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Abstract
This study proposes new statistical tools to analyze the counts of the daily coronavirus cases and deaths. Since the daily 
new deaths exhibit highly over-dispersion, we introduce a new two-parameter discrete distribution, called discrete general-
ized Lindley, which enables us to model all kinds of dispersion such as under-, equi-, and over-dispersion. Additionally, we 
introduce a new count regression model based on the proposed distribution to investigate the effects of the important risk 
factors on the counts of deaths for OECD countries. Three data sets are analyzed with proposed models and competitive 
models. Empirical findings show that air pollution, the proportion of obesity, and smokers in a population do not affect 
the counts of deaths for OECD countries. The interesting empirical result is that the countries with having higher alcohol 
consumption have lower counts of deaths.

Keywords COVID-19 · Discrete distribution · Gamma Lindley distribution · Maximum likelihood estimation · Regression · 
Simulation
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Introduction

The first case of the COVID-19 (coronavirus disease 2019) 
was reported in Wuhan, China, in December 2019. The 
World Health Organization (WHO) has declared that the 
COVID-19 is a pandemic on the date of March 11, 2020. 
After this date, all countries have increased their measures 
to decrease the spread rate of the COVID-19 by closing 
schools, shopping centers, airlines, and also their borders. 
As of date May 17, 2020, the counts of COVID-19 cases are 
over 4.72 million and the counts of deaths are 313, 221. This 
number may be of little importance to anyone, but almost 
half the population of Luxembourg.

The researchers and academicians have spent their time 
finding medical solutions such as drugs and vaccines to 
return our normal life. Besides these medical researchers, the 
researchers have also focused on the mathematical and sta-
tistical modeling of the COVID-19 outbreak. For instance, 
[1] predicted the needed hospital beds and personnel for 
Italy under the exponential trend. [2] used autoregressive 
time-series models based on the two-piece scale mixture 
normal distributions to forecast the recovered and confirmed 
COVID-19 cases. [3] predicted the daily new COVID-19 
cases in China by using the mathematical model, called SIR. 
As in [3, 4] also used the SIR model to predict COVID-
19 cases. Caccavo [5] introduced the SIRD compartmen-
tal model to predict COVID-19 cases in China and Italy. 
Ayyoubzadeh et al. [6] predicted COVID-19 cases in Iran 
by using long short-term memory (LSTM) which is a deep-
learning method.

This study aims to model the daily new cases and deaths 
of the COVID-19 employing a new statistical tool. To 
achieve this aim, we introduce a new flexible two-parameter 
discrete model, called as discrete analogous of the gener-
alized Lindley, shortly DsGLi, distribution. The general-
ized Lindley distribution was introduced by Nedjar [7] and 
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modified by Messaadia [8]. We introduce the DsGLi dis-
tribution by applying the survival discretization method of 
[9]. The question may come to mind of anyone: Why do we 
need this distribution? In primary data analysis, we have 
realized that most of the existing probability distributions do 
not provide acceptable results for modeling the COVID-19 
cases. The reason is that the counts of deaths or daily new 
cases exhibit excessive over-dispersion (see Sect. 2 for the 
definition of the over-dispersion). At this point, we see the 
advantage of DsGLi distribution over other distributions, 
because the proposed distribution, DsGLi, provides a new 
opportunity to model all kinds of dispersed count data sets. 
Some important properties of the DsGLi distribution can be 
summarized as follows: (1) It has closed-form expressions 
for its statistical properties, (2) it has increasing hazard rate 
function (hrf), and (3) it can be used to model both skewed 
and leptokurtic count data sets. Additionally, a new count 
regression model is defined based on the DsGLi distribution 
to analyze the effects of explanatory variables such as smok-
ing, obesity, air pollution on the daily cases, and deaths of 
the COVID-19 outbreak.

