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Abstract

Purpose of Review Well-established as a powerful tool for

preventing disease, vaccines have immeasurably impacted

health and disease epidemiology worldwide. In the era of

rational vaccine design and ever-evolving technology,

vaccine development and delivery is poised to improve the

ability to target a range of new diseases and to improve

disease prevention, in even the most remote communities

worldwide.

Recent Findings New vaccines against influenza, human

papillomavirus and meningococcal diseases have focused

on targeting an increased number of serotypes and/or

improving immunogenicity, while new vaccines against

dengue and malaria are closer to being delivered to com-

munities at need. Alternative models of protection, for

example, expanded use of maternal vaccination, are also

being explored and may prove effective against new dis-

eases, such as respiratory syncytial virus. Further on the

horizon are better vaccines against tuberculosis and also

new vaccines for HIV, Group B Streptococcus, Group A

Streptococcus, Staphylococcus aureus and cytomegalo-

virus. Emerging infectious diseases, including ebola and

zika virus, present challenges for the traditional bench to

bedside timeline of vaccine research, development, and

deployment, proving that acceleration of this process is

possible.

Summary This review covers new vaccines against the

diseases above, and also briefly touches on continued

efforts to ensuring life-saving immunisation is provided to

all.

Keywords Vaccine � Immunisation � Pediatrics �
Infectious Diseases � Vaccine development � Vaccine
delivery

Introduction

Vaccines were described in 2007 by the British Medical

Journal as one of the great medical milestones in the

preceding 160 years [1]. While quantification of their

impact is near impossible, a United States Centre for

Disease Control (CDC) report based on modelling esti-

mated vaccines prevented 322 million disease episodes

in American children between 1994 and 2013 [2].

Although the triumphs of current vaccines are many,

challenges in ensuring they are deployed to areas of

greatest need and in developing new vaccines remain

[3••]. This review aims to update clinicians on new

immunisation strategies under development and in early

use to prevent childhood diseases. We focus on major

pediatric pathogens, and briefly review current strategies

in vaccine development, delivery and safety assessment.

While it is not possible to focus on all vaccines, we aim

to discuss those with the greatest implications for child

health around the globe.
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New Approaches to Vaccine Development
and Deployment

Deploying Vaccines to Areas of Greatest Need

The Global Alliance for Vaccines and Immunisation

(GAVI) recently estimated that every year more than 1.5

million children die from vaccine preventable diseases

[3••]. In December 2010, global health leaders committed

to making the next 10 years the Decade of vaccines

(DOV)—to ensure discovery, development, and delivery of

life-saving vaccines globally, especially to the poorest

countries [4]. The four objectives of the DOV are as fol-

lows: intensified research and development for approxi-

mately 20 vaccines; advocacy and political will to mobilise

donors; increased compliance and shouldering of respon-

sibilities by developing countries; and expanded efforts in

communicating the benefits of vaccines. Halfway into this

initiative, a number of targeted vaccines (discussed below)

have become available, with more progress to come.

Who to Vaccinate?

The target age group for pediatric vaccines has traditionally

been young children, however, for certain diseases immu-

nising pregnant women, neonates or adolescents is of

increasing interest. Vaccination during pregnancy has been

utilised since the 1960s as an effective tool for the pre-

vention of maternal and neonatal tetanus [5]. Active

transfer of antibodies (IgG) across the placenta occurs from

the second trimester onwards and provides ‘passive’

immunisation of the infant for up to 6 months against

diseases which cause high morbidity and mortality in this

time frame. Protection has been shown in multiple studies

for influenza vaccine, including in randomised controlled

trials in pregnant women in Bangladesh and South Africa

(HIV positive and negative) where infants were protected

against laboratory-confirmed influenza [6, 7]. Maternal

vaccination against pertussis during the early third trime-

ster has also recently been shown to be both efficacious and

safe in preventing disease in infants in the first 3 months of

life [8–11]. Conducting vaccine clinical trials in pregnant

women has been challenging; however, efforts to improve

clinical trial and regulatory approval processes are being

explored [12, 13]. Factors such as potential blunting of

infant immune responses to subsequent routine immuni-

sations and safety of both mother and infant require careful

assessment [14].

