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Abstract Zebrafish (Danio rerio) are widely used for

developmental biology studies. In the past decade, D. rerio

have become an important oncology model as well. Leu-

kemia is one type of cancer where zebrafish are particularly

valuable. As vertebrates, fish have great anatomic and

biologic similarity to humans, including their hematopoi-

etic and immune systems. As an experimental platform, D.

rerio offer many advantages that mammalian models lack.

These include their ease of genetic manipulation, capacity

for imaging, and suitability for large-scale phenotypic and

drug screens. In this review, we present examples of these

strategies and others to illustrate how zebrafish have been

and can be used to study leukemia. Besides appraising the

techniques researchers apply and introducing the leukemia

models they have created, we also highlight recent and

exciting discoveries made using D. rerio with an eye to

where the field is likely headed.
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Abbreviations

ALL Acute lymphoblastic leukemia

AML Acute myeloid leukemia

CLL Chronic lymphocytic leukemia

CML Chronic myelogenous leukemia

dpf Days post-fertilization

ENU N-ethyl-N-nitrosourea

GFP Green fluorescent protein

GOF Gain of function

HSC Hematopoietic stem cell

HTS High-throughput sequencing

IHC Immunohistochemistry

ISH In situ hybridization

LIC Leukemia-initiating cell

LOF Loss of function

MDS Myelodysplastic syndrome

MPD Myeloproliferative disorder

PGE2 Prostaglandin E2

RGENs RNA-guided endonucleases

TALENs Transcription activator-like effector nucleases

T-ALL T cell ALL

TILLING Targeting induced local lesions in genomes

ZFNs Zinc finger nucleases

Introduction

Leukemias are cancers of blood cells or their precursors,

and the word leukemia derives from the Ancient Greek

(leukos = white, haima = blood). Accordingly, most leu-

kemias are malignancies of true white blood cells (leuko-

cytes): lymphocytes, monocytes, or other myeloid cells.

However, rare leukemias of red blood cell (erythroblastic)

and platelet (megakaryoblastic) precursors can also occur.

Both the National Cancer Institute of the US and Cancer
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Research UK list leukemia among the 12 most common

cancers in their registries [1, 2], and in children and ado-

lescents, leukemia is the most common malignancy,

accounting for [30 % of all cases [3].

There are many types of leukemia, but most cases can be

classified based on their rate of progression, acute versus

chronic, and the original cell type that is transformed,

myeloid vs. lymphoid. Thus, there are four primary cate-

gories of leukemias: acute myeloid leukemia (AML),

chronic myelogenous leukemia (CML), acute lympho-

blastic leukemia (ALL), and chronic lymphocytic leukemia

(CLL ). Confusingly, myeloid, myelogenous, myelocytic,

and myeloblastic are often used interchangeably; all refer

to the same disease. Likewise, lymphocytic, lymphoid, and

lymphoblastic all refer to leukemias of lymphocytes.

In recent years, great progress has been made in treating

these diseases. Many forms of leukemia, in particular

pediatric pre-B cell ALL, are now highly curable [4]. This

success has been accompanied—and often driven—by

improved understanding of molecular mechanisms foster-

ing neoplasia. Besides conceptualizing why cancers occur,

discoveries of oncogenic drivers can also reveal potential

therapeutic targets. A noteworthy example is the identifi-

cation of ABL kinase inhibition as a highly efficacious

treatment in CML, a cancer that harbors BCR-ABL trans-

locations in nearly all cases [5, 6].

To advance our knowledge of leukemogenesis and realize

goals of ‘‘molecularly tailored therapy’’ and ‘‘personalized

medicine’’ as foreshadowed by ABL inhibitors in CML, it is

vital that we learn the key oncogenes, tumor suppressors,

and genetic pathways operative in less homogeneous leu-

kemias than CML. In addition, even in leukemias where key

molecular drivers are known, much work remains to find

more effective and less toxic drugs and to develop simpler

and shorter treatment regimens. Finally, the multigenic

nature of leukemias and their complex organismal-envi-

ronmental interactions leave us lacking with regard to lofty

ambitions such as blocking cancer initiation and employing

chemo-prevention strategies.

