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Abstract The influence of a homogeneous magnetic field

on the electron states localized over the surface of an

ellipsoidal dielectric particle by the electrostatic image

forces is studied theoretically. The effects of the resonant

interaction of light with such local electron states in pre-

sence and in absence of a homogeneous magnetic field are

investigated.
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Introduction

Optical [1], electro-optical and magneto-optical [2] prop-

erties of nanostructures consisting of nanoparticles with

sizes a & 1–10 nm, synthesized in semiconductor,

dielectric and metallic matrices are currently under inten-

sive investigation. Studies are caused by the fact that such

nanostructures are the new promising nanomaterials to

create new elements of nanooptoelectronics (in particular,

as an active area of semiconductor injection nanolasers [3],

as well as new, high absorptive nanomaterials [4, 5]).

In this paper, one theoretically investigates the influence

of a homogeneous magnetic field on electron states local-

ized by electrostatic image forces over the surface of

ellipsoidal germanium nanoparticle placed in vacuum. The

effects of resonant interaction of light with such local

electron states both in the absence and in the presence of

the homogeneous magnetic field were investigated for the

first time. A new optical and a magneto-optical methods of

diagnostics of nanostructures, allowing determination of

dispersion degree of nanostructures were proposed.

Local electron states over ellipsoidal interface

of dielectric media

In works [6–13], a simple model of quasi-zero-dimensional

nanosystem was used, in which the conditions of locali-

zation of charge carriers in the suburbs of spherical

dielectric (semiconductor or metal) nanoparticle were

analyzed. This model was a neutral dielectric spherical

nanoparticle with a radius and e2 permittivity, surrounded

by a medium with e1 permittivity, and quasiparticle with

e charge, moving either in the medium with e1 permittivity

and m1 effective mass near the interface or with m2

effective mass inside the spherical nanoparticle in the

medium with e2 permittivity. In making so, in [6–13] an

electrostatic task has been solved in the final analytical

form about a field induced by the nanoparticle of a radius,

and analytical expressions have been found for polarization

interaction energy U (r, a) (where r—the distance of the

charge carrier from the center of spherical nanoparticle).

Polarization interaction U (r, a) of the charge carrier

with a spherical interface (nanoparticle-medium) depended

on the relative permittivity value (e = e1/e2). For the

charge carriers moving near the dielectric nanoparticle,
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there are two possibilities: (1) polarization interaction U (r,

a) leads to attraction of the charge carrier to the surface of

the nanoparticle (for e\ 1—to the outer surface of the

nanoparticle, if e [ 1—to the inner surface of the nano-

particle), and, respectively, to formation of the outer sur-

face states [6–9] and the inner surface states [6, 7, 10]; (2)

when e\ 1, polarization interaction U (r, a) causes

repulsion of the charge carrier from inner surface of the

dielectric nanoparticle and rise in its volume of the bulk

local states [6, 7, 11–13].

In [6–13], in particular, it was shown that with decrease

in a a dimensional quantum effect occurs, which prevents

localization of the charge carrier on the sufficiently small

dielectric nanoparticles. The least critical radius ac of the

nanoparticle to appear a local state

acJbðiÞ ¼ 6 bj j�1
a
ðiÞ
b ; ð1Þ

was close to b(i) value—the average distance of the charge

carrier localized over the flat interface in the ground state

[6–13]. In formula (1)

a
ðiÞ
b ¼ ei�h

2

mie2
ð2Þ

is the Bohr radius of the charge carrier in the medium with

e2 permittivity (i = 1, 2), and the parameter

b ¼ ðe2 � e1Þ
ðe2 þ e1Þ

: ð3Þ

The ability to use the expression U (r, a) describing the

polarization interaction energy of the charge carrier with

the spherical interface (nanoparticle-medium), obtained in

[6–13] in the framework of macroscopic electrostatics, can

be justified if the local electron states emerging in the field

U (r, a) will have macroscopic character, for which

a� bðiÞ � a0; ð4Þ

where a0 distance being an order of interatomic size [7, 8].