Neonates are highly vulnerable to many of the diseases

against which vaccines are available, but because of

immune immaturity and circulating maternal antibodies

vaccine administration shortly after birth is typically not

protective [15]. Nonetheless, exploration of the immuno-

genicity, safety and efficacy of new candidate vaccines

given in the first week of life is ongoing [15]. Examples

include use of a live-attenuated rotavirus vaccine devel-

oped from an immunogenic neonatal strain, RV3 [16] and

an acellular pertussis vaccine, shown to be safe and

immunogenic in early phase 2 study [17]. The last decade

has also seen an increased focus on early adolescence as a

vaccine target age group, either for provision of booster

doses against diseases such as pertussis, because of waning

immunity to acellular pertussis vaccines given in early

childhood, or to protect against diseases such as human

papillomavirus (HPV). For HPV and hepatitis B vaccines,

adolescents have been shown to have a robust immune

response to fewer doses of vaccines than young adults.

New Vaccine Technologies

Many current vaccines were developed using ‘classical

vaccinology’ approaches using either killed or live-atten-

uated pathogens, or modified toxins [3••, 18]. However,

rapid progress in virology, genetics, biology, and biotech-

nology has led to novel vaccine approaches. For example,

understanding the role of dendritic cells in presenting

antigens to the immune system and the immune response to

adjuvants has been critical. Adjuvants are added to vaccine

antigens to increase the magnitude of an immune response

and increasingly, they can be designed to influence the

particular type of immune response elicited [19]. Alu-

minium-based adjuvants have been used since the 1920s to

enhance antibody responses to killed inactivated or subunit

vaccines [20]. There are currently over 30 adjuvants that

are in use or under evaluation in various vaccines [21],

including oil-in-water emulsions (for example AS03 and

MF59 in HPV and influenza vaccines, respectively), and a

liposome-based adjuvant, AS01, in the recently licensed

RTS,S/AS01 malaria vaccine [22].

Alternative vaccine delivery approaches are also being

considered. Intradermal, inhaled, nasal or oral administra-

tion can be efficacious, but not all vaccines are amenable to

these delivery modes. For example, intranasal administra-

tion of the live-attenuated influenza vaccine has proven

efficacious in children (who are influenza naı̈ve, thus

allowing replication of the live-attenuated viruses), but not

adults [23]. New technologies include cutaneous micro-

needle patches with freeze dried antigen coatings that could

be used in developing countries where transportation and

storage of vaccines are problematic [24, 25], and jet

injection [26], a method used in hormone delivery, that

may also prove viable for vaccines. Ongoing research and

development as well as trials to evaluate efficacy and safety

are necessary.
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Vaccine Safety and Hesitancy

Over the past 25 years, the number of vaccines on routine

childhood immunisation schedules in the United States,

Canada, Australia, and Europe has at least doubled. Yet

during this time, it has also become evident that public

confidence and trust in immunisations is fragile and

requires attention [4]. Changing immunisation schedules,

conflicting messages in the media and online, and ironi-

cally, the success of vaccines in reducing the visibility of

serious childhood diseases, have been a threat to vaccine

uptake. In some cases, vaccine hesitancy has led to failure

to implement new vaccines, caused programs to be sus-

pended, or resulted in low coverage [27]. As one of very

few medical interventions that are undertaken in healthy

children, ensuring safety and communicating this to parents

is paramount.