The remaining parts of the presented study are organized 
as follows: Sect. 2 deals with the statistical properties of the 
DsGLi distribution. In Sect. 3, we discuss the parameter esti-
mation process of the DsGLi distributions with maximum 
likelihood estimation method, and the performance of the 
estimation method is investigated by a simulation study for 
its finite sample size behavior. In Sect. 4, we introduce the 
DsGLi regression model and clarify its parameter estima-
tion process and residual analysis. Section 5 contains three 
applications to COVID-19 data sets. The empirical results 
obtained in Sect. 5 are discussed in Sect. 6 in detail. Sect. 7 
contains some important remarks about the presented study.

Discrete analogue of GLi distribution

[9] introduced a new method to generate a new discrete 
distribution based on the survival function of any continu-
ous probability distribution. This method is called a sur-
vival discretization method. Let the continuous random 
variable X has the survival function (sf) S(x;�) = Pr(X > x) , 
then the probability mass function (pmf), corresponding to 
S(x;�) = Pr(X > x) , is

This approach has been received considerable attention over 
the recent years, for instance, [10–21] and references cited 
therein. Note that there are some different discretization 
methods in order to construct new discrete distribution for 
modeling count data. Some of them are presented in [22] 
and [23].

(1)Pr(X = x) = S(x;�) − S(x + 1;�); x = 0, 1, 2, 3,…

Nedjar [7] proposed a new probability distribution for 
modeling data, in the so-called gamma Lindley (GLi) dis-
tribution. It is a mixture of a gamma(2, � ) and Lindley(� ) 
distribution. The pdf of GLi distribution can be expressed 
as

Unfortunately, Eq. (2) is not a proper PDF, because it can be 
negative for some values of the parameters 𝛼 > 0 and 𝜃 > 0 . 
[8] modified the parameter space to be � ≥

�

1+�
 and 𝜃 > 0 , 

and consequently, the proper pdf of GLi model can be writ-
ten as

The sf corresponding to Eq. (3) is

where � ≥
�

1+�
 and 𝜃 > 0 . Using the survival discretization 

method and sf of GLi distribution, we define the rf of the 
DsGLi given as follows:

where � ≥
− ln �

1−ln �
 , 0 < 𝜂 < 1 , and ℕ0 = {0, 1, 2, 3,… , k} for 

0 < k < ∞ . The pmf and cumulative distribution function 
(cdf) of the DsGLi distribution are given, respectively, by

where x ∈ ℕ0 . The pmf in (6) is log-concave, where Px(x+1;�,�)

Px(x;�,�)
 

is a decreasing function in x for all values of the model 
parameters. Figure 1 shows the pmf plots for different values 
of the model parameters. From Fig. 1, the pmf of the DsGLi 
distribution is unimodal and right-skewed.

(2)
f (x;𝛼, 𝜃) =

𝜃2

𝛼(1 + 𝜃)
([𝜃𝛼 + 𝛼 − 𝜃]x + 1)e−𝜃x;

x > 0, 𝛼 > 0, 𝜃 > 0.

(3)

f (x;𝛼, 𝜃) =
𝜃2

𝛼(1 + 𝜃)

([𝜃𝛼 + 𝛼 − 𝜃]x + 1)e−𝜃x;

x > 0, 𝛼 ≥
𝜃

1 + 𝜃
, 𝜃 > 0.

(4)
R(x;𝛼, 𝜃) =

(𝜃x + 1)(𝜃𝛼 + 𝛼 − 𝜃) + 𝜃

𝛼(1 + 𝜃)

e−𝜃x; x > 0,

(5)
S(x;�, �) =

(1 − ln �x+1)(� − � ln � + ln �) − ln �

�(1 − ln �)

�x+1; x ∈ ℕ0,

(6)

Px(x;�, �) =
�x

1 − ln �{
1 − � − ln �[1 + x − �(x + 2)] + (1 −

1

�
)(ln �)2[x − �(x + 1)]

}
,

(7)
F(x;�, �) = 1

−
(1 − ln �x+1)(� − � ln � + ln �) − ln �

�(1 − ln �)
�x+1,
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Fig. 1  The pmf plots of the DsGLi distribution
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Fig. 2  The hrf plots of the DsGLi distribution
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The hrf of the DsGLi is expressed as

where h(x;�, �) = Px(x;�,�)

S(x−1;�,�)
 . Figure 2 shows the hrf plots of 

the DsGLi distribution. It is noted that the shape of the hrf 
is increasing. Further, the value of failure rate decreases with 
� ⟶ 1 for fixed value of �.