Consider a simple quasi-zero-dimensional nanosystem:

the neutral dielectric ellipsoidal nanoparticle (with

a1 \ a2 \ a3 semiaxes) with e2 permittivity, surrounded by

the medium with e1 permittivity, and the electron (with

e charge) moving in the medium with e1, with me effective

mass, near the interface (nanoparticle-medium) (Fig. 1). For

simplicity one considers here, without loss of generality, the

case where permittivities of adjacent media are very different

from each other (i.e., e1 � e2). As shown in [6–13], for free

e1 \ e2, the functional form of the polarization interaction

energy U (r, a) providing attraction of the charge carrier to

the outer surface of the nanoparticle depends weakly on the

relative permittivity e, that affects only b
ð1Þ
e value (1).

One also assumes that the surface of the dielectric

nanoparticle has high potential barrier V ? ?, preventing

penetration of the charge carrier in the bulk of the nano-

particle. As shown by calculations [14], the change in

parameters of such barrier in a wide range has little influ-

ence on the binding energy of the local state of the charge

carrier.

One is limited only the case when the electron is

localized by electrostatic image forces at small distances

from the interface (i.e. �Z ¼ b
ð1Þ
e —its average distance to

the interface, which is significantly less than the charac-

teristic radius R0 of curvature of the nanoparticle surface)

n ¼ �Z=R0ð Þ � 1; R0 �R1 rsð Þ; R2 rsð Þ; ð5Þ

where Ri rsð Þ—the principal radii of curvature at rs surface

point of the ellipsoidal nanoparticle. When condition (5) is

fulfilled, the polarization interaction energy of the electron

moving over the outer ellipsoidal surface of the nanopar-

ticle, in the basic approximation, takes the form [1–5]:

U0 zð Þ ¼ � be2

4z
: ð6Þ

Formula (6) describes the potential energy of electro-

static image forces of the electron localized over the flat

interface between two dielectric media [15].

Since U0(z) (5) does not depend on the position of rs

point on the surface of nanoparticle, the nanoparticle sur-

face curvature correction (up to *n terms) to U0(z) (6) was

obtained in [16]:

U1 z; rsð Þ ¼ be1ð Þe2HðrsÞ ln jzHðrsÞj: ð7Þ

1α

3α

2α

2ε

1ε

Fig. 1 Schematic representation of the ellipsoidal nanoparticle (with

semiaxes a1; a2; a3ð Þ) with e2 permittivity placed in the medium with

e1 permittivity
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In (7), the value

H rsð Þ ¼ 1=2ð Þ R�1
1 rsð Þ

�
þ R�1

2 rsð Þ
�
; ð8Þ

is the mean surface curvature of the nanoparticle at (rs)

point. U1 z; rsð Þ correction (7) is the main part determining

the electron motion along the nanoparticle surface.

One writes the Schrödinger equation describing the

electron motion over the outer ellipsoidal surface of the

nanoparticle in such form

� �h2

2me

DW rð Þ þ U0 zð Þþ½ U1 z; rsð Þ�W rð Þ ¼ EWðrÞ: ð9Þ

When condition (4) of the Schrödinger equation (9) is

fulfilled, the electron motion can be divided on to the

motion perpendicular to the nanoparticle surface and the

motion along the surface of the nanoparticle. Then, the

wave function of the electron W(r) and its energy spectrum

E one writes in the following form:

W rð Þ ¼ v0 zð ÞW rsð Þ; ð10Þ
E ¼ E0 þ Es: ð11Þ

As the wave function v0(z) describing the electron

motion perpendicular to the nanoparticle surface, one takes

the wave function of Coulomb type [6–8], that character-

izes the ground state of the electron localized over the flat

interface between two dielectric media. At the same time,

the energy spectrum of the ground state of the electron is

described by Coulomb spectrum [6–8]:

E0 ¼ �Rye=16; Rye ¼ 18�h2=meðbð1Þ
e

� �2

: ð12Þ

One assumes the curvature of the nanoparticle surface

smooth enough so that

bð1Þ
e � R0 ’ a1; a2; a3ð Þ: ð13Þ

Averaging the Schrödinger equation (9) by z and taking

into consideration, the explicit form of the function v0(z),

in the basic approximation [16] one obtains:

� �h2

2me

D2W rsð Þ þ UðrsÞW rsð Þ ¼ EsW; ð14Þ

U rsð Þ ¼ b
e1

� �
e2H rsð Þ ln �zH rsð Þj j;

where D2(rs)—two-dimensional Laplace operator on the

surface, Es—the energy of the electron moving along the

surface of the nanoparticle.