In 2011 the World Health Organization (WHO) and

partners developed the Global Vaccine Safety Blueprint, a

document aimed at ensuring that each country has a

mechanism to evaluate and ensure the safety of vaccines

[28]. The Global vaccine safety initiative (GVSI) was

created to implement the eight Blueprint objectives, which

include Adverse events following immunisation (AEFI)

detection, vaccine safety communication, and global

analysis and response. Within two years of its inception, 50

countries are involved in the GVSI, accounting for

approximately 77 % of the world’s population [29]. Global

coordination of AEFI monitoring, as well as communica-

tion between regulatory bodies, allow early detection of

adverse events that can prompt investigation. This is

essential in the current climate of increasingly complex

immunisation schedules. Clinicaltrials.gov is an online

resource that enables the public to have access to infor-

mation on vaccine and many other clinical trials. Main-

tained by the National Library for Medicine (NLM) at the

National Institute for Health (NIH) in the USA, medical

trials in human volunteers occurring in 193 countries are

recorded. As of May 6, 2016, information on 6016 vaccine

trials was recorded, 2159 of which were in pediatrics

(children aged 0–17 years); trials recorded on this register

by disease are shown in Table 1.

Specific Diseases

Dengue

Dengue virus, a flavivirus spread by the Aedes species of

mosquito, infects at least 390 million people per year [30].

It has been estimated that up to 95 % of cases occur in

children\15 years of age [31], with varying clinical pre-

sentations. There are four dengue serotypes and as only

type-specific infection gives lifelong immunity, infection

up to four times in possible. In addition, repeat infections

present a much higher risk of complications and shock

[32]. There is no specific treatment and vector control

efforts have been ineffective to date [30].

In 2015, a live recombinant tetravalent chimeric dengue

vaccine, with antigens from all four dengue serotypes

substituted into a yellow fever vaccine backbone (CYD-

TDV) [33], became the first ever licensed dengue vaccine.

It was evaluated in two major phase III clinical trials, in

Asia among children 2–4 years, and in Latin America in

children 9–16 years. The overall vaccine efficacy from

these studies was 59.2 % (95 % CI 52.3–65.0) against any

of the four serotypes of dengue; however, serotype-specific

efficacy for dengue serotype two virus was poor [34].

Immune responses and vaccine efficacy were also greater

in children who were flavivirus seropositive (indicating at

least one previous infection), suggesting that the vaccine

will be most useful in endemic countries [34–36, 37•].

Although modelling studies have demonstrated that even

partially efficacious vaccines can lead to significant disease

reduction [38], these issues are complex when considering

how to deploy the vaccine. The WHO Strategic advisory

group of experts (SAGE) on Immunisation is currently

developing recommendations for use of CYD-TDV [39],

but in the meantime, one endemic country, the Philippines,

began mass vaccination in April 2016 [40].

A number of other dengue vaccines are currently in

development. DENVax, a mixture of chimeric DENV1,

DENV3 and DENV4 antigens on a DENV2 backbone plus

a whole live-attenuated DENV2 component [41], is in

Phase II studies in Colombia, Puerto Rico, Singapore and

Thailand [42, 43]. Other vaccine candidates are tetravalent

admixtures of monovalent live-attenuated vaccine strains

covering DENV1-4 (TV003 and TV005). First tested

individually and then in combination, trials have demon-

strated safety and immunogenicity to 6 months [44] with

phase II studies currently underway in Thailand and Brazil

[45, 46].

Malaria

Despite widespread use of insecticide impregnated bed

nets, insecticide spraying, and malaria treatment, morbidity

and mortality remain high. In 2015, there were an esti-

mated 438,000 deaths due to malaria, with 70 % occurring

in children\5 years of age [47].

The complexities of the parasite lifecycle make vaccine

development difficult. Most efforts to date have focused on

Plasmodium falciparum, which is responsible for more

than 98 % of malaria mortality [48]. In July 2015, the

European Medicines Agency, approved the first malaria

vaccine, known as RTS,S/AS01 (MosquirixTM, GSK), for
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use outside of Europe. The vaccine was developed in

partnership between GSK and the PATH Malaria vaccine

initiative, with support from the Bill and Melinda Gates

Foundation, representing an innovative new funding model

and public–private partnership. It is a recombinant vaccine,

where a sporozoite protein is fused with HBsAg inducing a

specific immune response to prevent blood stage infection.