Clinical samples, human cell lines, and murine models

are the mainstays for studies of leukemia, but simpler

metazoans such as Caenorhabditis elegans [7] and Dro-

sophila melanogaster [8–11] have also enhanced our

understanding of oncogenesis. Zebrafish (Danio rerio)

represent an intermediate between such models and mice,

preserving many experimental advantages of invertebrates,

yet also conserving key vertebrate anatomic features and

human cell types. In particular, D. rerio are suitable for

leukemia studies, because fish share crucial hematopoietic

organs, tissues, and cells with mammals. Notably, zebrafish

possess blood-forming marrow, a spleen and thymus—

which exist only in jawed vertebrates—and the cells where

most human leukemias arise, such as B and T lymphocytes

and myeloid cells such as neutrophils and monocytes [12,

13, 14•, 15•]. However, some differences between fish and

mammals may be pertinent to leukemia. Notably, fish lack

lymph nodes, and adult hematopoiesis occurs in ‘kidney

marrow,’ not bone marrow. Even so, many studies have

shown that genetically modified zebrafish can develop

leukemias, and these D. rerio models can inform our

understanding of human cancer.

It has now been over a decade since the first report of T

cell ALL (T-ALL) in transgenic zebrafish [16], and in that

time several other D. rerio models of T-ALL [17–20, 21••],

pre-B ALL [22], AML [23], and myelopoiesis defects

mimicking aspects of ‘pre-AML’ myeloproliferative dis-

orders (MPDs) have been reported [24–31, 32•, 33, 34•,

35•, 36]. Recent reviews have summarized these and many

other studies, and the field is expanding rapidly [37–39,

40•, 41•, 42•, 43]. In this review, we highlight current

developments in zebrafish leukemia using both genetic and

xenotransplantation strategies (Fig. 1), with particular

attention to exciting discoveries using D. rerio to probe

leukemia biology, to find new drugs for these diseases, and

to test existing medicines not currently used in their

treatment.

Techniques to Create and Investigate Zebrafish

Leukemia Models

In this section we consider methodologies used to inves-

tigate leukemia in D. rerio and describe examples of

cFig. 1 Development and applications of zebrafish leukemia models.

D. rerio leukemia models can be created via unbiased forward genetic

screens, using reverse strategies to dampen/mis-express/mutate genes

or introduce transgenes, or by transplanting leukemic cells into fish

recipients. Once a model has been engineered, it can be investigated

in several ways. Genetic and molecular biology techniques can

identify new genes of interest or test candidates in known oncogenic

pathways. Mechanisms of leukemogenesis, progression, treatment

resistance, or other key biology can be probed in vivo. Fish leukemia

models can be utilized in drug testing to verify a model that

recapitulates human leukemia, to develop therapeutic ‘‘lead com-

pounds,’’ or to test new agents in pre-clinical studies. Fish can also

serve as templates in screens of small molecule libraries or collections

of existing drugs to discover compounds with unrecognized antileu-

kemia properties. Ultimately, new knowledge of genes, pathways, or

drugs arising from D. rerio studies requires validation in mammalian

models and actual human leukemia. Due to the larger scale, more

rapid turnaround, and lower cost of zebrafish studies, these models

can accelerate the development of new therapies for leukemia

patients. CNS central nervous system, HTS high-throughput screen-

ing, ISH in situ hybridization, IHC immunohistochemistry, LIC

leukemia-initiating cell, RGEN RNA-guided endonuclease, RVs

retroviruses, seq sequencing, SAR structure–activity relationship,

TALEN transcription activator-like effector nuclease, TILLING

targeting induced local lesions in genomes, UV ultraviolet, ZFN zinc

finger nuclease
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zebrafish model systems resulting from those studies. A list

of leukemia models is presented in Table 1.

