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Abstract
Purpose of Review Our goal is to show how readily available Pathomics tissue analytics can be used to study tumor immune
interactions in cancer. We provide a brief overview of how Pathomics complements traditional histopathologic examination of
cancer tissue samples. We highlight a novel Pathomics application, Tumor-TILs, that quantitatively measures and generates
maps of tumor infiltrating lymphocytes in breast, pancreatic, and lung cancer by leveraging deep learning computer vision
applications to perform automated analyses of whole slide images.
Recent Findings Tumor-TIL maps have been generated to analyze WSIs from thousands of cases of breast, pancreatic, and lung
cancer. We report the availability of these tools in an effort to promote collaborative research and motivate future development of
ensemble Pathomics applications to discover novel biomarkers and perform a wide range of correlative clinicopathologic
research in cancer immunopathology and beyond.
Summary Tumor immune interactions in cancer are a fascinating aspect of cancer pathobiology with particular significance due
to the emergence of immunotherapy. We present simple yet powerful specialized Pathomics methods that serve as powerful
clinical research tools and potential standalone clinical screening tests to predict clinical outcomes and treatment responses for
precision medicine applications in immunotherapy.

Keywords Pathomics . Cancer tissue analytics . Tumor immune interactions . Tumor-infiltrating lymphocytes (TILs) . Cancer
immunopathology . Precisionmedicine

Introduction

Human diseases are characterized by correlating host symptoms
with clinical examination, radiology, and laboratory testing. The
microscopic examination of tissue samples from biopsies and
surgical procedures is routinely performed to diagnose diseases
based on tissue and cellular pathobiology. This fascinatingmicro-
scopic world of human biology and disease has been mostly
restricted to pathologists and clinical researchers until the

introduction of digital pathology. Digital pathology has opened
the gates to a significantly larger and more diverse audience
through high-resolution whole slide images (WSIs) that support
the exploration of complex virtual landscapes of human tissues
from every part of the body during normal development and
disease. In turn, digital pathology has benefited from extraordi-
nary advances in technology, software, image analysis, machine
learning, and computer vision that have led to the development of
powerful computational image analysis methods, collectively re-
ferred to as Pathomics.

Pathomics has the potential to transform our understanding of
human biology and disease by providing numerous opportunities
to perform quantitative analysis of tissues and cells. For example,
Pathomics with classical image analysis can characterize tissue
microarchitecture, microanatomic structures, different types of
cells, and other histologic features of disease by analyzing phe-
notypic traits like color, size, shape, texture, and orientation. In
addition, a variety of novel computational methods for digital
pathology have recently emerged due to recent advances in
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artificial intelligence (AI) and computer vision. Currently,
Pathomics tissue analytics has reached a level of critical mass
that is capable of supporting large interdisciplinary collaborative
research efforts to study human pathobiology across clinical
medicine, academia, and industry.

This report focuses on Pathomics applications that harvest and
analyze data from WSIs to study tumor immune interactions to
help advance our understanding of cancer pathobiology. We
describe a specialized Pathomics application, Tumor-TILs, to
illustrate how complex relationships and patterns in cancer im-
munopathology are easily explored in hematoxylin and eosin
(H&E)WSIs of breast, pancreatic, and lung cancer.We narrowly
focused on this specialized form of Pathomics tissue analytics
since these Tumor-TILs methods are readily available, open
source, and easily implemented to study tumor-infiltrating lym-
phocytes (TILs) in these types of virtual cancer tissue samples.
Moreover, these methods perform automated analyses in a scal-
able fashion in preparation for when WSIs of cancer tissue sam-
ples become much more widely available. We will (1) briefly
describe the much larger world of Pathomics within the context
of traditional histopathologic properties of tumors in order to
present (2) recently developed Tumor-TILs Pathomics applica-
tions to characterize TILs in breast, pancreatic, and lung cancer
and (3) propose more advanced ensemble Pathomics analytic
pipelines to collect and integrate data from multiple scales of
magnification to further improve our understanding about cancer
immunopathology.

Our primary goal is to demonstrate how automated Pathomics
tissue analytics can be realistically utilized to quantitatively study
tumor immune interactions in a systematic manner in an effort to
emphasize the potential value of Pathomics in precision medi-
cine. Related to this goal, we want to show how Pathomics
provides an opportunity to perform analyses in large studies,
since there is no sustainable way to manually evaluate thousands
to tens of thousands of tissue samples , even if the costs, required
time, resources, and access to technical skills and expertise were
irrelevant.We present Tumor-TILs analyses to provide an exam-
ple of how WSIs from large studies can be readily analyzed to
provide immediate insight into cancer immunopathology to sup-
port the clinical use of Pathomics applications for precision med-
icine and immunotherapy. Our secondary goal is to provide a
vision about integrating clinical informatics, radiomics,
pharmacogenomics, and Pathomics tissue analytics with patient
outcomes and treatment response data in order to improve the
stratification of patient management, treatment selection, and
survival.

Pathomics Applications in Cancer
Histopathology

Pathology is the study of diseases by examining tissue samples,
where microscopic abnormalities in the structures of tissues and

cells are associated with diagnostic criteria to render histopatho-
logic diagnoses. The implementation of commercial glass scan-
ners in clinical and research pathology laboratories has led to the
increased availability of H&EWSIs and greater access to cancer
tissue samples through virtual microscopy, leading to the devel-
opment of powerful computational methods to support the estab-
lishment of precision medicine in the twenty-first century (see
recent reviews in refs [1••, 2•, 3•]). Digital pathology gave birth
to Pathomics to harvest and quantitatively analyze exquisitely
complex biological data with classical image analysis and com-
puter vision applications.