Phase III studies using a three dose schedule and a 4th

booster dose were conducted in seven African countries

[49]. Efficacy against malaria 14 months after vaccination

was 50.4 % (95 % CI 45.8–54.6) in children immunised at

5–17 months, but lower in infants immunised at

6-12 weeks of age (30.1 % [95 % CI 23.6–36.1]). Efficacy

waned thereafter and an increased risk of severe malaria

among vaccinated children occurred in the last 27 months

of the study. This suggests the need for a 4-dose schedule

starting from 5–6 months of age. Given the complexities

involved, WHO recommended pilot implementation in 3-5

subnational sub-Saharan areas before considering wider

country level introduction [50]. Other vaccines being tri-

alled include three promising candidates using whole

sporozoites [51–53] and a heterologous ‘prime boost’

strategy [54, 55]. Interesting ‘‘transmission-blocking’’

vaccines target sexual erythrocytic and early mosquito

stage antigens, as the parasite passes from human host to

mosquito and aim to reduce burden of disease by reducing

transmission [56, 57].

Tuberculosis and Human Immunodeficiency Virus

(HIV) Vaccines

Tuberculosis (TB) remains a significant cause of child

morbidity and mortality worldwide, with an estimated 140

000 deaths in children worldwide in 2014 [58]. The

emergence of drug resistant Mycobacterium tuberculosis

strains and prevalence of HIV co-infection has further

complicated management [59]. The live-attenuated bacillus

calmette-guérin (BCG) vaccine is the only licensed TB

vaccine and has some effectiveness at preventing miliary

and meningeal TB in children [60, 61]. However, BCG has

limited effectiveness in older children and adults, and

against pulmonary TB, and carries a small risk of severe

complications including disseminated BCG infection [62],

which outweighs potential benefits in countries with low

TB prevalence [63]. Recently supply has been threatened

by a global shortage [64]. A limited understanding of the

specific human immune response to M. tuberculosis

infection and a lack of immunological correlates of

Table 1 Number of vaccine clinical trials currently registered on clinicaltrials.gov for specified diseases. (Current as of 6 May 2016)

Disease N Trials Phase III &

IV

Completed with

results

Completed with results phase

III & IV

Vaccine currently available

All Peds All Peds All Peds All Peds

All vaccine clinical trials 6061 2159 1815 1042 976 490 524 326 –

CMV 36 4 5 0 1 0 0 0 No

Dengue virus 83 27 8 7 2 1 0 0 Yes

Ebola virus 45 5 6 2 0 0 0 0 No

GAS 18 2 0 0 4 0 0 0 No

GBS 15 0 0 0 4 0 0 0 No

HIV� 576 113 72 20 43 14 5 3 No

HPV 233 134 99 68 74 46 48 31 Yes

Influenza 1366 491 589 274 318 135 187 94 Yes

Malaria 172 53 12 12 7 7 0 0 No

Meningococcus 91 80 53 48 32 30 15 13 Yes

Rotavirus 127 120 58 58 32 31 22 22 Yes

RSV 38 15 3 1 3 3 0 0 No*

Staphylococcus aureus 24 0 8 0 5 0 0 0 No

Tuberculosis 96 22 8 2 5 2 0 0 Yes (BCG)

Zika virus 0 0 0 0 0 0 0 0 No

* Passive immunisation via monoclonal antibody infusion (Palivizumab)
� Includes clinical trials of HIV vaccines and other vaccines in HIV-infected population

CMV Cytomegalovirus, GAS Group A Streptococcus, GBS Group B Streptococcus, HIV Human immunodeficiency virus, HPV Human papil-

lomavirus, RSV Respiratory syncytial virus, BCG Bacillus Calmette-Guérin
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protection that can predict vaccine efficacy in humans with

certainty remain challenges in vaccine development [65].

