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Abstract: Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) lead-free ceramics demonstrated excellent dielectric, 
ferroelectric, and piezoelectric properties at the morphotropic phase boundary (MPB). So far, to study 
the effect of morphological changes on dielectric and ferroelectric properties in lead-free BCZT 
ceramics, researchers have mostly focused on the influence of spherical grain shape change. In this 
study, BCZT ceramics with rod-like grains and aspect ratio of about 10 were synthesized by 
surfactant-assisted solvothermal route. X-ray diffraction (XRD) and selected area electron diffraction 
(SAED) performed at room temperature confirm the crystallization of pure perovskite with tetragonal 
symmetry. Scanning electron microscopy (SEM) image showed that BCZT ceramics have kept the 1D 
rod-like grains with an average aspect ratio of about 4. Rod-like BCZT ceramics exhibit enhanced 
dielectric ferroelectric (εr = 11,906, tanδ = 0.014, Pr = 6.01 µC/cm², and Ec = 2.46 kV/cm), and 
electrocaloric properties (ΔT = 0.492 K and  = 0.289 (Kmm)/kV at 17 kV/cm) with respect to 
spherical BCZT ceramics. Therefore, rod-like BCZT lead-free ceramics have good potential to be 
used in solid-state refrigeration technology. 
Keywords: lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT); rod-like Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT); 

dielectric; ferroelectric; electrocaloric effect 

 

1  Introduction 

Due to the constant expansion of industry, increasing 
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living standard, and climate change, the refrigeration 
market has become an increasingly significant factor in 
energy consumption [1–3]. The extensive use of 
refrigeration is one of the major factors of excessive 
energy consumption leading to the exhaustion of 
non-renewable energy resources, and thus deepening 
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the greenhouse effect. Hence, developing sustainable 
technological solutions based on promising new 
cooling technologies is getting increasingly important 
in recent years. Several efficient techniques are under 
development such as solar [4], thermoelectric [5], 
magnetocaloric [6], and electrocaloric cooling [7]. The 
electrocaloric effect (ECE) has recently shown great 
potential, as the high electric fields required for the 
refrigeration cycle are easier and less expensive to 
produce than the other fields required in competitive 
refrigeration techniques [8,9]. Giant electrocaloric 
effect was found in lead-based ferroelectric ceramics 
like Pb(Zr,Ti)O3 (PZT) and Pb(Zr,Sn,Ti)O3, as well as 
in relaxors such as Pb(Sc,Nb)O3 and Pb(Mg1/3Nb2/3)O3– 
PbTiO3 (PMN–PT) [10–13]. However, the possible toxicity 
of lead-based materials limits their application in  
future eco-friendly cooling systems [3]. Correspondingly, 
new lead-free materials were developed recently to 
mimic the properties of lead-based materials [14–16]. 

Barium titanate (BaTiO3) is usually regarded as one 
of potentially promising lead-free ceramics, which was 
the first material used to fabricate piezoelectric ceramics. 
It is widely employed in modern technologies such as 
mobile electronic devices and hybrid electrical vehicles 
[17,18]. Furthermore, BaTiO3 is a bioceramic material 
without any toxic or volatile elements, and its 
properties can be easily tailored by site engineering 
[14,19]. However, BaTiO3 exhibits low dielectric 
properties compared to lead-based materials and its 
dielectric constant below the Curie temperature (Tc = 
393 K) rapidly drops due to the tetragonal/cubic phase 
transition [20,21]. To overcome the drawback, the 
Ba1–xCaxZryTi1–yO3 system is engineered by introducing 
Ca2+ and Zr4+ into the crystal lattice of BaTiO3, to replace 
Ba2+ and Ti4+, respectively, with improved dielectric 
properties due to enhanced relaxor behavior of 
Ba1–xCaxZryTi1–yO3 ceramics [22–26]. Moreover, as 
reported by Liu and Ren [27], Ba0.85Ca0.15Zr0.10Ti0.90O3 
(BCZT) phase exhibits interesting dielectric, ferroelectric, 
and piezoelectric properties at the morphotropic phase 
boundary (MPB), which is comparable to those of PZT 
ceramics [15]. 