Properties

The statistical properties of the DsGLi distribution are 
obtained and reported in this section. Let X be random vari-
able having a pmf in (6). The probability generating function 
(pgf) of X is

By replacing z by ez in (9), one can obtain the moment gen-
erating function (mgf) of X which is given by

(8)

h(x;�, �) =1

−

[
(1 − ln �x+1)(� − � ln � + ln �) − ln �

]
�

(1 − ln �x)(� − � ln � + ln �) − ln �
;

x ∈ ℕ0,

(9)

GX(z) =

∞∑
x=0

z
x
Gx(x;�, �)

=
−2�(� − 1)(z − 1) ln � + �

(
�2z − 2� + 1

)
ln � − �(� − 1)(�z − 1)

�(ln � − 1)(�z − 1)2
.

(10)

MX(z)

=
−2�(� − 1)(ez − 1) ln (�) + �

(
�2ez − 2� + 1

)
ln � − �(� − 1)(�ez − 1)

�(ln � − 1)(�ez − 1)2
.

The similar relation is also valid between the mgf and char-
acteristic function (cf). The cf function of X is obtained by 
replacing ez by eiz . Then, we have

The partial derivatives of (10) according to z at z = 0 
give raw moments of X. Using this property, the first two 
moments of the DsGLi model are given, respectively, by

The variance of the DsGLi distribution can be calculated 
by using Var(X) = E

(
X2

)
− E(X)2 . The skewness and kur-

tosis measures of the DsGLi can be also easily calculated 
by using well-known relations. The other important measure 
of any discrete distribution is dispersion index (DI) which is 
defined as DI = Var(X)∕E(X) . The flexibility of the DI meas-
ure is important to model different types of data sets such as 
over-dispersed ( DI > 1 ), equi-dispersed ( DI = 1 ), and under-
dispersed ( DI < 1 ). The statistical measures of the DsGLi 
distribution are computed and reported in Tables 1 and 2. To 
interpret the individual effects of the parameters � and � , the 
results are calculated for fixed � = 0.9 and � = 0.01 . As seen 
from Table 1, the mean, variance, and DI are the increas-
ing function of the parameter � for fixed � = 0.90 , whereas 
the skewness and kurtosis decrease when the parameter � 

(11)

�X(z)

=
−2�(� − 1)

(
eiz − 1

)
ln (�) + �

(
�2eiz − 2� + 1

)
ln � − �(� − 1)

(
�eiz − 1

)

�(ln � − 1)
(
�eiz − 1

)2 .

(12)E(X) = − �
(� − 1) ln �2 + �(� − 2) ln � − �(� − 1)

�(ln � − 1)(� − 1)2
,

(13)

E(X2) =�
(3�� + � − 3� − 1) ln �2 + �(�2 − 3� − 2) ln � − ��2 + �

�(ln � − 1)(� − 1)3
.

Table 1  The numeric values of 
the statistical measures of the 
DsGLi distribution for � = 0.9

�

Measure 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mean 0.0141 0.0803 0.1751 0.4082 0.7182 1.1438 1.7557 2.6959 4.2971 7.5582 17.478
Variance 0.0143 0.0852 0.1976 0.5248 1.0663 1.9968 3.6960 7.1035 15.049 39.363 179.20
DI 1.0118 1.0612 1.1283 1.2855 1.4845 1.7457 2.1051 2.6348 3.5022 5.2079 10.253
Skewness 8.5415 3.8420 2.8210 2.1538 1.8816 1.7274 1.6251 1.5508 1.4947 1.4528 1.4249
Kurtosis 77.619 19.256 12.369 8.9408 7.7616 7.1397 6.7437 6.4663 6.2648 6.1217 6.0321