TB vaccine candidates in development (approximately

13) are broadly aimed either at replacing BCG or boosting

the immune response in already infected persons, and

include whole cell derived, viral vectored or adjuvanted

protein subunit vaccines. For example, in South Africa, one

recombinant BCG vaccine candidate (VPM1002) has been

evaluated through a phase II study in newborn children

with results awaited [66], and a candidate live-attenuated

mycobacterium tuberculosis vaccine is entering into a

phase 1b trial of safety and immunogenicity in healthy

neonates [67].

Despite over thirty years of vaccine research following

the isolation of HIV in 1983, no candidates are close to

prophylactic use in humans [68]. However, much has been

learnt about the immunopathogenesis of the virus,

informing vaccine development efforts. One vaccine can-

didate that demonstrated limited efficacy against HIV-1 in

adults in Thailand [69], is being further investigated. Only

one pediatric trial, that has not begun recruitment, is reg-

istered on clinicaltrials.gov, utilising a killed HIV-1 viral

particle vaccine (REMUNETM, BioPharma) [70].

Influenza

Seasonal epidemics of influenza occur globally with an

annual attack rate estimated at 20–30 % in children [71].

Current vaccines, while moderately effective in all ages

[6 months, induce strain specific immunity and have to be

updated yearly because of antigenic drift [72]. They

include injected inactivated influenza vaccines (IIV), and a

nasally administered live-attenuated influenza vaccine

(LAIV) [72], which have 56–64 %, and up to 80 % effi-

cacy, respectively [73]. New quadrivalent influenza virus

(QIV) vaccines (both as IIV and LAIV) contain a second

influenza B strain in addition to the two influenza A and

single B lineage in the trivalent, and will offer greater

protection in years in which both or a mismatched B lin-

eages circulate. QIVs are being incorporated into programs

worldwide. The MF59 adjuvanted seasonal vaccine (e.g.

Fluad�, Novartis) has been licensed for the elderly popu-

lation but has had limited use in pediatrics [74].

Strategies to advance the speed and scale of influenza

vaccine production include recombinant vaccines, the use

of virus like particles, DNA vaccines, and virus-vectored

vaccines [72]. The trivalent seasonal recombinant

haemagglutinin vaccine (e.g. Flublok�, Protein Sciences)

produced in insect cells has already been licensed in the

USA [72]. Progress is also being made towards the

development of a universal influenza virus vaccine [75], a

major milestone facilitated by identification of neutralising

antibodies to the conserved parts of the haemagglutinin

protein, including the stalk. Clinical trials to test this

hypothesis have been initiated [75].

Respiratory Syncytial Virus (RSV)

RSV was initially isolated in 1957 [76], and the quest for a

vaccine has been underway since. It remains the most

common acute lower respiratory tract illness in children

\5 years of age worldwide, accounting for 33.8 million

cases annually, and 3.4 million hospitalisations [77], with

infants most severely affected.

A candidate formalin-inactivated RSV vaccine in the

1960s paradoxically resulted in more severe disease in a

phase 3 clinical trial [78, 79], setting back progress on vac-

cine development for decades. Passive immunisation of high

risk infants via monthly infusions of RSV-specific

immunoglobulin (Palivizumab) has some efficacy, but is

limited by cost and complexity [80]. Vaccine development is

now focused on eithermaternal vaccination to protect infants

in the first months of life (another form of ‘passive immu-

nisation’) or active immunisation of infants and young

children. Better understanding of RSV immunopathogene-

sis, and particularly delineation of the antigenic epitopes of

the RSV F (fusion) protein responsible for entry into the host

cell [81•], has led to a resurgence in vaccine development,

with 16 vaccine candidates in active clinical trials (including

two in Phase III studies) by December 2015 [82, 83]. Current

vaccine candidates include RSV F nanoparticle vaccines,

live-attenuated, particle-based, subunit-based and gene-

based vectors [83].