A Fundamental Question in Leukemia: Comprehending

the Cancer Genome

A primary objective in oncology research continues to be

learning which genetic lesions cause neoplasia and glean-

ing mechanistic insight into how those mutations activate

leukemogenesis. As in other types of cancer, recent tech-

nological advances in high-throughput sequencing (HTS;

a.k.a., next-generation sequencing) have allowed for the

discovery of a vast array of heterogeneous genetic muta-

tions, some rare and insular to unique leukemia subtypes,

others common and recurrent across different leukemic

diseases. In human leukemias, these efforts have chiefly

utilized three strategies: whole-genome sequencing, exome

sequencing, and transcriptome sequencing (RNA-seq) [44].

To date, HTS of genuine leukemic genomes, exomes, and

transcriptomes from D. rerio have not been reported, but

related studies of zebrafish and human leukemic genomes

and expression profiles suggest they are similar [45•, 46••].

Cancer genomics has been a subject of scrutiny for

decades, and many well-defined players are household

names among scientists, like the MYC, NOTCH, and RAS

oncogenes and the TP53, BCL2, and PTEN tumor sup-

pressors. Zebrafish models have investigated each of these

genes in vivo, yielding findings relevant to human leuke-

mia and other cancers [16, 19, 21••, 27, 35•, 36, 47–49].

For these proteins and other known oncogenes and tumor

suppressors, functional roles were largely recognized prior

to the creation of D. rerio models. Going forward, zebra-

fish’s greatest utility will conceivably be in the functional

analysis of newly found mutations, because HTS approa-

ches are discovering lesions at a rate far beyond our ability

to characterize them. For example, exomic HTS of 67

human T-ALLs recently revealed protein-altering muta-

tions in over 500 genes (!) [50], and efforts in other leu-

kemias have been similarly fruitful [44].

Obviously, it is infeasible to build D. rerio or other

animal models for such exhaustive compendia, but zebra-

fish present the best opportunity to rapidly create and

analyze in vivo phenotypes that derive from specific

genetic mutations. Zebrafish’s advantages include its rapid

and ex vivo development, which favors imaging studies; its

embryology and anatomy, which preserve key vertebrate

features also in humans; its thoroughly annotated genome,

which contains clear orthologs to at least 70 % of human

genes [51]; and, most importantly, its ease of genetic

manipulation, particularly with regard to transgenesis.

These strengths have allowed researchers to adapt D. rerio

in a number of different ways to study leukemia.

Forward Genetic Approaches to Model Leukemia

in Zebrafish

Unlike mice and most non-teleost vertebrates, zebrafish can

be housed affordably in large quantities. This permits

large-scale forward genetic screening projects where rare

phenotypes of interest, such as leukemia, can be sought

(Fig. 1). Such screens rely upon randomly modifying the

D. rerio genome, which can be accomplished using ultra-

violet light [52], chemical mutagenesis with alkylators such

as N-ethyl-N-nitrosourea (ENU) [53, 54], and insertional

mutagenesis using transposons or retroviral vectors [55–

57].

For practical reasons, forward screens usually seek early

phenotypes. Thus, most are not designed to seek actual

cancers, which may demand monitoring mutant fish into

adulthood. Nonetheless, genes relevant to leukemia have

been found by forward genetic strategies. A retroviral

insertion screen discovered cancer predisposition in fish

haploinsufficient for several ribosomal protein (rp) genes

[55, 58]. Leukemias were not sought nor detected in this

work, but human RP haploinsufficiency is seen in myelo-

dysplastic syndrome (MDS) and Diamond-Blackfan ane-

mia, and both conditions predispose to leukemia [59].

Mutations in RPL5 and RPL10 were also recently reported

in T-ALL, further implicating this class of genes [50]. In an

ENU screen, the crash&burn (crb) mutant revealed geno-

mic stability and tumor suppressor roles for bmyb, a tran-

scription factor [60]. Notably, translocation or duplication

of human C-MYB occurs in many T-ALL cases, and murine

C-myb is also a frequent site of retroviral insertions in

lymphoid and myeloid leukemias [61]. Another ENU

screen was cleverly designed to find genomic instability

mutants via eye color in a fish strain with unique pig-

mentation, golden [62]. This study identified 12 genomic

instability mutants with cancer predisposition [62], but like

other studies, leukemias were not investigated since

detecting this phenotype is problematic.