The Schrödinger equation (14) describes the motion of

quasi-two-dimensional electron in the field of electrostatic

image forces over the outer ellipsoidal surface of the

nanoparticle. Its solution is the electron energy spectrum

that is described by the energy spectrum of the anisotropic

two-dimensional oscillator:

Eðn1;n2Þ
s ¼ �hx1 n1 þ

1

2

� �
þ �hx2 n2 þ

1

2

� �
; ð15Þ

where the principal quantum numbers n1 = 0, 1, 2,… and

n2 = 0, 1, 2,… In formula (15) the frequencies x1 and x2

are determined by the following expressions:

x1 ¼ s1

s2
2s2

3

1 � s2
1

s2
3

� �
1 þ 3

s2
2

s2
3

� �
ln

s1

2

1

s2
3

þ 1

s2
2

� �� 	





�3�1=2 � 6�1 � Rye

�h

� �



;
ð16Þ

x2 ¼ s2

s2
3s2

1

1 � s2
2

s2
3

� �
1 þ 3

s2
1

s2
3

� �
ln

s2

2

1

s2
3

þ 1

s2
1

� �� 	





�3�1=2 � 6�1 � Rye

�h

� �



;
ð17Þ

where

s1 ¼ a1=b
1ð Þ

e

� �
; s2 ¼ a2=b

1ð Þ
e

� �
; s3 ¼ a3=b

1ð Þ
e

� �
. (x1/

x2) ratio characterizes the field anisotropy degree of

electrostatic image forces.

It should be noted that the electron is localized near a

pole of the largest curvature of the ellipsoidal nanoparticle

(i.e., near 3 axis) (Fig. 1).

Local electron states in magnetic field

One directs the homogeneous magnetic field of H intensity

along the normal to the ellipsoidal surface of the nanoparticle

at rs point. Rotate the local coordinate system at rs point so

that a vector potential chosen in usual form A �Hy; 0; 0
� �

in

the area of electron localization should satisfy the gauge

condition An = 0 [where n(rs)—the normal to the surface of

the nanoparticle at rs point] with precision up to the terms

li=R0ð Þ � 1: ð18Þ

In inequality (18) li (i = 1, 2) are defined by

expressions:

li ¼ �h2=megi

� �1=4
; gi ¼ mex

2
i : ð19Þ

In [16], with precision up to the terms of (18) order, for

the wave function W(rs) of the electron the equation

�h2

2me

i
o

ox
� y

l2H

� �2

� o2

oy2

" #

W þ 1

2
g1x2 þ g2y2
� �

W ¼ EW;

ð20Þ

was obtained describing the anisotropic two-dimensional

oscillator in the homogeneous magnetic field of H inten-

sity. In (20), the value

lH ¼ c�h=eHð Þ1=2; ð21Þ
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is the characteristic size of electron localization area (in the

ground state) in the homogeneous magnetic field of H
intensity (where c—the speed of light in vacuum). Equa-