Two live intranasal RSV vaccine candidates (MEDI-534

and -559) showed immunogenicity in a Phase 1 clinical

trials in young children [84, 85]. Additionally, in a Phase II

study in 330 non-pregnant women of childbearing age a

2-dose recombinant RSV fusion protein nanoparticle vac-

cine (RSV F vaccine) candidate was safe and immunogenic

[86]. Post-hoc analysis demonstrated reduction in RSV

infections in these women by 50 % over the following

112 days. Studies in pregnant women are currently in

recruitment phase [87].

Human Papillomavirus (HPV)

Discovery of HPV’s central role in the development of

cervical and anogenital cancers, as well as approximately

60 % of head and neck cancers, prompted development of

a vaccine against HPV; the second cancer preventing

vaccine after hepatitis B. The first two HPV vaccines have

been available for a decade and include oncogenic HPV

genotypes 16 and 18, responsible for approximately 70 %

of cervical cancer worldwide with the quadrivalent vaccine

also including non-oncogenic types 6 and 11, responsible

for external genital lesions (warts) [88, 89]. Both vaccines
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have now shown efficacy in prevention of pre-cancerous

lesions in males and females [90, 91•, 92, 93] and effec-

tiveness in preventing high grade cervical lesions [94, 95]

and genital warts [96, 97]. While continued progress is

needed on vaccine implementation in low–middle income

countries where cervical screening programs are not well

established, a next generation 9-valent HPV vaccine has

recently been licensed. It contains 5 additional oncogenic

HPV types and is estimated to prevent approximately 90 %

of all cervical cancers [91, 98]. The safety profile of this

9-valent vaccine appears similar to the quadrivalent, but

incremental cost effectiveness may limit uptake.

Another major development in HPV vaccination has

been evidence supporting the move from 3- to 2-dose

schedules in young adolescent females and males. Those

aged 9–15 years who receive two vaccine doses

6 months apart, have a comparable immune response to

older persons (16–26 years) given three vaccines doses

over the same time course. This schedule is now rec-

ommended by the WHO for HPV vaccination of girls in

this age group [99], and will hopefully improve

acceptability and uptake.

Meningococcus

Neisseria meningiditis, a common coloniser of the

nasopharynx, can cause rapidly evolving meningitis or

meningococcemia. There are 12 known serotypes; vaccines

now exist against the five most common (A, C, Y, W-135,

and B) disease causing strains. The first polysaccharide

vaccines were effective in outbreak scenarios, but did not

reduce nasal carriage or provide long-term immunity, and

were ineffective in young children [100, 101]. Following

the success of protein-polysaccharide conjugated He-

mophilius influenza type B vaccines, conjugated meningo-

coccal vaccines against serotype A or C alone, or

A,C,Y,W-135 together were developed. These vaccines

have demonstrated a major impact on serotype specific

invasive meningococcal disease (particularly serotype C

disease) when used in population-based programs

[102, 103]. Country-specific recommendations are highly

variable, depending on the local disease epidemiology,

serotype prevalence and individual risk factors (e.g.

underlying immunodeficiency). The recent introduction of

a low-cost type A conjugate vaccine in the Sub-Saharan

African ‘meningitis belt’ has had a major impact in that

region, with a 94 % decrease in invasive meningococcal

disease incidence following vaccination of 1.8 million

people in a 10-day period in Chad [104].

Development of a type B vaccine proved highly chal-

lenging, because of capsular polysaccharide homology

with polysilic acid structures present on human neural cells

[105]. Two recent serogroup B vaccines used ‘reverse

vaccinology’, where the sequenced genome was scanned

for the most universally applicable antigen candidates,

which were then manufactured using recombinant tech-

nology and tested in prototype vaccines. A four-antigen

component vaccine (Bexsero�, GSK, previously Novartis)

is now licensed for use in a four dose schedule in infants

(or two doses in older children and adults), but population

level programs have only been implemented in one com-

munity in Canada since May 2014 and country-wide in the

UK since November 2015 [106, 107]. Vaccine cost effec-

tiveness and the need to use prophylactic paracetamol to

prevent post vaccination fever in infants have been factors

influencing the decision not to publicly fund the vaccine in

other countries where meningococcal B disease is preva-

lent, such as Australia [108]. The bivalent recombinant

vaccine, rLP2086 (Trumenba�, Pfizer), has also been

approved in the USA for adolescents [109].