Pathomics tissue analytics applications have matured over the
last several years, where computational pathology tools are now
readily available to make transformative impacts in biomedical
research, clinical trials, and the practice of medicine. Pathomics
applications have been implemented to collect, analyze, and
quantitatively measure a wide variety of histopathologic features
in human diseases like cancer (see refs [1••, 2•, 3•, 1–21] for
motivations and methods). A lot of excitement surrounds the
development of Pathomics tools for clinical decision support
(CDS) systems to help improve our ability to (1) define and
delineate human diseases with quantitative metrics to describe
salient histopathologic features, (2) predict outcomes by identi-
fying patterns and relationships to further elucidate our under-
standing about the biological behavior of malignant and non-
malignant diseases, and (3) select optimal treatment strategies
by using Pathomics to stratify patients and predict treatment re-
sponse. For example, Pathomics may very useful to study chal-
lenging cases of cancer by quantitatively measuring size, shape,
texture, and other features to help provide better clinical insight,
especially for cases with non-specific and overlapping histologic
features that are regularly encountered and easily misinterpreted
in daily practice despite considerable expertise and experience.

Substantial advancements in AI through deep learning and
computer vision have been particularly important to the de-
velopment of highly flexible Pathomics applications to study
cancer with automated feature extraction. AI applications in
Pathomics have overcome various obstacles associated with
developing engineered and hand-crafted features based on
classical image analysis, which rely on defining various types
of parameters associated with color, size, shape, contrast, and
texture to characterize complex histopathologic alterations in
microanatomic tissue architecture associated with cancer and
other human diseases [22••, 23, 24]. Emerging methods for
Pathomics tissue analytics in cancer tissues samples with deep
learning and computer vision appear to complement tradition-
al histopathologic evaluation in ways that are fundamentally
similar to how pathologists utilize pattern recognition and the
association of features to characterize diseases. Pathomics tis-
sue analytics is also leveraging concurrent advances in com-
putational processing power, software, and infrastructure in
order to deploy automated pipelines to systematically study
cancer pathobiology in virtual tissue samples in a practical,



robust, and reliable manner for large-scale interdisciplinary
clinical research.

Currently available types of Pathomics analyses can be cate-
gorized in a manner that parallels multiscale examination, where
various regions of interests (ROIs), specific types of objects, and
other microscopic properties of tissues are identified, measured,
and harvested to identify potential biomarkers and perform down-
stream correlative analyses. Since digital pathology was original-
ly established to support the virtual examination of histologic
tissue samples with software to supplant microscopes, we sum-
marize how Pathomics tissue analytics can be utilized to comple-
ment histopathologic evaluation at multiple scales of magnifica-
tion, as shown in Table 1. Table 1 shows how Pathomics is useful
to detect, label, and classify microanatomic regions of tissue,
microarchitectural structures, cells, and nuclei. For example,
Pathomics data can (1) identify meaningful regions of interest
ROIs in WSIs by classifying areas with different patterns of
growth and increased mitotic activity [25], (2) measure histologic
differentiation by quantifying the distributions of different types
of cells in histologically distinct architectural configurations, and/
or (3) define cytomorphologic features of cells and nuclei in terms
of color, size, geometry, chromatin density, texture, and prolifer-
ative activity [12, 13]. Automated Pathomics have also been uti-
lized to systematically study the ecosystems and microenviron-
ments of many different types of cancer through higher-order
spatial analyses to characterize human pathobiology (described
in recent digital pathology white papers [26, 27] and related refs
[1••, 2•, 3•, 28–39, 40•, 41]).

Tumor Immune Interactions with Pathomics

Current advances in Pathomics tissue analytics are focused on
predicting the biological behavior of human disease and cancer
for precisionmedicine applications. One of themain challenges in
Pathomics is to identify the types of data products that can be
useful to identify patterns, relationships, or biomarkers to provide
clinically actionable information [42]. Current Pathomics applica-
tions are incredibly powerful and useful for understanding how
and why the dynamic microscopic landscapes of tissues change
during the initiation and progression of disease. In order for
Pathomics to be clinically useful, quantitative measurements of
categorical observations of various phenotypic features of biolog-
ical phenomena must support the development of computational
models that predict changes associated with treatment and out-
comes. When Pathomics tissue analytics become more routinely
available, advanced understanding of human pathobiology will
result from fully integrating Pathomics with clinical data from
electronic health records, imaging, and clinical laboratory testing.

Each tissue sample from every patient is unique. Even though
clinical history and other countless sources of variability exist in
human biology, microscopic evaluation is used to identify mor-
phologic nuances in tissues and cells during the course and pro-
gression of various human diseases. Pathomics tissue analytics
offers an exciting and useful opportunity to augment traditional
histopathologic evaluation on a per tissue sample basis to coin-
cide with the clinical adoption of precision medicine. Even
though tumor immune interactions in breast, pancreatic, and lung

Table 1 Summary of the
structural taxonomy of
histopathologic features of cancer
alongside Pathomics applications
at various scales of magnification.
Automated Pathomics tissue
analytics complement traditional
histopathologic examination by
pathologists with tools to
quantitatively characterize a wide
spectrum of phenotypic
characteristics that are associated
with different types and subtypes
of cancer

Pathomics applications to address the structural taxonomy of cancer histopathology

Scale Magnification Cancer
morphology

Histopathology Pathomics applications

Macroscopic × 20–× 40 Growth
pattern

Cellularity; architectural
distortion; and interface
between cancer and
surrounding tissues

Tumor detection (e.g.,
boundary; size; and
texture)

Mesoscopic × 40–× 100 Architectural
pattern

Distribution, orientation,
and distortion of
microanatomic
structures; inflammatory
responses; fibrosis; and
necrosis

Delineation of
microanatomic regions
(e.g., tumor, stroma,
inflammation, and
necrosis);
characterization of
structures and distortion
(e.g., glandular
differentiation, and
dysplasia)

Microscopic × 100–× 400 Cytology Nuclear color, shape, size,
membrane irregularity,
orientation, chromatin
appearance, and nucleoli;
cytoplasmic boundary,
color, density, and
inclusions; and
non-cellular material

Nuclear segmentation (e.g.,
color, size, shape, and
orientation); chromatin
color and density;
dysplasia grading;
collagen structure and
alignment
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cancer have been carefully studied and actively explored by pa-
thologists and biologists formany decades, we narrowly focus on
the role of Pathomics to capture and quantify tumor immune
interactions inH&EWSIs of these kinds of cancer tissue samples
as practical examples that can meaningfully impact the role of
precision medicine in immunotherapy.