It is well known that the electrical properties of any 
material are very sensitive to its morphology. Almost 
all published articles on BCZT ceramics studied the 
dielectric and ferroelectric properties of spherical- 
grain-based powder [28–30]. Hence, to correlate the 
electrical and morphological properties, researchers are 
focusing especially on spherical grain size effect. We 

reported previously, the effect of grain size and grain 
size distribution in BCZT ceramics using surfactant- 
assisted solvothermal processing [31]. We found that 
the nature of surfactant directly influences the grain 
size and grain size distribution of BCZT ceramics. The 
use of sodium dodecyl sulfate (SDS, NaC12H25SO4) as 
surfactant results in highly dense ceramics with homo-
geneous grain distribution. However, cetyltrimethy-
lammonium bromide (CTAB, C19H42BrN) surfactant 
produces BCZT ceramics with bimodal grain size 
distribution including coarse grains and small spherical 
ones. 

The surfactant-assisted solvothermal synthesis provides 
a design of nanomaterials with specifically tailored 
architectures via the synthesis of nanoscale building 
blocks with an appropriate size and shape, and controlled 
orientation of the final products. Moreover, the cationic 
surfactant CTAB, a templating micelle molecule, is 
used to adjust size and morphology of nanomaterials 
[32–35]. At the best of our knowledge, there have been 
no other reports on the electrical studies in rod-like 
BCZT ceramics. In this contribution, we report the first 
BCZT ceramics with rod-like grains and evaluate its 
dielectric, ferroelectric, and electrocaloric properties. 

2  Experimental 

2. 1  Rod-like BCZT powder synthesis 

BCZT pure nanocrystalline powder was obtained by 
CTAB-assisted solvothermal synthesis as reported 
previously by Ref. [31]. First, an appropriate amount 
of barium acetate was dissolved in glacial acetic acid. 
Calcium nitrate tetrahydrate and zirconyl chloride 
octahydrate were dissolved each alone in 2-metho-
xyethanol. Second, the three solutions were mixed in a 
two-neck round bottom flask. In the third stage, 
titanium (IV) isopropoxide (Ti(OiPr)4) was added synch-
ronously dropwise to the reaction medium using an 
isobaric dropping funnel. 

Unlike the previously Ref. [31], to control BCZT 
microstructure, a different concentration (30 mM) of 
CTAB surfactant was introduced. The obtained solution 
was transferred to a 30 mL teflon-lined stainless-steel 
autoclave at 180 ℃ in an oven for 12 h. After the 
reaction was completed, the sealed autoclave was 
cooled in the air. The resulting product was washed 
sequentially with ethanol for several times. Then, the 
final product was dried at 100 ℃ for 12 h, calcined at 
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1000 ℃ for 4 h. Finally, BCZT powder was uni- 
axially pressed into pellets of diameter of about 6 mm 
and thickness of about 1 mm, and sintered at 1250 ℃/ 
10 h for electrical measurements. For P–E loop 
measurements, the thickness of the sample was reduced 
to 0.4 mm to allow high electric field application, while 
the electrode area was kept to 28.26 mm². 

2. 2  Characterization rod-like BCZT 

The morphology of BCZT powder was investigated by 
a field-emission scanning electron microscope (FE- 
SEM, JEOL JSM-7600F). Crystalline structure of BCZT 
powder was performed by X-ray diffraction (XRD, 
Panalytical X-Pert Pro). The measurement has been 
done at room temperature employing a step angle of 
0.017° in the 2θ range from 10° to 80° using a Cu Kα 
radiation (λ≈ 1.540598 Å). The selected area of 
electronic diffraction (SAED) pattern was recorded by 
using a transmission electron microscope (TEM, 
Philips CM200). To determine the optimal calcination 
temperature of raw BCZT material in order to produce 
highly pure BCZT powder, the combined thermo-
gravimetric and differential thermal analyses (TG-DTA, 
Sytram LABSYS evo) were performed at heating rate 
of 10 ℃/min from room temperature to 1100 ℃ in 
air. The resulting microstructure of BCZT sintered 
ceramics was analyzed by using a scanning electron 
microscope (SEM, Tescan VEGA3). The density of the 
sintered ceramics was measured by Archimedes 
method using deionized water as medium. A precision 
LCR meter (HP 4284A, 20 Hz to 1 MHz) was used to 
measure the dielectric properties of BCZT ceramic 
pellet that was electroded with silver paste in the 
frequency range of 100 Hz1 MHz. The ferroelectric 
hysteresis loops were determined by using a 
ferroelectric test system (AiXACCT, TF Analyzer 3000) 
at a driving frequency of 1 Hz. 