One way to circumvent this issue is to employ cell-

specific markers to simplify detection of blood-borne

cancers. Transgenic lines expressing green fluorescent

protein (GFP) or other fluorophores exist for erythrocytes,

neutrophils, immature lymphocytes, B cells, T cells, and

many other lineages [14•]. We used fish with T cell-specific

GFP [63] and ENU mutagenesis to identify D. rerio prone

to T-ALL and created three lines with inherited predilec-

tion to this cancer [20]. However, leukemia penetrance is

incomplete in these mutants, impeding efforts to identify

their germline lesions. Even so, these models have been

valuable in oncogenomic and drug discovery projects [45•,

64, 65••, 66], and discerning their underlying genetic

lesions remains an active area of investigation.
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An important caveat in designing forward genetic

studies is that the lesions caused by insertional mutagenesis

are isolated much more easily than the single base pair

changes typical of ENU approaches. This is partially offset

by chemical mutagenesis’ ability to theoretically induce a

wider mutational spectrum than insertion events, which

generally inactivate or activate an entire gene. In either

case, a key strength of all forward genetic strategies is their

unbiased nature and their capacity to not only create new

disease models, but also to discover novel attributes of

genes with no a priori evidence to suggest their role in

oncogenesis.

Reverse Genetic Approaches to Model Leukemia

in Zebrafish

In contrast, reverse genetic strategies require upfront

knowledge about genes implicated in cancer (Fig. 1).

Approaches to enhance or impede gene function in D. rerio

are rapidly expanding [67] and represent the predominant

strategy used by leukemia researchers. After modifying the

expression or biologic activity of a candidate, the func-

tional consequences of gene knockdown, mutation, or

overexpression can then be ascertained in an in vivo

context.

Gene Silencing

For years, morpholino-mediated post-transcriptional gene

silencing has been the method of choice in zebrafish, and it

remains a useful technique. Morpholinos are antisense

oligonucleotides with a similar chemical structure to native

nucleic acid. They are injected into single cell embryos,

where they bind RNA to prevent protein synthesis by

blocking splicing or translational initiation [68]. A major

drawback of morpholinos is transiency, which limits their

effect to the first several days post-fertilization (dpf). Thus,

late phenotypes rarely occur. Also, because morpholinos do

not modify the genome, they do not create stable lines.

However, since hematopoiesis begins in early embryo-

genesis, knockdown by this methodology can reveal

resultant expansion or contraction of blood cell lineages

[24, 25, 69].

Targeted Gene Mutations

Before techniques existed to intentionally alter D. rerio

genes, ‘‘Targeting Induced Local Lesions IN Genomes’’

(TILLING) provided a means to find mutations in specific

candidates. Like forward screens, TILLING employs up-

front mutagenesis. Then, to locate lesions in specific genes,

mutant pools are screened for base pair mismatches using a

combination of PCR and nuclease digestion [70]. A recentT
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application to zebrafish leukemia can be found in a study

examining a TILLING-derived hypomorphic allele of

spi1b (pu.1), an early myelopoietic regulator. In these fish,

unstable Spi1b protein caused expansion of immature

granulocytes as early as 3 dpf, and this persisted into

adulthood where accumulation of myeloid precursors and

lymphopenia mimicked aspects of MDS [33].