We show straightforward examples of recently developed
first-generation specialized deep learning Pathomics applications,
referred to as Tumor-TILs analyses, that construct detailed spatial
maps of tumor immune interactions in WSIs. Tumor-TIL maps
are generated by combining automated detection of cancer re-
gions with automated detection of lymphocytes by using deep
learning algorithms in computer vision (see refs [43•, 44, 45] for
technical descriptions). Briefly, Tumor-TILs analyses partition
WSIs into tiled patches that are analyzed with two distinct deep
learning computer vision algorithms, where image patches are
designated as either (1) tumor or non-tumor or (2) lymphocytes
or no lymphocytes and the remaining patches are considered as
background (non-tumor and non-lymphocyte). The algorithmic
predictions from each deep learning computer vision model are
spatially mapped as probabilities with continuous values from 0
to 1. After evaluating the algorithmic performance of eachmodel
individually, the results from each model are combined to gen-
erate Tumor-TIL maps that can be used to explore cancer
immunopathology.

Tumor-TILmaps represent massive amounts of computation-
al analytics and Pathomics data in a very simple manner in order
to help facilitate rapid understanding about cancer immunopa-
thology. The spatial distribution and relative magnitude of lym-
phocytes are shown within the appropriate histologic context of
the tumormicroenvironment (TME) by overlaying deep learning
algorithmic results on WSIs alongside corresponding H&E
WSIs in order to complement traditional microscopic examina-
tion. In this manner, Tumor-TILs maps readily complement the
routine visual assessment of tissue samples by pathologists with
built-in quality assurance and control (QA/QC) for each step of
the analyses. This is particularly important if deep learning
Pathomics analyses are going to be used to predict treatment
response and clinical outcomes for patient care. Since current
Pathomics tools can clearly provide interpretable and clinically
meaningful data from automated deep learning analyses of
WSIs, we want to focus on how these tools can be used to study
the functional immunologic status of the TME inWSIs of breast,
pancreatic, and lung cancer.

TILs as a Pathomics Biomarker

Tumor-TILs analyses help identify and quantify the role of TILs
in cancer. TILs represent an intrinsic prognostic biomarker in
H&E tissue samples that can be readily evaluated in a wide
variety of solid tumors with the potential to refine diagnostic
characterization, patient stratification, and treatment selection.
Marrying Pathomics with quantifying an intrinsic H&E

biomarker in WSIs during the age of precision medicine and
immunotherapy is an opportunity that cannot be missed since
Tumor-TILmaps provide a simple and easily interpretable global
view tumor immune interactions in the TME. Moreover, Tumor-
TILs represents the capacity to perform automated, systematic,
and uniform analyses in a scalable manner that can be compared
to utilizing immunohistochemistry (IHC) to characterize the ex-
pression of biomarkers in tumors. Pathologists and biologists
profile immune subtypes of cancer with a variety of methods in
anatomic pathology, where inflammatory responses are charac-
terized in terms of cellular components, spatial distribution, and
relative magnitude. Pathologists also use terminology like “hot”
and “cold” to describe the overall functional immune status of the
TME in cancer tissue samples.

Inflammatory responses are typically evaluated with di-
verse terminology to describe immunohistopathology in tissue
samples (e.g., inflamed, reactive, and necrotic), cellular com-
ponents (e.g., “acute” for neutrophils, “chronic” for
lymphoplasmacytic cells, and “histiocytic” and “granuloma-
tous” for macrophages), magnitude (e.g., minimal, mild, mod-
erate, and severe), and distribution (e.g., sparse, focal, and
diffuse). Tumor-TILs analyses were developed to augment
qualitative and semi-quantitative assessment by addressing
the tangible demand to develop a quantitative method to cap-
ture and evaluate tumor immune interactions in solid tumors
with standardized, cost-effective, and scalable methodology
(see relevant literature and reviews from the International
Immuno-Oncology Biomarker Working Group for TIL as-
sessment guidelines in breast cancer and other solid tumors
[22••, 43•, 44–51]).

Since the prognostic and predictive value of TILs as a bio-
marker in breast cancer is slowly gaining acceptance as a report-
able biomarker that needs to be evaluated during routine histo-
pathologic evaluation, Tumor-TILs may be very practical and
useful example of Pathomics to help pathologists score TILs
and further evaluate cancer pathobiology (in a manner that is
similar to scoring and evaluating the expression of IHC bio-
markers in different histologic types of cancer). However, the
implementation of TILs as a routine and clinically important
H&E biomarker has yet to be adopted, similar to the way that
Pathomics have yet to be clinically implemented to quantitatively
characterize aforementioned histopathologic features of tumors.
Therefore, we present Fig. 1 to provide examples of how
Tumor-TILs analyses in breast cancer can be immediately helpful
to pathologists and provide useful insight about the functional
immune status in breast cancer cases. Figure 1a–d and e–h
represent two separate cases of breast cancer, where the panels
are assembled in a manner to help ascertain the potential clinical
value of TILs as a biomarker. This example also demonstrates the
value of automated methods like Tumor-TILs as a practical and
useful form of Pathomics to study and evaluate clinically
meaningful tumor immune interactions in cancer by
characterizing the spatial distribution of TILs in WSIs.