3  Results and discussion 

3. 1  Thermal analysis and phase evolution 

The typical thermal decomposition behavior of the 
BCZT raw material is shown in Fig. 1. The first weight 
loss at temperatures between 40 and 160 ℃ is due to 
desorption of physically adsorbed water (dehydration 
phenomena). The second weight loss in the range of 
160–230 ℃ can be attributed to the chemisorbed  

 
 

Fig. 1  TG-DTA curves of BCZT raw material. 
 

water (dehydroxylation phenomena). The exothermic 
located peak at 380 ℃ is associated to the thermal 
decomposition of various organic compounds. The 
fourth loss between 580 and 800 ℃ is attributed to 
the formation and crystallization of BCZT phase [36]. 
Finally, the mass loss remains constant after 800 ℃. 
Based on these analyses, the temperature of 1000 ℃ 
was selected as the calcination temperature for the 
formation of highly pure perovskite BCZT. 

3. 2  Morphology and phase characterization of rod- 
like BCZT powder 

In Fig. 2(a), a FE-SEM micrograph of the elaborated 
BCZT powder is presented. Besides very small amount 
of BCZT nanoparticles that were not yet transformed 
into BCZT rods, mainly rod-like grains with an 
average diameter and length of 0.45 and 4.25 µm, 
respectively, are visible with the corresponding aspect 
ratio around 10. 

The XRD pattern obtained for BCZT calcined powder 
is shown in Fig. 2(b). It was observed that BCZT 
powder was formed in a pure perovskite phase, without 
any trace of crystalline impurities. All diffraction peaks 
can be indexed based on the standard model X-ray 
polycrystalline tetragonal BaTiO3 (JCPDS card No. 
96-901-4669) with the space group P4mm. The 
characteristic tetragonal reflection (110) was observed 
at 2θ = 31.65°. BCZT powder has a tetragonal 
symmetry demonstrated by the peaks (002) and (200) 
splitting [37–40]. Insets of Fig. 2 clearly illustrate the 
splitting of these peaks in the 2θ range of 44°–46°. 
Figure 2(c) depicts SAED patterns of BCZT calcined 
powder. The d-spacings calculated from the measured 
ring diameters (i.e., 2.834, 2.313, 1.999, and 1.634 Å), 
correspond to (110), (111), (002), and (211) planes, 
respectively. These results are in good agreement with 
those obtained by XRD. 
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Fig. 2  (a) FE-SEM micrograph, (b) XRD, (c) SAED patterns, and (d) Rietveld refinement of BCZT powder calcined at 1000 ℃/4 h. 
 
Phase analysis of BCZT calcined powder was per-

formed in the light of P4mm space group as shown in 
Fig. 2(d). The refinement performed by FullProf Suite 
software indicates that the diffraction data of BCZT 
powder collected at room temperature mainly has a 
tetragonal phase (P4mm). Yobs and Ycalc correspond to 
the observed and calculated data respectively. In the 
Rietveld refinements, Ba and Ca ions are supposed to 
share the same crystallographic A-site of the BCZT 
perovskite structure. Similarly, Ti and Zr ions are 
positioned at the same B-site [40]. Table 1 indicates the 
lattice parameters, atomic positions, and space group 
obtained after refinement. These parameters are 
comparable to those reported in Refs. [40,41]. 

The degree of tetragonality (c/a) at room temperature  
 

of BCZT is 1.0050. This value is in a good agreement 
with those of Liu and Ren [27] and Praveen et al. [40] 
which are 1.0050 and 1.0049, respectively. 

3. 3  Density measurements of rod-like BCZT ceramic 

Figure 3 displays SEM micrograph and the corresponding 
statistical distribution of length and diameter of BCZT 
ceramics sintered at 1250 ℃/10 h. The microstructure 
reveals tightly bonded and well-defined rod-like grains 
with no obvious porosity, corresponding to a high bulk 
density of 5.50 g/cm3 (95% of the theoretical density). 
The average length and diameter of the rod-like grains 
are 5.2 and 1.35 µm, respectively. Hence, an average 
aspect ratio is of 4. 