Table 2  The numeric values of 
the statistical measures of the 
DsGLi distribution for � = 0.01

�

Measure 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.5 15.0 17.5 20.0
Mean 0.0313 0.0442 0.0485 0.0506 0.0519 0.0527 0.0534 0.0539 0.0545 0.0548 0.0551
Variance 0.0314 0.0438 0.0479 0.0499 0.0511 0.0519 0.0525 0.5301 0.5355 0.0538 0.0541
DI 1.0025 0.9915 0.9876 0.9857 0.9845 0.9837 0.9831 0.9826 0.9821 0.9818 0.9815
Skewness 5.6703 4.6978 4.4593 4.351 4.289 4.2489 4.2208 4.1943 4.1714 4.1552 4.1432
Kurtosis 35.341 24.741 22.438 21.431 20.866 20.504 20.253 20.017 19.815 19.6729 19.567
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increases. As given in Table 2, the mean and variance are 
the increasing function of � . The DI, skewness, and kurto-
sis decrease when the parameter � increases. As seen from 
these results, the DsGLi distribution has flexible DI which 
can be over or under one. So, the DsGLi distribution can be 
an appropriate choice in modeling all types of count data.

Estimation

The unknown parameters of the DsGLi distribution are 
obtained by the maximum likelihood estimation (MLE) 
method. This method is based on the maximization of the 
log-likelihood function for a given data set. Let us assume 
that we have a sample that comes from the DsGLi distribu-
tion, denoted as X1,X2,… ,Xn . Then, we have the following 
log-likelihood function for the DsGLi distribution

We have two choices to obtain the MLEs of the parameters � 
and � . The first way, we can use (14) to direct maximization 
of the log-likelihood to get the MLEs of the parameters, say 
�̂� , and �̂� . The second way, the score vectors, given below, 
can be simultaneously solved for zero.

In this study, we prefer the first choice, direct maximization 
of (14) by means of constrOptim function of R. To obtain 
the asymptotic standard errors and confidence intervals, the 
observed information matrix is used evaluated at �̂� and �̂� . 
The observed information matrix can be numerically calcu-
lated by hessian function of R software.

(14)
�(x;�, �) = ln �

n∑
i=1

xi − n ln (1 − ln �)

+

n∑
i=1

ln
(
1 − � − ln �

[
1 + xi − �(xi + 2)

]
+ (1 −

1

�
)(ln �)2

[
xi − �(xi + 1)

])
.

(15)��

��
=

n∑
i=1

(
ln �

�

)2[
xi − �(xi + 1)

]

1 − � − ln �
[
1 + xi − �(xi + 2)

]
+ (1 −

1

�
)(ln �)2

[
xi − �(xi + 1)

] ,

(16)

��

��
=
1

�

n∑
i=1

xi +
n

�(1 − ln �)

+

n∑
i=1

(
xi + 2

)
(ln � + 1) −

1+xi

�
− 1 + ln �

(
1 −

1

�

)(
2xi−2�(xi+1)

�
− (xi + 1) ln �

)

1 − � − ln �
[
1 + xi − �(xi + 2)

]
+ (1 −

1

�
)(ln �)2

[
xi − �(xi + 1)

] .