136 Curr Pathobiol Rep (2020) 8:133–148



Fig. 1 Tumor-TILs analyses in breast cancer. Deep learning Pathomics
pipelines perform Tumor-TILs analyses in breast cancer, where panels a–
d show analyses for specimen BRCA TCGA-AR-A24U-01Z-00-DX1
and panels e–h for specimen BRCA TCGA-AR-A250-01Z-00-DX1.
Tumor-TIL maps depicted as follows: top left panels (a, e) show H&E
WSIs at low magnification; top right panels (b, f) show automated tumor
detection presented as a spatial probability distribution from 0 to 1 to
evaluate algorithmic performance (non-tumor tissue colored blue);
bottom left panels (c, g) show automated lymphocyte detection
presented as a spatial probability distribution from 0 to 1 (non-
lymphocyte tissue colored blue); and bottom left panels (d, h) show
Tumor-TILs by combining tumor and lymphocyte detection (tumor
colored yellow, lymphocytes colored red, and background non-tumor/
non-lymphocyte tissue colored gray). Panels d and h show the spatial

distribution of lymphocytes within the histologic context of cancer in
order to identify peritumoral and intratumoral TILs and facilitate
qualitative and quantitative interpretation of tumor immune interactions
(to perform TILs scoring in the overall tumor region and spatially distinct
areas). In the first case (d), spatial Tumor-TILs analyses show an
abundance of peritumoral and intratumoral tumor immune interactions,
whereas the second case (h) shows predominantly peritumoral TILs in
breast cancer. The peritumoral distributions of TILs in (h) suggest that the
tumor may be exerting immunosuppressive effects on TILs , which can
help guide the selection of checkpoint inhibitor immunotherapy to
activate the cytotoxicity of these lymphocytes. Tumor-TILs analyses
have been performed in large collections of WSIs to evaluate both
algorithmic performance and functional immune responses to support
precision medicine in cancer
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The 4-way panels show spatially distributed tumor immune
interactions inWSIs of cancer tissue samples. These examples of
Tumor-TIL maps present a global perspective of tumor immune
interactions at low magnification. We can also overlay high res-
olution heat maps on H&E WSIs of cancer tissue sample to
evaluate tumor and lymphocyte detection in order to perform
quality assurance and control (QA/QC) of algorithmic perfor-
mance. These examples combine a low magnification view of
a H&EWSIs with separate panels showing overlaid probabilities
of tumor and lymphocyte detection that are subsequently com-
bined to generate Tumor-TIL maps. Performing Tumor-TILs
analyses in large datasets of WSIs creates the ability to view
the exquisite variability in the magnitude and spatial distribution
of immune responses in the TME to support clinical research
about TILs per the recommendations from the International
Immuno-Oncology Biomarker Working Group [22••, 46, 47,
52–55]. Figure 1 also demonstrates how straightforward
Pathomics analyses like tumor and lymphocyte detection in
WSIs fundamentally complements traditional histopathologic
examination to reliably characterize the functional immunologic
state of the TME. The simplicity of this approach with
incorporated QA/QC allows both pathologists and non-
pathologists alike to seriously consider the value and
potential of Pathomics tissue analytics to enhance visual
examination and further our collective understanding of
human pathobiology.

Tumor-TILs analyses augment the ability of pathologists to
observe immune and non-immune mediated cancer pathobiolo-
gy in a way that is not humanly possible across tens of thousands
of samples. By predicting which patches of tissue contain tumor,
lymphocytes, or both, we are effectively observing the ground
cover of TILs in these types of cancer in an effort to accurately
describe the percent of a cancer tissue sample that contains
peritumoral and intratumoral TILs, lymphoid aggregates, and
non-tumor associated lymphocytes. Tumor-TILs analyses have
been implemented to measure the variability of these aspects of
cancer immunopathology in publicly available datasets like the
Cancer Genome Atlas (TCGA), as well as WSI datasets from
other institutions in collaborative research projects. Automated
Tumor-TILs analyses are also being expanded to catalog tumor
immune interactions in several other types of cancer.

The overall goal of automated Tumor-TILs analyses is to
introduce how clinical research and hospital laboratories can
realistically use Pathomics to analyze H&E WSIs of cancer
tissue samples from every patient. Automated Pathomics tis-
sue analytic pipelines like Tumor-TILs show how massive
amounts of data can be harvested fromWSIs to generate clin-
ically useful data products. If we can reliably correlate Tumor-
TILs analyses with clinical outcomes, treatment responses,
and survival, clinicians may gain the ability to predict prog-
nosis, stratify patients, and identify candidates for immuno-
therapy and combinations with classical chemotherapy regi-
mens and other treatment modalities.

Due to the growing acceptance of the role of host immunity in
cancer and immunotherapy, systematically mapping tumor im-
mune interactions with readily available Pathomics methods ap-
pear very necessary to comprehensively evaluate this aspect of
tumor pathobiology. Similarly, the incorporation of TILs into the
conventional classification of cancer also appears very likely, so
methods like Tumor-TILs that can be readily incorporated will
be hard to ignore when digital pathology becomes more widely
adopted by clinical laboratories. Tumor-TIL maps are already
being used to guide the microscopic examination of tissue sam-
ples on glass slides and/or WSIs to examine salient tumor im-
mune interactions, but we need to explore how to use these
analyses to develop more advanced types of Pathomics tissue
analytics to investigate multidimensional relationships between
other Pathomics features and histologic growth patterns,
cytonuclear features of cancer cells, cancer staging, dis-
ease progression, metastasis, recurrence, treatment re-
sponse, and survival.