Table 1  Structural parameters obtained from Rietveld refinement of BCZT calcined powder 
Lattice parameter (Å) Angle (°) Volume (Å3) Atomic position (x, y, z) χ² Space group c/a 

a = 3.99420 Ba/Ca 0.00000    0.00000    0.01674 

b = 3.99420 Zr/Ti 0.50000    0.50000    0.49641 

c = 4.01410 O1 0.50000    0.50000   –0.03807 

 

α = β = γ = 90 64.039 

O2 0.50000    0.00000    0.55951 

1.72 P4mm 1.0050

 

 
 

Fig. 3  (a) SEM micrograph and corresponding statistical distribution of (b) length and (c) diameter of BCZT ceramics sintered 
at 1250 ℃/10 h. 
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3. 4  Dielectric and ferroelectric properties of 
rod-like BCZT ceramics 

Figure 4(a) displays the temperature-dependence of the 
dielectric constant (εr) and the dielectric loss (tanδ) of 
rod-like BCZT ceramics at various frequencies from 
room temperature to 473 K. The dielectric constant 
increases with increasing temperature and reaches the 
maximum at Curie temperature (Tc). A broad anomaly 
at 366 K associated to the tetragonal–cubic (T–C) 
phase transition was observed [31,42,43]. The broad 
maximum observed is due to the overlap of several 
ferroelectric and non-ferroelectric regions [44]. 
Furthermore, with increasing frequency, the maximum 
dielectric constant decreases and Curie temperature 
shifts toward higher temperatures, indicating a typical 
relaxor frequency dispersion [45,46]. 

The dielectric constant of normal ferroelectrics 
above Tc follows the Curie–Weiss law, as described by 
Eq. (1). The reciprocal dielectric constant was plotted 
as a function of temperature (T) at 1 kHz and fitted 
using Curie–Weiss law to evaluate this phase transition: 

 
 0

0
r

1      T T T T
C


   (1) 

where εr is the real part of dielectric constant, T0 is the 
Curie–Weiss temperature, and C is the Curie–Weiss 
constant. 

The plot of the inverse dielectric constant vs. 
temperature at 1 kHz is shown in Fig. 4(b). The fitting 
results obtained by Eq. (1) are listed in Table 2. It was 
found that the real part of εr of BCZT ceramics deviates 
from the Curie–Weiss law above the Curie temperature. 
The deviations ΔTm as defined by Eq. (2): 

 m cw mT T T      (2) 

where Tcw refers to the temperature from which εr starts 
to follow the Curie–Weiss law, and Tm denotes the 
temperature at which εr value reaches the maximum. 
The estimated value of deviations ΔTm is 47 K. 

To further confirm the degree of diffuseness in the 
BCZT ceramics, a modified empirical expression 
proposed by Uchino and Nomura [47] is used, which is 
given in Eq. (3): 

 

 
 

Fig. 4  (a) Temperature-dependence of dielectric constant and dielectric loss, (b, c) plots of Curie–Weiss relation and modified 
Curie–Weiss law to determine slope (γ), and (d) P–E and I–E plots of BCZT ceramics. 
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where εr and εm are the real part of the dielectric 
constant and its maximum value, respectively, and γ 
(degree of diffuse transitions) and C are constants. For 
an ideal relaxor ferroelectric γ = 2, while for a normal 
ferroelectric γ =1 and the system follows the Curie– 
Weiss law [48]. 

Figure 4(c) depicts the linear fitting plot of ln(1/εr – 
1/εm) vs. ln(T – Tm) at 1 kHz for BCZT ceramics. After 
curve fitting by using Eq. (3), the value obtained for γ 
at 1 kHz in BCZT ceramics is 1.67. 

Previously, we reported the synthesis of BCZT 
ceramics using CTAB surfactant at different concentrations 
[31]. It was found that the small spheroidal grains 
(60–1000 nm) were distributed at the boundaries of 
coarse grains and occupied the pores created during the 
sintering to create high dense ceramics with a relative 
density (Dr) of about 95.2% equal to that of BCZT 
ceramics with rod-like grains. The dielectric constant 
and the dielectric loss of BCZT ceramics with spherical 
grains were found to be 7584 and 0.0158, respectively 
(Table 2). However, the dielectric constant and the 
dielectric loss in BCZT ceramics with rod-like grains 
reached 11,906 and 0.014, respectively. Hence, 
tailoring BCZT ceramics with large aspect ratio could 
enhance its dielectric properties [49,50]. 

