuser H, Jochum C, Stracke E (2007) Weld metal as strong as base metal?—Schweißzusatzwerkstoffe können/müssen nicht immer die Anforderungen der Grundwerkstoffe erfüllen. Mater Werkst 38:515–520

    Article  Google Scholar 

  24. Zerbst U, Ainsworth RA, Beier HT, Pisarski H, Zhang ZL, Nikbin K, Nitschke-Pagel T, Münstermann S, Kucharczyk P, Klingbeil D (2014) Review on fracture and crack propagation in weldments - a fracture mechanics perspective. Eng Fract Mech 132:200–276

    Article  Google Scholar 

  25. Schroepfer D, Kannengiesser T (2016) Stress build-up in HSLA steel welds due to material behaviour. J Mater Process Technol 227:49–58

    Article  Google Scholar 

  26. Dai H, Francis JA, Stone HJ, Bhadeshia HKDH, Withers PJ (2008) Characterizing phase transformations and their effects on ferritic weld residual stresses with X-rays and neutrons. Metall Mater Trans A 39:3070–3078

    Article  Google Scholar 

  27. Bhadeshia HKDH (2004) Developments in martensitic and bainitic steels: role of the shape deformation. Mater Sci Eng A 378:34–39

    Article  Google Scholar 

  28. Umekuni A, Masubuchi K (1997) Usefulness of undermatched weld for high-strength steels. Weld J 76:256–263

    Google Scholar 

  29. Lobanov LM, Poznyakov VD, Makhnenko OV (2013) Formation of cold cracks in welded joints from high-strength steels with 350–850 MPa yield strength. Pat Weld J (7) 7–12

  30. Withers PJ, Turski M, Edwards L, Bouchard PJ, Buttle DJ (2008) Recent advances in residual stress measurement. Int J Press Vessel Pip 85:118–127. https://doi.org/10.1016/j.ijpvp.2007.10.007

    Article  Google Scholar 

  31. Withers PJ (2007) Residual stress and its role in failure. Rep Prog Phys 70:2211–2264. https://doi.org/10.1088/0034-4885/70/12/R04

    Article  Google Scholar 

  32. (2010) Eurocode 3: design of steel structures (EN 1993)

  33. Nitschke-Pagel T, Wohlfahrt H (1991) The generation of residual stresses due to joining processes. In: Hauk V, Hougardy H, Macherauch E (eds) Residual Stress. - Meas. Calc. Eval. DGM Informationsgesellschaft mbH, Oberursel, ISBN: 3–88355–169-4, pp 121–133

    Google Scholar 

  34. Lachmann C, Krull P, Nitschke-Pagel T, Wohlfahrt H (1997) Investigations on the cold crack susceptibility of welded S960Q and Ck 45 due to residual stresses. In: Ericsson T, Oden M, Andersson A (eds) Fifth Int. Conf. Residual stress.—ICRS-5. Univ. Linköping, Sweden, pp 287–295

    Google Scholar 

  35. Satoh K, Matsui S (1968) Reaction stress and weld cracking under hindered contraction, IIW-Doc IX-574-68

  36. Satoh K, Ueda Y, Kihara H (1973) Recent trends of research into restraint stresses and strains in relation to weld cracking. Weld World 11:133–156

    Google Scholar 

  37. Hirohata M, Itoh Y (2012) Effect of restraint on residual stress generated by butt-welding for thin steel plates. In: 9th Ger. Bridg. Symp. Kyoto, Japan. pp 1–6

  38. Schasse R, Kannengiesser T, Kromm A, Mente T (2015) Residual stresses in repair welds of high-strength low-alloy steels. Weld World 59:757–765

    Article  Google Scholar 

  39. Kannengießer T (2000) Untersuchungen zur Entstehung schweißbedingter Spannungen und Verformungen bei variablen Einspannbedingungen im Bauteilschweißversuch. Shaker

  40. Nitschke-Pagel T, Wohlfahrt H (2002) Residual stresses in welded joints—sources and consequences. Mater Sci Forum 404–407:215–226

    Article  Google Scholar 

  41. Withers PJ, Bhadeshia HKDH (2001) Residual stress. Part 2—nature and origins. Mater Sci Technol 17:366–375

    Article  Google Scholar 

  42. Schröpfer D (2017) Adaptierte Wärmeführung zur Optimierung schweißbedingter Beanspruchungen und Eigenschaften höherfester Verbindungen. OVGU, Magdeburg

    Google Scholar 

  43. Schroepfer D, Kromm A, Kannengiesser T (2015) Improving welding stresses by filler metal and heat control selection in component-related butt joints of high-strength steel. Weld World 59:455–464

    Article  Google Scholar 

  44. Schroepfer D, Kromm A, Kannengiesser T (2018) Load analyses of welded high-strength steel structures using image correlation and diffraction techniques. Weld World 62:459–469

    Article  Google Scholar 

  45. Alexandrov BT, Lippold JC (2010) In situ determination of phase transformations and structural changes during non-equilibrium material processing. In: Kannengiesser T, Babu SS, Komizo Y-I, Ramirez AJ (eds) In-situ Stud. with Photons, Neutrons Electrons Scatt. Springer, Berlin, pp 113–131

    Chapter  Google Scholar 

  46. EN ISO 16834: Welding consumables—wire electrodes, wires, rods and deposits for gas shielded arc welding of high strength steels—Classification, 2012

  47. EN ISO 14341: Welding consumables—wire electrodes and weld deposits for gas shielded metal arc welding of non alloy and fine grain steels—Classification, 2011

  48. EN ISO 15614-1: Specification and qualification of welding procedures for metallic materials—welding procedure test—part 1: arc and gas welding of steels and arc welding of nickel and nickel alloys, 2017

  49. Zhang Z, Farrar RA (1995) An atlas of continuous cooling transformation (CCT) diagrams applicable to low carbon low alloy weld metals. Maney Publishing, Leeds

    Google Scholar 

  50. Steven W, Haynes AG (1956) The temperature of formation of martensite and bainite in low-alloy steel. J Iron Steel Inst 183:349–359

    Google Scholar 

  51. Bhadeshia HKDH, Honeycombe RWK (2006) Steels—microstructure and properties, 3. Elsevier Ltd., Amsterdam

    Google Scholar 

  52. Bhadeshia HKDH, Cerjak H (1997) Models for the elementary mechanical properties of steel welds. In: Cerjak H (ed) Math. Model. Weld Phenom. III. CRC Press, Boca Raton, pp 229–284

    Google Scholar 

  53. LePera FS (1979) Improved etching technique for the determination of percent martensite in high-strength dual-phase steels. Metallography 12:263–268

    Article  Google Scholar 

  54. Boellinghaus T, Kannengiesser T (2003) Effect of filler material selection and shrinkage restraint on stress strain build up in component welds. In: Proc. 6th Int. Conf. Trends Welding, April. 2002, Pine Mt. Georg. USA Res. Pine Mt. Georg. USA. ASM International, pp 906–911

Download references

Funding

The studies were funded by the AiF-project projects IGF-Nr. 17267 N/FOSTA P922 and IGF-Nr. 17978 N/FOSTA P1011. Sincere thanks are given for this support and to the representing companies actively involved in the project board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schroepfer.

Additional information

Recommended for publication by Commission II - Arc Welding and Filler Metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroepfer, D., Kromm, A., Schaupp, T. et al. Welding stress control in high-strength steel components using adapted heat control concepts. Weld World 63, 647–661 (2019). https://doi.org/10.1007/s40194-018-00691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-00691-z

Keywords

Navigation