In summary for this section, Tumor-TILs can be readily im-
plemented to support various kinds of research to study cancer
initiation, development, dissemination, and treatment response in
the neoadjuvant and adjuvant setting by harvesting and
cataloging massive amounts of important clinical research data.
Tumor-TILs also provides numerous opportunities to explore
and study the relationships between cancer immunopathology
within the context of histologic growth patterns, cellular differ-
entiation, cytonuclear features, cytogenetics, gene expression,
and other types of omics to characterize the molecular profiles
of various kinds of cancer. Since Tumor-TILs analyses advocate
a solid starting point to promote capturing additional immune-
related histopathologic parameters to better understand cancer
pathobiology [22••], we present Fig. 2 as a proof of concept to
demonstrate how Pathomics appears quite useful for studying
tumor immune interactions in a highly complex disease like pan-
creatic cancer.

Practical Translational Research Opportunities With
Tumor-TILs

Tumor-TILs have been presented as a proof of concept to dem-
onstrate the power of Pathomics to capture and analyze complex
data from pathology images in a uniform manner. We hope that
we have shown how these readily available methods can be
deployed to analyze hundreds to thousands of WSIs to investi-
gate the role of TILs in cancer immunopathology so far. We also
hope to have demonstrated how Pathomics can quantitatively
score the number of TILs and characterize their spatial distribu-
tion within the appropriate histologic context of cancer, which
can be incredibly powerful for cohort discovery and real-time
tissue analytics in surgical pathology. Beyond these very impor-
tant immediate uses, we also want to show how the automated
reporting of an overall score of the percent of TILs in a tumor
region with a description of their spatial distribution can



Fig. 2 Tumor-TILs analyses in pancreatic cancer. Deep learning
Pathomics pipelines perform Tumor-TILs analyses in pancreatic cancer
ductal adenocarcinoma (PDAC), where panels a–d show analyses for
specimen PAAD TCGA-IB-A5SS-01Z-00-DX1 and panels e–h for
specimen PAAD TCGA-IB-7890-01Z-00-DX1 (Tumor-TIL maps are
depicted in the same manner as Fig. 1). In both cases (panels a, h),
Tumor-TILs analyses show predominantly peritumoral tumor immune
interactions in pancreatic cancer with subtle differences in the
magnitude of the responses. Beyond providing the ability to
qualitatively score the relative strength of the immune responses, these
maps can guide pathologists to areas of interest in glass slides and WSIs

to further review other histopathologic features, such as using the
abundance of tertiary lymphoid aggregates in the periphery beyond the
invasive boundary of the tumor to guide the search for lymphovascular
invasion (LVI). Tumor-TIL maps may also provide clues about tumor
heterogeneity in terms of differential tumor immune interactions in the
main tumor mass that can be compared to the functional role of TILs with
infiltrative clusters of tumor cells. Tumor-TIL maps can also serve as a
screening tool to help pathologists consider a particular diagnosis since
these algorithms are trained with numerous PDAC samples to perform
tumor detection
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transform the identification and stratification of patients who
might benefit from readily available immunotherapeutic options.
To that end, we hope that the selected figures have substantiated
the concept of computationally characterizing and scoring TILs
as a biomarker with Pathomics, which can be readily utilized as
simplistic standalone screening tests to identify hot and cold
immune subtypes of cancer and other types of nuances in immu-
nopathologic responses on a case by case basis.

In this respect, Tumor-TIL maps were developed as a vi-
sual tool and prototype for a potential Pathomics TILs screen-
ing test to help researchers and pathologists quickly evaluate
the functional immune status of tumors in order to further
guide the evaluation of TILs at higher magnification in rele-
vant ROIs (e.g., TILs with respect to variable morphologic
growth patterns and cytonuclear features associated with
worse clinical outcomes and poor survival). Therefore, we
discuss how Tumor-TILs can be leveraged to drive the devel-
opment of more powerful ensemble Pathomics by incorporat-
ing computational image analysis methodology in this section
[12, 13, 56–58]. For example, ensemble models can support
scientific inquiry by using Tumor-TILs in conjunction with
engineered and hand-crafted features to identify particular tu-
mor niches for further laser capture microdissection and mo-
lecular testing. Beyond the spatial distributions of TILs, the
TILs themselves can be further characterized by size, shape,
color, texture, and chromatin density to guide the develop-
ment of multiplex IHC panels and molecular tests to identify
different subsets of immune cells and the expression of immu-
notherapy drug targets in a non-destructive and cost-effective
manner. Other interesting applications include downstream
analyses that leverage Tumor-TILs Pathomics data with
nearest neighbor distances, clustering, topography, and
fractal occupancy analyses to determine the prognostic
and predictive significance of the spatial distributions of
TILs [22••, 45, 50, 59–66].

As mentioned previously, we can report Tumor-TILs
analyses in manner that parallels how the expression of IHC
biomarkers in a histologic tissue sections are routinely reported.
Similarly, we can envision how Tumor-TILs may be used to
suggest further reflex testing during diagnostic workup while
being integrated with laboratory data from chemistry, hematolo-
gy, flow cytometry, human leukocyte antigen (HLA), microbi-
ology, molecular laboratory testing, and clinicopathologic patient
data in order to stratify patients and formulate treatment strategies
based on computational phenotype. Potential scenarios could
involve using first-generation Tumor-TILs to help overcome
the problems associated with PD-1/PD-L1 testing assays for im-
mune checkpoint inhibitors [64•, 67, 68] by defining salient tu-
mor immune niches for PD-1/PD-L1 scoring and/or reporting
PD-1/PD-L1 IHC scores in conjunction with Pathomics TILs
scores integrated with electronic healthcare data to devise an
appropriate treatment strategy. Relatively straightforward appli-
cations of readily available Pathomics applications like Tumor-

TILs can be easily implemented to perform an additional level of
time-, cost-, and resource-efficient data collection and analyses in
daily practice, clinical trials, and translational clinical research. In
the current cycle of development, first-generation Tumor-TILs
Pathomics are being used as value added tools in a wide range of
clinical research studies to explore and discover various diagnos-
tic, prognostic, and predictive biomarkers.