P–E and I–E plots of BCZT ceramics at room 
temperature are represented in Fig. 4(d). It displays a  
 

slim P–E hysteresis loop with remnant polarization (Pr) 
of 6.01 µC/cm² and coercive field (Ec) of 2.46 kV/cm. 
The I–E curve shows two distinct peaks around the 
coercive fields, indicating the domain switching 
phenomena [51]. The appearance of a domain switching 
current peak (Fig. 4(d)), with an application of electric 
field confirms the ferroelectric nature of BCZT ceramics. 
The Ec can be evaluated from the polarization vs. 
electric field (P–E) hysteresis loop or by the current vs. 
electric field (I–E) curve [52]. 

3. 5  Electrocaloric effect in rod-like BCZT ceramics 
To evaluate the effect of grain shape tailoring on the 
electrocaloric effect (ECE) in the rod-like BCZT ceramics, 
Fig. 5(a) depicts P–E hysteresis loops registered at 
different temperatures at the driving frequency of 1 Hz, 
as in our recent paper Ref. [25]. The same frequency (1 
Hz) was kept to avoid any influence of the frequency 
as reported by Cheng et al. [53]. With increasing the 
temperature, the remnant polarization decreases 
continuously due to the disappearance of ferroelectric 
domains [54]. 

After recording P–E hysteresis loops as a function 
of the temperature, we perform a seven-order polynomial 
fitting by considering only the upper branches of these 
curves (Fig. 5(a)). Then, the variation of the polarization 
vs. the temperature at every fixed applied electric field 
can be deduced (Fig. 5(b)). It was noticed that the 
polarization decreases slowly from room temperature, 
then drops rapidly with the temperature around Tc. 

Table 2  Dielectric properties of BCZT ceramics with rod-like and spherical-like grains 
 εmax tanδ Dr (%) T0 (K) C (105 K) Tm (K) Tcw (K) ΔTm (K) γ Ref. 

BCZT rod-like 11,906 0.014 95 363 1.75 366 413 47 1.67 This study 

BCZT sphere-like 7584 0.0158 95.2 373 1.812 364 418 54 1.79 [31] 

 

 
 

Fig. 5  Temperature-dependence of (a) P–E loops, (b) electric polarization, and (c) the reversible adiabatic electrocaloric 
temperature change (ΔT) of rod-like BCZT ceramics under various applied electric fields. 
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ΔT was calculated by indirect method based on 
Maxwell equation that leads to Eq. (4). 

 

2

1
p

d
E

EE

T PT E
C T

        (4) 

where ρ and Cp are the mass density and the specific 
heat of the material, respectively. The value of Cp 
(0.378 J/(gK)) was taken from Ref. [26]. 

Figure 5(c) shows the temperature-dependence of 
ΔT. Each curve corresponds to a fixed applied electric 
field and evidences the ferroelectric–paraelectric phase 
transition with temperature increasing. The highest 
value obtained for T was 0.492 K at 17 kV/cm at the 
tetragonal–cubic transition around 360 K. It is worth 
noting that a further increase in the applied external 
electric field could enhance the ΔT value of the 
material since the P–E loops have not reached saturation 
yet. Commonly, the electrocaloric responsivity ( = 
ΔT/ΔE) is used for more suitable evaluation of the 
electrocaloric effect of materials. The obtained T 
value at 17 kV/cm corresponds to the electrocaloric 
responsivity of  = 0.289 (Kmm)/kV. 

Our findings are compared with previously published 
results on BCZT ceramics in Table 3 in which the 
electrocaloric properties (ΔT and ) of BCZT lead-free 
ceramics with different compositions and shapes are 
listed. It should be pointed out that ΔT value in the 
studied rod-like BCZT ceramics was found larger than 
other reported values in literature [22,37]. However, its 
electrocaloric responsivity is among the average values. 
This can be attributed to the elaboration method, the 
chemical composition, atomic rate, and site occupancy 
in the structure. It is well known that the nature of the 
precursors used for the syntheses often plays a key role  

 
Table 3  Comparison of the electrocaloric properties 
of rod-like BCZT ceramics with other lead-free BCZT 
ceramics reported in literature 

Ceramic ΔT (K) ΔE (kV/cm) T (K)  ((Kmm)/kV) Ref.