tion (20) was solved in [16] by moving to the Fourier

representation by x, followed by diagonalization of the

dynamical matrix. The frequencies

X1;2 ¼ 1=2ð Þ x1 þ x2ð Þ2þx2
c

h i1=2

	 x1 � x2ð Þ2þx2
c

h i1=2

ð22Þ

obtained in [16] determine the electron energy spectrum

Em1;m2
¼ �hX1 m1 þ

1

2

� �
þ �hX2 m2 þ

1

2

� �
; ð23Þ

(where m1 = 0, 1, 2 … and m2 = 0, 1, 2 …—the magnetic

quantum numbers), and the cyclotron frequency xc is

determined by an expression

xc ¼ eH=mecð Þ: ð24Þ

Thus, the energy spectrum of transverse motion of the

electron (in the plane perpendicular to the magnetic field

direction H), is described by the energy spectrum of the

anisotropic two-dimensional oscillator (22), (23); more-

over, the frequency ratio (X1/X2) characterizes the oscil-

lator anisotropy degree. Anharmonic parts discarded in

derivation of equation (20) give nonequidistant corrections

to the energy levels (22) [*(⁄X(l/R0)]2m2 [16].

Comparison of theory with experiment

The behavior of nanosystem was studied experimentally [17],

representing an ellipsoidal germanium nanoparticle (with

semiaxes a1 ¼ 1:2nm; a2 ¼ 1:6nm; a3 ¼ 2nm), placed in

vacuum, in the homogeneous magnetic field of H intensity.

For such nanosystem, the ground state energy E0 of transverse

motion of the electron, according to formula (12), takes the

value E0j j ’ 0:85eV, and the value �z ’ b
ð1Þ
e ’ 0:32nm. The

fulfilment of conditions (4) and (13) allows the energy spec-

trum of the electron localized by the electrostatic image forces

over the outer surface of the ellipsoidal nanoparticle to be

described by the anisotropic two-dimensional oscillator

spectrum (15) with �hx1 ¼ 19:7meVð
 220KÞ and �hx2 ¼
12:67meVð
 141KÞ frequencies, respectively, equal to

�hx1 ¼ 19:7meVð
 220KÞ and �hx2 ¼ 12:67meVð
 141KÞ.
The simplest methods of detection and investigation of

the local electron states considered here in nanosystems

may be studying the effects of resonant interaction of light

with such electron states. Local levels of the electron

E
n1;n2ð Þ

s ða1; a2; a3Þ (15) in the nanosystems to be studied

will be slightly broadened at temperatures T.141K if the

distance between them

DE
ðn0

1
;n

0
2
Þ

ðn1;n2Þ ¼ E
n
0
1
;n

0
2ð Þ

s a1; a2; a3ð Þ � E n1;n2ð Þ
s a1; a2; a3ð Þ � kT ;

ð25Þ

(where k—the Boltzmann constant) [9]. For those nano-

systems in which the binding energy of the local electron

states E
n1;n2ð Þ

s ða1; a2; a3Þ (15) satisfies the condition (24),

their investigations are possible in the processes of

absorption (and emission) in transitions with frequencies

x
ðn0

1
;n

0
2
Þ

ðn1;n2Þ a1; a2; a3ð Þ ¼ E
n
0
1
;n

0
2ð Þ

s a1; a2; a3ð Þ � E
n1;n2ð Þ

s a1; a2; a3ð Þ
�h

;

ð26Þ

arranged in the infrared spectrum area

’ ðx1;x1ð Þ 
 20meVð220KÞÞ.
It should be noted that the dependence of spectrum

E
n1;n2ð Þ

s a1; a2; a3ð Þ (15) on the nanoparticle sizes a1; a2; a3ð Þ
enables to select nanoinhomogeneities in the nanosystems

to be studied by laser spectroscopy methods.

When

lH\bð1Þ
e ð27Þ

the magnetic field of H intensity deforms the electron

states localized over the outer surface of the ellipsoidal

nanoparticle (near 3 axis, Fig. 1) by the electrostatic image

forces. In [8], it was shown that the local states of the

electron in polarization field �U0 zð Þ (5) occurred, in the

ground state, with a mean radius

�r ¼ a3 þ 5; 8; bð1Þ
e

� �
: ð28Þ

To estimate the intensity Hc of the strong magnetic

field, in condition (27) one replaces be
(1) by the value �r (28).