Up to this point, we presented Tumor-TILs within a narrow
focus to help convey realistic avenues for research and clinical
adoption with readily available first-generation examples of
Pathomics tissue analytics. However, guiding the actual design
and selection of immunotherapeutic regimens on a per patient
basis with a computational Pathomics marker is a challenging
and complex matter when we consider how there are more than
100 different immunophenotypes in human blood [60, 69–72].
This clinical scenario gets evenmore complicated by awide level
of variability across individuals during functional physiologic
states related to normal homeostasis and clinically detectable
adaptations to disease. Thus, it is unsurprising that immunopa-
thology is just as variable in the TME of different types and
subtypes of cancer [46, 47, 52, 53, 73–75] and a partial explana-
tion of why immune checkpoint treatments have improved over-
all survival in a subset of patients when compared to standard
therapy, which limits our ability to determine the patients who
will actually benefit from specific types of immunotherapy.

In this scenario, Tumor-TILs may be useful as first-order
analyses that capture the diversity and heterogeneity of immune
responses in a scalable and cost-effective manner in WSIs.
Tumor-TIL maps can be readily utilized as base layers and in-
corporated in more advanced Pathomics tissue analytics to help
further explore and define the complex relationships between
cancer and immune cells in the TME. As stated in the end of
the previous section, several types and directions of scientific
investigation can be performed by correlating these analyseswith
a wide spectrum of clinicopathologic, molecular, radiologic, and
treatment data to developmore advanced Pathomics applications
for precision medicine. As increasingly large and complex
datasets from clinical trials become available, Pathomics bio-
markers may become as important as specific histopathologic
features of cancer and IHC biomarkers.

Ensemble Pathomics for Advanced Tumor-TILs
Analyses

There has never been an opportunity to study tumor immune
interactions by using automated Pathomics image analysis
methods to interpret the role of complex immune responses
in cancer without employing other laboratory methods like
IHC, flow cytometry, genomic sequencing, and gene expres-
sion. In this section, we envision practical ensemble
Pathomics methods to further support and potentially acceler-
ate scientific discovery and clinical translation by leveraging
Tumor-TILs analyses in WSIs. We envision how ensemble
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Pathomics tissue analytics can conceivably parallel the impact
of IHC and molecular subtyping that fundamentally trans-
formed the classification and subclassification of tumors in
anatomic pathology.

We believe that advanced Pathomics applications can be
feasibly developed and implemented to further unravel the
role of TILs along a trajectory that mirrors how IHC bio-
markers that were once rigorously tested for use during diag-
nostic classification are being actively revisited to explore
prognostic value and utility for serving as therapeutic drug
targets. Since current versions of Tumor-TILs analyses and
mapping provide a global view of tumor immune interactions,
we present recently developed prototypes that are geared to-
wards improving the characterization of tumor immune inter-
actions in WSIs of cancer tissue samples. Beyond the exam-
ples that we present to study tumor immune interactions and
TILs, first-generation Tumor-TILs models are being integrat-
ed with classical image analysis to also calculate tumor area,
perimeter, greatest dimension, and irregularity of the invasive
boundary in order to interpret TILs in various types of histo-
logic contexts. We can use these analyses to determine wheth-
er the spatial distribution of lymphocytes is intramural,
peritumoral, organized as tertiary lymphoid aggregates, loose-
ly scattered, focal, or scant in WSIs to complement how pa-
thologists evaluate and report the assessment of inflammatory
responses and TILs with descriptions of spatial location,
strength, and tumor immune interactions in relevant diagnos-
tic ROIs (e.g., central tumor, invasive edge, diffusively infil-
trative clusters, and tumor deposits).

Therefore, we present Fig. 3 as a prototype that combines
Tumor-TILs analyses with mapping microarchitectural
growth patterns of adenocarcinoma in lung cancer to study
tumor immune interactions within the context of histologic
subtype. Using Fig. 3, we can study the spatial distribution
of TILs with respect to the spatial distribution of growth pat-
terns of lung adenocarcinoma to quantitatively measure the
variability of tumor immune interactions in a more refined
histologic context of tumor landscape. Even though this tool
needs further refinement and QA/QC, our intention is to show
how automated Tumor-TILs plus the classification of histo-
logic subtype can feasibly support current and future clinical
trials in lung cancer with immunotherapy by identifying and
quantifying treatment responses with checkpoint inhibitor
therapy. Figure 3 also demonstrates a proof of concept of a
scalable Pathomics method can be enhanced to potentially
discover novel biomarkers with ensemble Pathomics for pre-
cision medicine applications, immunotherapy, and beyond.

Current deep learning models analyze tiled patches due to
limited computational resources. However, access to
supercomputing and cloud computing resources has led to
new opportunities to leverage the advances in digital pathol-
ogy from the past two decades. Beyond the opportunities to
ensemble and automate existing Pathomics methods to

extract, quantitatively characterize, and catalog various prop-
erties of tissues in vast collections of WSIs, previous compu-
tational limitations are being surpassed to analyze and map the
features of every single cell in WSIs at significantly higher
resolution. Tumor-TILs and other types of ensembled
Pathomics can analyze hundreds of thousands to millions of
cells and objects in WSIs without a conceivable limit as tech-
nology advances even further. We envision using advanced
ensembled Pathomics to compute tumor cellularity based on
calculations of the number of segmented nuclei in a tumor
region; quantitatively characterize tumor differentiation by
computing the percent of cells in specific types of architectural
configurations; and generate high resolution maps based on
the classification of all of the different types of cells in human
tissues with accompanying engineered and hand-crafted fea-
tures that measure color, size, shape, texture, orientation, and
chromatin density.