New techniques to specifically target D. rerio genes are

radically altering the scope of experimental options. These

methods use endonucleases to create site-specific double-

strand breaks in a gene of interest. Then, error-prone repair

introduces point mutations or small insertions/deletions at

the cut site. Ultimately, with crafty design and good for-

tune, a functional knockout or hypomorphic allele can be

generated. Three related methods exist: Zinc Finger Nuc-

leases (ZFNs), Transcription Activator-Like Effector

Nucleases (TALENs), and, most recently, RNA-Guided

ENdonucleases (RGENs), which are based on a bacterial

CRISPR-Cas9 system [67, 71]. Unlike TILLING, which

operates through multi-laboratory consortia [70], these

systems allow single laboratories to scrutinize loss-of-

function (LOF) phenotypes of their favorite candidate

gene(s). Thus, they are particularly useful for evaluating

tumor suppressors pertinent to leukemogenesis.

Transgenesis

The prevailing method to create D. rerio leukemia models

is transgenesis (Table 1). Zebrafish readily express trans-

genes, and systems promoting efficient genomic integration

to make stable lines are widely used [72, 73]. Transgenes

usually enact gain of function (GOF), so most studies test

the effects of oncogenes. However, dominant-negative

alleles can also test for leukemogenic properties of tumor

suppressors with LOF. Proving high functional conserva-

tion across vertebrate species, mammalian proto-onco-

genes, oncogenes with activating mutations, and fusion

genes have all induced pre-leukemic and leukemic phe-

notypes in fish with remarkable success [16, 19, 21••, 22–

24, 28, 35•, 36, 74, 75•]. The first of these studies coupled

the D. rerio rag2 promoter to murine Myc, resulting in

highly penetrant T-ALL [16]. In fact, disease was so

aggressive in these fish that the line was difficult to

maintain. To mitigate this, ensuing studies co-injected Cre

recombinase or induced it by heat shock as a means to

govern cancer onset [17, 18]. Further work in this model

proved co-injection of other transgenes can be a tool to

alter radiation sensitivity or probe initiation in T-ALL

[46••, 76]. Other projects have used Cre-mediated expres-

sion of an activated mutant of human KRASG12D [27] or

human NUP98-HOXA9 [75•] to induce MPD in zebrafish.

Like Cre-Lox, GAL4-UAS offers another tactic to con-

ditionally express transgenes [77]. In this system, a cell-

specific promoter drives transgenic yeast GAL4. A second

transgene of interest is flanked by a sequence, UAS, con-

taining the GAL4 binding site. To unite both transgenes,

the lines are bred to make double transgenics where GAL4

activates cell-specific transcription of the desired trans-

gene. This schema was recently applied to express a GOF

mutant of a different RAS gene in endothelial cells carrying

fli1:GAL4 [35•]. Fascinatingly, endothelial HRASG12V

impaired hematopoiesis, causing myeloid differentiation

arrest in marrow and accumulation of erythroid and mye-

loid precursors in peripheral blood. Demonstrating the

power of GAL4-UAS, they also combined transgenic

fli1:GAL4, UAS:HRASG12V, and UAS:NICD (an active form

of zebrafish notch1a) to mollify the phenotype. This report

is also noteworthy for its inclusion of RNA-seq from

HRASG12V- and NICD-expressing larvae. Future studies

with HTS of hematopoietic or overtly leukemic cells from

D. rerio will be even more informative.

A final conditional expression category involves trans-

genes responsive to exogenous agents such as doxycycline.

Such systems are powerful because adding or removing the

inducing agent toggles the transgenic protein. However,

because this strategy usually relies on the promoter to

control expression, cell specificity is lost with standard

constructs. A cunning plan to avoid this problem modu-

lated human MYC activity in D. rerio T and T-ALL cells

[21••]. Using a zebrafish rag2 promoter to enforce lym-

phoblast expression, an estrogen receptor [78] whose

nuclear translocation is governed by tamoxifen was fused

to MYC’s C-terminus. In this way, fish could be housed in

water ± tamoxifen to ascertain MYC’s roles in T-ALL

initiation, persistence, and progression. By mixing with

other transgenes or genotypes, MYC interactions with

murine Akt2 or fish ptena and ptenb were also evaluated.