Simulation

We assess the finite sample performance of the MLE 
method in estimating the unknown parameters of the 
DsGLi distribution. Therefore, we conduct a simulation 
study. The simulation replication number, N, is taken as 
1, 000. The true parameter values are used as � = 0.5 and 
� = 0.5 . There is no specific reason to use these param-
eter values. Different parameter settings can be used. We 
generate random samples from the DsGLi distribution 
with n = 50, 55, 60,… , 300 sample sizes. The simulation 
results are interpreted based on the estimated biases, mean 
square errors (MSEs), and mean relative errors (MREs). 
The required mathematical formulations of these metrics 
can be found in the works of [24, 25]. We expect to see 
that biases and MSEs are near the zero and MREs are near 
the one for sufficiently large sample sizes. The simulation 

results are graphically summarized and displayed in Fig. 3. 
These results confirm our expectation that the estimated 
biases and MSEs are near the zero for nearly all samples 
of sizes. Also, the estimated MREs are near the one, as 
expected. These results also show that the MLEs of the 

parameters of the DsGLi distribution are asymptotically 
unbiased and consistent. The similar results are obtained 
for different parameter settings, but not reported here for 
the sake of simplicity.
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DsGLi regression model

When modeling the discrete response variable with associated 
covariates, the Poisson regression model is the first thing come 
to mind. However, it is well known that the Poisson regres-
sion produces inaccurate results when the response variable 
is over-dispersed or under-dispersed, except equi-dispersion. 
In this study, we propose an alternative model to provide new 
opportunities in predicting the over-dispersed counts. Let Y be 
a random variable following a DsGLi density. Using the below 
re-parametrization

we have

where

The density in (18) is denoted as Y ∼ DsGLi(�,�) . After 
this re-parametrization, the mean of the random variable is 
E(Y) = � and its variance is

(17)� =
� ln (�)2

(ln (�) − 1)((� − 1)(� + �(� − 1)) + � ln (�))
,

(18)

P
(
yi;�,�

)
=

�yi

1 − ln (�)

{
1 − � − ln (�)

[
1 + y − �(y + 2)

]
+
(

�(�,�)−1

�(�,�)

)
ln (�)2

[
yi − �

(
yi + 1

)]
}

,

(19)

�
(
�,�i

)
=

� ln (�)2

(ln (�) − 1)
(
(� − 1)

(
� + �i(� − 1)

)
+ � ln (�)

) .

(20)Var(Y) =
�(3� + 1)

1 − �
−

2�2

(1 − �)2
− �2.

The parameter � is a dispersion parameter of the re-para-
metrized DsGLi distribution. Now, using the density in (18), 
we propose a new count regression model. Let the response 
variable Y follow the density in (18) and consider the regres-
sion structure given as follows:

where �T
i
=
(
xi1, xi2,… , xik

)
 is the explanatory variable 

vector and � =
(
�0, �1,… , �k

)
 is the vector of regression 

parameters. The function in (21) is known as link function. 
The link functions play an important role in generalized lin-
ear models to construct a bridge between predictors and the 
mean of the response variable. The suitable choice of the 
link function depends on the domain the response variable. 
Since the response variable is defined on ℤ+ , the log-link 
function is used.

Estimation process

The log-link is defined as �i = exp
(
�T
i
�
)
 . Using the log-link 

function, the log-likelihood function of the DsGLi regression 
model is given by

where n is the sample size, � is the unknown dispersion 
parameter, and � is the unknown regression parameters. 
Let � = (�, �) be an unknown parameter vector. Under the 

(21)g
(
�i

)
= �T

i
�,

(22)

�(𝜂, �) = ln (𝜂)ȳ − n ln (1 − ln (𝜂))

+
n∑
i=1

ln

⎧
⎪⎨⎪⎩

1 − 𝜂 − ln (𝜂)
�
1 + y − 𝜂(y + 2)

�

+
�
1 −

(ln (𝜂)−1)((𝜂−1)(𝜂+exp (�Ti �)(𝜂−1))+𝜂 ln (𝜂))
𝜂 ln (𝜂)2

�

× ln (𝜂)2
�
yi − 𝜂

�
yi + 1

��

⎫
⎪⎬⎪⎭

,
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Fig. 3  The simulation results of the DsGLi distribution
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regularity conditions of the MLE, the asymptotic distribu-
tion of the 𝜸 − �̂� is the (k + 2)-variate normal distribution 
with zero mean and variance–covariance matrix, Σ(k+2)×(k+2) 
which is obtained by the inverse of observed information 
matrix, I(k+2)×(k+2) calculated at the MLE of the � , 𝜷 . To esti-
mate the unknown parameter vector, � , the below estimation 
process is implemented. 