We also propose incorporating Tumor-TILs into advanced
ensemble Pathomics methods to capture as many salient his-
topathologic features as possible for every WSI at every ac-
ademic institution, healthcare system, and tumor registry. We
imagine being able to utilize Pathomics pipelines to analyze
WSIs with corresponding data from tumor registries to study
tumor heterogeneity, metastatic cancer, therapeutic efficacy,
and drug resistance in order to develop models to help select
treatment based on predicted survival [22••, 50, 61, 64•, 76,
77]. However, laying the foundation for the deployment of
Pathomics for clinical decision support systems will still re-
quire a fair amount of time considering that the Food and
Drug Administration (FDA) recently aproved the clinical
use of a commercial slide scanner and digital pathology sys-
tem just a few years ago [30, 31, 36]. Before Pathomics data
can be used to provide meaningful clinical information to
physicians and patients to help predict patient survival, like-
lihood of disease recurrence, and progression in the very near
future, Pathomics methodology that are still early in the de-
velopment cycle have to be extensively tested and validated
in appropriate clinical settings. As shown in Figs. 1, 2, and 3,
current Tumor-TILs Pathomics methods extract and present
information that cannot be performed at scale by pathologists
using microscopes, IHC, sequencing, and gene expression to
characterize tumor immune interactions in every tissue
sample.

However, currently accepted methods to evaluate tu-
mor immune interactions in tissue samples focus on the
manual assessment of stromal TILs (sTILs), which have
been shown to be important prognostic and predictive
biomarkers in triple-negative (TNBC) and HER2-
positive breast cancer. One of the main reasons that
sTILs have become so important is due to consistent
reproducibility of scoring by pathologists with the use
of standardized guidelines developed by the clinical re-
search community in three large studies [40•, 50, 64•,



65, 78]. Despite the acceptance of sTILs as prognostic
and predictive biomarkers, the assessment of sTILs is
challenging within the complex landscape of cancer,
which results in scoring discordance due to the hetero-
g ene i t y o f t h e d i s t r i bu t i on o f l ymphocy t e s .
Discrepancies also arise from the lack of consensus
about the precise boundary of tumors, variable presence
of tumor-associated stroma, associations of lymphocytes
with other microanatomic structures, presence of other
kinds of immune cells [50, 65]. Even though these
kinds of variations during the evaluation of sTILs have
mitigable effects in estimating risk in early TNBC, mul-
tiple areas are scored and averaged during the evalua-
tion of sTILs to improve consistency and minimize the
effects of observer variability, scoring discrepancies, and
cutoffs that could affect treatment selection [50, 65].

Due to the specific interest in sTILs, we wanted to
demonstrate the ability to integrate Tumor-TILs analyses
with another open source Pathomics method, Hover-Net
[79]. We combined the capabilities of Hover-Net, which
was developed to perform simultaneous segmentation
and classification of all of the nuclei in colorectal can-
cer, by labeling breast cancer cells, lymphocytes, and
stromal cells (e.g., connective tissues, endothelium, and
nerves) in a highly curated and quality controlled set of
images with segmented nuclei [80] in order to calculate
the populations of these cells in Tumor-TIL maps.
Figure 4 shows the concept of an integrated Pathomics
tissue analytics workflow that starts with deep learning
analyses to perform automated tumor and lymphocyte
detection in breast cancer to generate Tumor-TIL maps
combined with Hover-Net as proof of concept to further
support the fundamental value of mapping and quanti-
fying tumor immune interactions in cancer. Our primary
goal is to show how we can enhance the capabilities of
existing Pathomics methods and analyses like Tumor-
TIL maps to gain even further insight at the cellular
level, which opens the door to numerous downstream
research opportunities. A secondary reason for including
our implementation of Hover-Net was to show the gen-
eralizability of Pathomics methods that can be custom-
ized in a practical manner to answer a wide spectrum of
research questions.

Tumor-TILs provides a global overview of tumor immune
interactions, whereas Hover-Net focuses on nuclear segmenta-
tion and cell classification at much higher magnification and
resolution. This kind of ensemble Pathomics methods supports
scoring the number of TILs in distinct areas (e.g., stromal TILs in
central tumor and invasive margin), calculating tumor cellularity
in terms of the numbers of cancer cells, and classical image
analysis to further characterize each classified cell in terms of
color, size, shape, texture, and orientation. For example, Hover-
Net analyses calculated 2312 nuclei in the representative area

shown in Fig. 4e, where 89% of the cells were classified as
lymphocytes (Hover-Net has also been implemented to charac-
terize the number of tumor and stromal cells, not shown since we
are focusing on TILs).

Even though these methods still require considerable
refinement and QA/QC, both Figs. 3 and 4 show how
the overall spatial patterns of distribution of TILs can
be further interpreted in various histologic contexts at
various scales of magnification and resolution with re-
spect to histologic subtype, tumor differentiation, and
actual numbers of cancer and immune cells. By utilizing
deep learning based nuclear segmentation [80] with
classification of different types of nuclei with Hover-
Net [79], we can further refine our characterization of
the spatial relationships between tumor and immune
cells in the TME with a level of precision that has been
dreamt about for decades by cancer researchers and pa-
thologists. Ensemble Pathomics can be integrated to sys-
tematically capture histopathologic features from multi-
ple scales of magnification en route to developing more
comprehensive Pathomics pipelines to catalog quantita-
tive measurements of various phenotypic properties of
tissues, cells, and nuclei to support better TILs scoring,
IHC quantification, and integrated analyses with other
types of data.