As a result, one obtains the value of intensity of the strong

magnetic field

Hc ¼
�hc

e �rð Þ2
; ð29Þ

starting from that, when H[Hc, the local electron states

to be studied deform (in the plane perpendicular to the

magnetic field direction H). In making so, the local elec-

tron states acquire a kind of ‘‘needle’’ form. In the nano-

system to be studied by us, the value Hc ’ 1:06 � 106Gs,

and the corresponding value of cyclotron frequency,

according to formula (24), is equal to

x0
c ’ 5:13meV 57Kð Þ.
Let us investigate the peculiarities of resonant interac-

tion of light with the local electron states in the magnetic

field. For this one writes the expressions, taking into

account formulas (22), (23), that describe the transition

frequencies of local electron states �hX1 and ⁄X2 in the

magnetic field of H intensity:
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�hX1 Hð Þ ¼ 1

2
�hx1 þ �hx2ð Þ2þ e�h

mec

� �2

H2

" #1=2
8
<

:

þ �hx1 � �hx2ð Þ2þ e�h

mec

� �2

H2

" #1=2
9
=

;
;

ð30Þ

�hX2 Hð Þ ¼ 1

2
�hx1 þ �hx2ð Þ2þ e�h

mec

� �2

H2

" #1=2
8
<

:

� �hx1 � �hx2ð Þ2þ e�h

mec

� �2

H2

" #1=2
9
=

;
:

ð31Þ

One studies the behavior of local electron states in the

magnetic field with its intensity H being in the range

5 � 10�2Hc �H� 10Hc: ð32Þ

For the magnetic fields with intensities

5 � 10�2Hc �H�Hc; ð33Þ

to fulfil the conditions

�hxc

�hx1 þ �hx2ð Þ

� 	2

¼ ðe=mecÞH
�hx1 þ �hx2ð Þ

� 	2

� 1

�hxc

�hx1 � �hx2ð Þ

� 	2

¼ ðe=mecÞH
�hx1 � �hx2ð Þ

� 	2

� 1;

ð34Þ

the transition frequencies �hX1 and ⁄X2 [as follows from

decomposition of (30) and (31) by the smallness parame-

ters (33), with precision up to the second order parts] are

weakly dependent on the magnetic field intensity H
(Fig. 2):

�hX1 
 1 þ e=mecð ÞH=x1½ ��hx1; ð35Þ
�hX2 
 �hx2: ð36Þ

For the strong magnetic fields with intensities

Hc �H� 10Hc; ð37Þ

the transition frequencies �hX1 Hð Þ and �hX2 Hð Þ, according

to formulas (30) and (30), depend on H in essentially

nonlinear manner (Fig. 2).

In changing the magnetic field intensity H in the interval

(32), the transition frequencies �hX1 Hð Þ (30) and �hX2 Hð Þ
(31) vary smoothly, respectively, in the intervals (Fig. 2):

ð19:7 meV� �hX1 � 53:7 meVÞ;
ð4:65 meV� �hX2 � 12:7 meVÞ; ð38Þ

arranged in the infrared spectrum area. The account of

unharmonicity leads to split of the two resonance lines

�hX1ð Hð Þ and �hX2 Hð ÞÞ on to N � 1 þ kT=�hXi Hð Þð Þ½ � peaks

equidistant by �hX1 Hð Þ and �hX2 Hð Þ, respectively (where

i = 1, 2) [16].

Conclusions

Thus, the dependencies of the transition frequencies �hX1 Hð Þ
(30) and �hX2 Hð Þ (31) between the levels (23) of the local

electron states on the magnetic field intensity H in resonant

absorption (and emission) of light by the nanosystem to be

studied allow purposefully vary the frequencies of transi-

tions (30) and (31) over a wide range (38) in the infrared

spectrum area by changing H value in the interval (32).

The observed features of local electron states, associated

with the dependence of their binding energies (15) and (23)

on the sizes a1; a2; a3ð Þ of the nanoparticles, as well as on the

magnetic field intensityH, may be interesting for developing

new methods of optical and magneto-optical control of the

dispersion degree of nanostructures. The development of

such new methods may be of particular interest to control the

nucleation of a new phase in electromagnetic, radiation or

thermal effects on multicomponent materials containing

metal, semiconductor and insulator [1–5].
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