Other Vaccines

Many vaccine candidates against common pediatric

pathogens are in the developmental pipeline; including

against Group B Streptococcus (GBS, Streptococcus

agalactia), Group A Streptococcus (GAS, Streptococcus

pyogenes), S. aureus and cytomegalovirus (CMV). Vacci-

nes against ebola and zika virus infection have also been a

focus of development after recent outbreaks.

Maternal vaccination against GBS was proposed

approximately 40 years ago [110]. However, only 4 of

15 currently registered clinical trials have reported

results. A multi-national phase II study reported safety

and immunogenicity of a trivalent GBS vaccine admin-

istered to pregnant women; antibodies were measurable

in mothers, and in infants for up to 91 days [13]. GAS-

related disease has been described since the 1600s [111]

with great variability in manifestations. Both disease and

sequelae, including acute rheumatic fever, cause con-

siderable morbidity and mortality; a 2005 study esti-

mated that worldwide prevalence of serious GAS disease

was at least 18.1 million, with 1.78 million new cases

annually [112]. There are at least 18 current vaccine

candidates, with three of these in Phase 1 or 2 trials

[113]. S. aureus is a ubiquitous bacteria that causes a

wide range of disease from skin and soft tissue infec-

tions to endocarditis to toxin-mediated illness. The

increasing prevalence of methicillin-resistant S. aureus

and diminishing antimicrobial treatment options under-

lines the importance of vaccine development. However,

there are currently no pediatric clinical trials; most

vaccine candidates have been evaluated in high risk

adult patients but with limited success.

Cytomegalovirus is the most common congenital

infection, occurring in 0.5–2 % of all live births but with
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a variable phenotype. CMV has been the subject of

attempts at vaccine development for decades, with lim-

ited success; current candidates include live-attenuated,

subunit, and vectored vaccines. Phase I and II clinical

trials are underway in women of childbearing age, and

would especially target those with a toddler in the home

[114].

The recent catastrophic ebola outbreak in 2014–2015 in

Africa accelerated vaccine research and development.

There are currently 45 clinical trials of vaccine candidates,

with the two main candidates being rVSV-ZEBOV, a

recombinant vesicular stomatitis vaccine, and ChAd3-

EBO-Z, a chimpanzee adenovirus-3 vaccine. In 2015,

rVSV-ZEBOV was evaluated in a cluster-randomised trial

that employed ‘ring’ vaccination, where all near contacts of

the index case are immunised. Interim results suggest both

efficacy and safety [115•]. The ChAd3-EBO-Z vaccine

recently completed phase 1b testing in adults and was

found to be safe, thus supporting moving to phase 2/3 trials

[116]. The emergence of zika virus in South and Central

America as a new infectious cause of congenital neurologic

disease, hallmarked by microcephaly, and as a trigger for

Guillain-Barré syndrome resulted in the WHO declaring a

global health emergency on 1 February 2016 [117]. Work

on DNA-based, live-attenuated, and recombinant VSV

vaccine candidates is proceeding, although gaps in

knowledge around the disease itself need to be filled [118].

While this will take some time, it is possible that similar

fast-tracking of clinical trials may occur as was the case

with ebola vaccines.

Conclusions

Vaccine research and development is in a state of continual

change and evolution. The number of infectious diseases

for which regular vaccination is now offered has doubled

within the past 25 years and will continue to grow. For the

pediatrician, this can be readily observed by changes in

clinical practice; cases of epiglottitis are now rare, and

meningitis although still present, is much less common. As

antimicrobial resistance continues to increase, and with

new emerging infectious diseases, such as zika virus,

vaccines are poised to provide an even greater impact on

eliminating childhood disease.
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