Of course, D. rerio genes themselves can also emulate

human oncoproteins [26]. Again proving conserved gene

function, zebrafish etv6-jak2a constructs designed from

different ETV6-JAK2 fusions in human T-ALL and CML

showed striking lineage fidelity [32•]. Despite using iden-

tical promoters, fish with the T-ALL fusion showed mainly

lymphoid defects, while perturbed myelopoiesis occurred

in fish with the CML-based construct. Clearly, vertebrate

homologues’ high functional preservation enables myriad

strategies to engineer leukemias in D. rerio, but techniques

to introduce non-endogenous leukemias into zebrafish are

also gaining traction.

Transplant Models of Leukemia Using Zebrafish

Transplantions of leukemia cells between fish (allo-trans-

plant) or from other species into D. rerio (xeno-transplant)

are both useful approaches (Fig. 1). Allo-transplants are

simple technically because millions of leukemic cells can
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be purified from a single donor fish, rapid intra-peritoneal

injection of many recipients is feasible, and engraftment is

high even with few cells. Consequently, many investigators

have adopted this strategy [16, 17, 19, 20, 22, 45•, 46••, 49,

76, 79–81]. Groups often use transplant to validate their

leukemia models, as serial allo-engraftment is generally

held to be an indicator of true malignancy, but more ele-

gant allo-transplantations are also reported. For example,

leukemia-initiating cell (LIC) frequencies in D. rerio

T-ALL have been calculated using limiting-dilution

transplants [20, 76, 81, 82]. Still, host immunosuppression

by pre-irradiation tempers this assay’s biologic relevance.

Several studies shrewdly avoided this issue with syngeneic

fish [46••, 79, 82, 83]; in one, engraftments were achieved

after single cell transplants [79]! This approach has also

yielded insight into the transition from pre-leukemic

polyclonal expansion to outright neoplasia [46••]. Synge-

neic transplant likewise enabled in vivo chemotherapeutic

testing of a serially passaged D. rerio T-ALL line [83].

Zebrafish that retain transparency as adults provide

another valuable transplantation resource [84]. Due to their

clarity, casper fish permit observations of cancer cell

migration and other phenomena [85]. This feature allowed

in vivo imaging of transplanted lymphoma cells as they

invaded the bloodstream to become ‘leukemia’ [80]. Going

forward, casper fish will certainly be leveraged to study

other key concepts. Transplantation can also unmask

genetic changes pertinent to leukemia. Sequentially pas-

saged fish T-ALL shows higher engraftment, and hosts

have shorter survival [20, 45•]. Comparing de novo and

derivative leukemias revealed new genomic amplifications

and deletions in serially passaged cancers, and gain or loss

of human homologs occur in T-ALL patients with inferior

outcomes [45•]. Overall, D. rerio allo-transplantation offers

tractable models for human leukemia studies.

Zebrafish also present an attractive model for xeno-

transplantation. In addition to the advantages cited above,

embryos have limited adaptive immunity to mediate

rejection, and adults can be immunosuppressed using

concurrent glucocorticoids (if transplanting non-lymphoid

leukemias) or pre-irradiation. Many human cancers have

been xenografted into D. rerio (reviewed in [43, 86•, 87] )

to exploit these benefits, but few leukemias [88, 89]. These

studies used fish to test in vivo drug activity and are dis-

cussed later. A thorough review of zebrafish xeno- and

allo-transplantation can be found elsewhere [90].

Research Applications of Zebrafish Leukemia Models

Once a leukemia model has been established, there are

many ways to proceed (Fig. 1). The following sections

highlight select examples of recent work interrogating

D. rerio leukemias to investigate oncogenesis and disease

progression, or to discover new therapeutic agents.

Classic Molecular and Cellular Biology

Zebrafish are amenable to most tools applied to study other

vertebrate cancer. While morpholinos, forward screens,

and some previously cited transgenesis strategies are rather

unique to D. rerio, standard methods such as qRT-PCR,

DNA and RNA microarray, in situ hybridization (ISH), and

immunohistochemistry (IHC) are employed routinely. In

addition, the imaging strengths of zebrafish and the wide

use of transgenic fluorophores permit many other oppor-

tunities to study leukemia cell biology in vivo.