Our goals were to introduce Pathomics methods that
can be readily implemented to study tumor immune in-
teractions on a large scale, but we have to responsibly
address that clinical adoption will require rigorous test-
ing and evaluation. Pathomics algorithms will need to
be classified as virtual laboratory tests, which requires
evaluating sensitivity, specificity, processing speed (e.g.,
turnaround time), costs, and limitations. In ways that are
no different than any other kind of laboratory test, these
kinds of deep learning computer vision Pathomics

�Fig. 3 Tumor-TILs analyses combined with histologic subclassification
in lung cancer. Working prototype of a deep learning Pathomics pipeline
to perform Tumor-TILs analyses and histologic subclassification in lung
adenocarcinoma, where Panels a–d show analyses for specimen LUAD
TCGA-69-8255-01Z-00-DX1 and panels e–h for specimen LUAD
TCGA-69-A59K-01Z-00-DX1 (Tumor-TIL maps are depicted in the
same manner as Fig. 1). In both cases (panels a, h), spatial Tumor-TILs
analyses show a robust presence of intratumoral TILs in lung cancer but
show differences in the presence of peritumoral lymphocytes due to other
histopathologic features. The histologic subclassification of these two
specimens is primarily lung adenocarcinoma acinar type, where a
shows the presence of necrosis associated with very strong lymphocytic
responses in comparison to the absence of necrosis in e. Tumor-TILs
analyses in d show small nests of viable tumor adjacent to the area of
necrosis as well as lymphoid aggregates that can presumably send
reinforcements. This image demonstrates the value of pursuing further
investigation into characterizing tumor immune interactions and scoring
the exquisite variability of TILs with respect to growth pattern and tumor
differentiation

142 Curr Pathobiol Rep (2020) 8:133–148



algorithms must be extensively validated in multiple in-
dependent clinical studies before deployment. Currently,
t he FDA Off i ce o f Sc i ence and Eng inee r ing
Laboratories (OSEL) is designing a Medical Device
Development Tool (MDDT) to evaluate Pathomics
methods to evaluate TILs for clinical use in breast can-
cer as a necessary mechanism to evaluate both simple

and advanced ensemble Pathomics applications due to
the challenges associated with so many unknowns with-
in such a complex clinicopathologic scenario (please see
refs. [50, 65]). We hope that we have shown how
Tumor-TILs Pathomics may serve as a useful tool to
view the microscopic world of tumor immune interac-
tions at the cellular and molecular level to support the
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Fig. 4 Tumor-TILs analytics combined with nuclear segmentation and
classification with Hover-Net in H&E WSIs. Working prototype of an
integrated workflow that starts with deep learning analyses to perform
automated tumor and lymphocyte detection in breast cancer to generate
Tumor-TIL maps, as shown in panels a–d for specimen BRCATCGA-
E2-A9RU-01Z-00-DX1 based on the format in Fig. 1. Implementation of
Hover-Net is shown in a representative area in e–g to demonstrate
simultaneous segmentation and classification of nuclei. Panel e shows a
× 200 representative area of the H&E WSI with panel f showing the
segmented and classified nuclei overlaid on the H&E and g showing
the masks of the nuclei (lymphocytes denoted in red, stroma and
endothelium denoted in blue, and cells with tumor-like features in
green). We present this application of Hover-Net as a proof of concept
to demonstrate one of many opportunities to integrate Tumor-TILs with

other open source Pathomics methods to analyze H&E WSIs at higher
resolution. This example of ensemble multiscale Pathomics methods can
support scoring the number of TILs in distinct areas (e.g., stromal TILs in
central tumor and invasive margin), calculating tumor cellularity in terms
of the numbers of cancer cells, IHC quantification, and classical image
analysis (color, size, shape, texture, and orientation). Going from the
global view from Tumor-TIL maps to cellular level analyses, Hover-
Net calculated 2312 nuclei in -g to show that 89% of the cells were
classified as lymphocytes. Hover-Net has also been implemented to
calculate the number of tumor and stromal cells (not shown since we
are focusing on TILs). The green cells in this image are reactive
macrophages which have features that can be confused with cancer
cells (e.g., increased nuclear size, nucleoli, and irregularities in shape
and chromatin texture)

144 Curr Pathobiol Rep (2020) 8:133–148



Curr Pathobiol Rep (2020) 8:133–148 145

effort to truly characterize functional immunopathology
in every cancer patient for future precision medicine
applications.

Conclusions

Our goals are to motivate and inspire future physicians, scien-
tists, engineers, mathematicians, and whomever else to ex-
plore the mysteries of the microscopic world of human dis-
eases and cancer with Pathomics tissue analytics. The frontier
of cancer research focused on biomarker discovery to help
improve treatment and achieve better clinical outcomes for
all patients is a highly active area that stands to immediately
benefit from Pathomics. We hope the examples that we pro-
vided have shown how Pathomics applications can be realis-
tically deployed to identify subtle and complex spatial rela-
tionships to study cancer immunopathology and human
pathobiology. Moreover, we want to stress that Pathomics
tissue analytics can be employed to perform broad types of
correlative clinical research that cannot be performed by hu-
man beings. There are several readily available opportunities
that must be explored with Tumor-TILs and other related
methods, starting with using Pathomics tissue analytics for
cohort discovery, laboratory QA/QC, and clinical trials before
these methods make their way into the clinic. Even though
Tumor-TILs provide a global view about the heterogeneity of
cancer immunopathology, we believe that these kinds of
Pathomics tissue analytics also serve as incredibly useful
starting points for precision medicine to develop customized
treatment strategies for patients. Despite all of the exciting
work and tangible outlooks for the future in terms of countless
possibilities for collaborative and correlative research across
clinical and scientific disciplines, we also want to stress the
need to collectively validate and test Pathomics tissue analyt-
ics methodology in multiple collections of WSIs to address
key issues that will facilitate the acceptance and clinical adop-
tion of Pathomics in precision medicine.
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