Ba0.85Ca0.15Zr0.10Ti0.90O3 0.492 17 360 0.289 This 
study

Ba0.85Ca0.15Zr0.10Ti0.90O3 0.118 6.65 363 0.164 [25]

Ba0.85Ca0.15Zr0.10Ti0.90O3 0.4 21.5 370 0.186 [37]

Ba0.85Ca0.15Zr0.10Ti0.90O3 0.152 8 373 0.19 [26]

Ba0.80Ca0.2Zr0.04Ti0.96O3 0.27 7.95 386 0.340 [22]

Ba0.80Ca0.20Zr0.08Ti0.92O3 0.22 7.95 386 0.27 [61]

Ba0.91Ca0.09Zr0.14Ti0.86O3 0.3 20 328 0.150 [62]

Ba0.92Ca0.08Zr0.05Ti0.95O3 0.38 15 410 0.253 [61]

in determining the shape and size of the nanomaterials. 
The nucleation and growth of BCZT from the molecular, 
ionic, or oxide titanium/zirconium precursors in the 
presence of barium/calcium carbonates or salts are 
often dictated by the nature of the cubic crystal 
structure, which results in the formation of BCZT 
nanocrystals with spherical or cubic shapes with aspect 
ratio of about 1 [55]. However, in this study, the CTAB 
surfactant was used as directing agent to produce 
BCZT ceramics with rod-like grains. 

The ECE is associated with the polarization, 
phenomenological coefficient, multiple polar states, as 
well as the breakdown electric field, etc. [56–59]. 
Indeed, these physical properties are strongly dependent 
on features and morphologies of dielectric materials 
such as grain size, size distribution, and aspect ratio. 
As reported by Zhang et al. [60], the electrocaloric pro-
perties in Ba0.67Sr0.33TiO3/Poly (vinylidene fluorideer- 
trifluoroethylene-ter-chlorofluoroethylene) (BST/P (VDF- 
TrFE-CFE)) nanocomposites by embedding BST fillers 
with nanoparticles, cubes, rods, and nanowires in 
morphology are closely related to the aspect ratio of 
the ceramic BST nanofillers [60]. They found that fillers 
with high aspect ratio exhibit much higher breakdown 
and greater ECE. Likewise, Tang et al. [49] demonstrated 
that using high-aspect-ratio of BaTiO3 (BT) nanowires 
is an effective way to control and improve the 
dielectric performance of (BT/PVDF) nanocomposites. 
Analogically, the enhanced electrocaloric effect in our 
sample could be attributed to high aspect ratio (4) of 
BCZT rod-like ceramics as compared with other 
reported BCZT samples exhibiting almost spherical 
grains (aspect ratio ≈ 1). Thus, BCZT ceramics with 
rod-like grains have good potential to be used for the 
application in eco-friendly solid-state cooling devices. 

4  Conclusions 

In this study, lead-free rod-like BCZT ceramics have 
been successfully prepared by CTAB-assisted solvothermal 
processing. XRD and SAED revealed that rod-like 
BCZT ceramics exhibit pure perovskite phase with 
tetragonal symmetry and a remarkable c/a of 1.0050 
and a high density (95%). SEM micrograph depicted 
that BCZT ceramics are self-assembled into rod-like 
grain with an average length and diameter of 5.2 and 
1.35 µm, respectively, and therefore with an aspect 
ratio of 4. Rod-like BCZT ceramics demonstrated 
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enhanced dielectric (εr = 11,906, tanδ = 0.014) and 
ferroelectric (Pr = 6.01 µC/cm² and Ec = 2.46 kV/cm) 
properties compared to BCZT ceramics with spherical 
grains. Likewise, around 360 K, ΔT and responsivity  
were found to be 0.492 K and 0.289 (Kmm)/kV, 
respectively, which are larger than those found in the 
reported BCZT ceramics. Therefore, lead-free BCZT 
ceramics with high aspect ratio could be a potential 
candidate for cooling material in novel environmentally 
friendly solid-state cooling devices. 
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