Microarrays have compared T-ALL gene expression and

acquired genomic changes between D. rerio and humans,

showing high cross-species conservation [45•, 46••].

Functional conservation has also been explored, specifi-

cally the mechanism governing T-ALL leukemic dissemi-

nation [80]. This work showed that autophagy and focal

lymphomas in fish and humans were linked to high levels

of BCL2, ICAM1, and S1PR1 (sphingosine-1-phosphate

receptor 1) and that genetic or pharmacologic ablation of

these mediators promotes transition to T-ALL.

Classic examples of ISH, IHC, and imaging can be

found in a recent paper evaluating hematopoiesis in fish

with pten (a tumor suppressor) deficiency [91•]. In this

study, D. rerio with combined loss of ptena/ptenb dis-

played enhanced proliferation of stem and progenitor cells

and differentiation arrest of mature blood lineages. These

phenotypes were abrogated by inhibition of PI3K, a target

of PTEN phosphatase.

Several studies have investigated RUNX1-MTG8

(AML1-ETO), a fusion gene frequently seen in human

AML [28, 29, 31, 34•, 92]. Transgenic fish showed

abnormal expression of hematopoietic regulators gata1,

spi1, and scl and developed MPD features [28]. Further

work in this model has implicated TLE genes as AML

tumor suppressors [29] and identified a leukemogenic

pathway blocked by COX2 inhibition [31, 34•]. These

investigators also found a benzodiazepine able to disrupt

RUNX1-MTG8-induced MPD [92]. Obviously, since most

of the aforementioned techniques are customary method-

ologies, many other groups have used similar approaches to

study leukemia in D. rerio, but space constraints limit our

coverage to these representative examples.

Drug Testing Using Zebrafish Leukemia Models

The ultimate goal of building and studying D. rerio leu-

kemia models is to develop more effective and less toxic

therapies. In an ideal cancer model, a drug active in the

animal should also be efficacious in patients, and vice
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versa. In zebrafish, this premise is in its early days of

validation. Vincristine and cyclophosphamide, drugs used

for T-ALL treatment, were active in larvae transplanted

with the D. rerio ZL1 T-ALL cell line, but the ‘‘gold

standard’’ human agent prednisolone was ineffective at

low—and toxic at high—concentrations [83]. However,

dexamethasone, a related glucocorticoid, is known to

prompt zebrafish T cell apoptosis [49]. In our own mostly

unpublished work, dexamethasone is active against all four

D. rerio T-ALL models we have tested, and we use it as a

positive control when testing other new agents [65••, 66].

So, the same drugs are active in both species, or at least

T-ALL of both species. The spi1 mutant MPD model was

also tested using chemotherapeutics [33]. Here, cytarabine

could dampen myeloproliferation, but daunorubicin

showed little effect. Further testing of established drugs in

these and other zebrafish models is needed to verify which

compounds preserve bioactivity.

Besides known antileukemia medicines, many groups

have performed assays in D. rerio leukemia models using

pharmacologic agents not yet given to patients [28, 34•, 66,

80, 91•, 92]. Some of these molecules are in the pipeline

for eventual clinical use, while others are reagents to

inhibit key pathways, acting as surrogates for drugs with

similar activity not yet developed. Human leukemic xeno-

transplants have also been tested in fish [88, 89, 93]. Here,

the biologic question is different: rather than testing agents

for activity against the same type of leukemia from dis-

parate species, the query is whether fish-based systems can

provide templates for pre-clinical assays. Thus far, data

with human leukemia lines are encouraging. K562 (an

erythroleukemia from BCR-ABL1? CML) and Jurkat (a

PTEN-null, NOTCH1-mutant T-ALL) were transplanted

into embryos, and imatinib and cyclophosphamide

responses were seen [89]. Similar findings were reported in

a second study with imatinib and K562, and with all-trans-

retinoic acid in NB4 (a PML-RARA? APML) [88], and

then expanded further by testing investigational molecules

against K562 in the same system [93]. If xeno-transplant

can move beyond cell lines to include patient samples,

‘‘personalized medicine’’ assays could truly become viable.

Drug Screening Using Zebrafish Leukemia Models

D. rerio are an established platform for drug screens [94–

98], and their applicability to cancer-based screens is rec-

ognized [41•, 42•, 43, 99•, 100], yet no drug screens have

been performed using zebrafish with genuine leukemia.

This is because embryos and larvae are most practical for

screens, but no D. rerio models manifest leukemia at such

early developmental stages. Nonetheless, a handful of

groups have managed to adapt drug screens in such a way

as to still be pertinent to leukemia.

A famous example is the discovery that prostaglandin

E2 (PGE2) promotes hematopoietic stem cell (HSC)

growth [101]. This study screened [2,300 compounds in

fish, finding several affecting PGE2 levels. Subsequent

work verified PGE2’s role in mammalian HSC expansion,

leading to clinical testing of this medicine as a marrow

recovery agent. A related body of work in RUNX1-MTG8

fish was detailed earlier [28, 31, 34•]. These investigators

screened 2,000 compounds, seeking suppression of onco-

gene-induced changes. They found cyclooxygenase inhib-

itors (which block PGE synthesis) could reverse aberrant

expression and that PGE2 cooperated with the transgene to

induce it [31]. These projects show WT fish or fish with

‘‘pre-leukemic’’ phenotypes can still be highly informative.

An analogous conceptual scheme tested a [26,000

molecule library for agents that selectively killed normal

thymocytes, with the premise that some lead compounds

would be active in lymphoblastic cancers [65••]. Secondary

screening in human T-ALL lines and pre-clinical testing in

D. rerio and mice validated this approach. A similar design

in fish with MYC-overexpressing thymocytes was recently

reported [102••]. This screen tested 4,880 molecules in

larvae and a 3,194-compound library against KOPT-K1, a

human T-ALL line. Ultimately, they found a group of

FDA-approved drugs not presently used for leukemia

treatment, identified protein phosphatase 2A as their target,

and defined the mechanism driving T-ALL apoptosis

induced by these agents. Successful ventures like these

herald the expanding role of D. rerio for leukemia research

and ensure that such efforts will continue in the future.

Conclusion: Successes and Limitations

We have presented an overview of the growing body of

work using zebrafish models to study leukemia (Fig. 1).

The enlarging spectrum of techniques and the range of

genetically engineered leukemias already under investiga-

tion both portend continuing success in the field. Robust

models of D. rerio T-ALL and MPD are contributing key

concepts concerning the molecular pathogenesis of these

diseases. Xeno-transplantation can potentially expand our

scope of inquiry considerably, as hundreds of human cell

lines representing dozens of different leukemia subtypes

are available. However, despite these scientific achieve-

ments, there are still many opportunities to broaden zeb-

rafish leukemia research. Genetic models of T-ALL and

MPD are well represented, but most types of human leu-

kemia have not been studied in D. rerio, including the most

common clinical entity, CLL. Also, only one pre-B ALL

model exists, and its low incidence limits its utility.

Likewise, CML is under-represented, as fish expressing

BCR-ABL1 have not been created. Finally, although several
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informative MPD models are reported, these rarely pro-

gress to an equivalent of human AML. In the future, these

challenges will undoubtedly be vanquished by clever sci-

entists using innovative strategies. In the interim, much

work remains with existing models, as our knowledge of

the causal pathways in leukemogenesis is far from com-

prehensive. Encouragingly, even without cognizance of the

precise mechanisms responsible, we are using zebrafish to

procure an abundance of tantalizing therapeutic leads.

Testing of promising drugs in pre-clinical settings and

screening for novel agents and targetable pathways are

both ongoing, proving D. rerio can advance treatments for

these cancers. Going forward, zebrafish will continue to

provide valuable options for translational projects as we

endeavor to conquer these diseases.
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