1. First, the underlying data set is fitted by Poisson regres-
sion model to get the initial parameter vector of the � for 
DsGLi regression model.

2. Next, using the estimated regression parameters of the 
Poisson regression model as an initial parameter vec-
tor for the � and setting the initial value of � = 0.5 , the 
minus log-likelihood function, −�(�, �) in (22), is mini-
mized by constrOptim function in R since the param-
eter � ∈ (0, 1).

3. Then, using the hessian function in R, we obtain the 
observed information matrix, I(k+2)×(k+2) , calculated at �̂�.

Residual analysis

Residual analysis is carried out to be sure about the accuracy 
of the DsGLi regression model for the used data set. The 
randomized quantile residual (rqr) is used for this purpose. 
Let the random variable Y have a cdf F(y;�,�) which is the 
cdf of the re-parametrized DsGLi distribution. Then, the rqr 
is defined as

where ui = F
(
yi;�̂�,𝜇i

)
 . Note that the rqr is distributed as 

N(0, 1) when the model is acceptable for the used data.

Data analysis

The empirical importance of the proposed models is proved 
by three applications to COVID-19 data sets. The proposed 
models are compared with some competitive models to see 
its competitive power. The competitive models are listed in 
the following.

In the first two empirical studies, we compare the fit of 
the DsGLi distribution with competitive models listed in 
Table 3. The goodness-of-fit test and Kolmogorov–Smirnov 
( K − S ) are implemented to select a best-fitted model for 
COVID-19 data sets. The models having p value higher 
than 0.05 are evaluated as possible accurate models, and the 
information criteria, listed below, are used to decide best-
fitted model in final stage. The data source is https:// www. 
world omete rs. info/ coron avirus/. In the third application, we 
assess the performance of the DsGLi regression model by 

(23)rq,i = Φ−1
(
ui
)
,

applying the model to the COVID-19 data set of the OECD 
countries. 

∙  Akaike information criterion (AIC).
∙  Hannan–Quinn information criterion (HQIC).
∙  Bayesian information criterion (BIC).
∙  Corrected Akaike information criterion (CAIC).

South Korea

In the first application, we consider the daily new deaths in 
South Korea. The data are available at https:// www. world 
omete rs. info/ coron avirus/ count ry/ south- korea/ and contain 
the daily new deaths between February 15 and December 
14, 2020.

This data set is modeled with DsGLi and other competi-
tive models. Table 4 contains the estimated parameters and 
their corresponding standard errors (SEs) as well as con-
fidence intervals (CIs) for all fitted models. The results of 
the information criteria and goodness-of-fit test are given in 
Table 5. The best-fitted model should have the lowest values 
of these statistics. From Table 5, we conclude that the DsGLi 
model is the best-performed model among others since it has 
the lowest values of AIC, BIC, CAIC, HQIC, and K–S test 
statistic. The higher value of the p value of the KS test shows 
the better-fitted model. If the p value is less than 0.05, it 
means that the model cannot be used to predict the counts of 
COVID-19 cases. According to the modeled data set, DsGLi 
and DsLi distributions have p values higher than 0.05. How-
ever, the p value of DsGLi distribution is higher than those 
of DsLi distribution. Therefore, the proposed model is the 
best choice for modeling the data used.

Figure  4 displays the estimated pmfs and probabil-
ity–probability (PP) plots of the fitted models. These figures 
prove the suitability of the DsGLi distribution for modeling 
the counts of COVID-19 deaths South Korea.

Table 6 lists the theoretical values of the mean, variance, 
and DI measures of the DsGLi distribution obtained under 
the estimated parameters. The empirical mean, variance, and 

Table 3  The competitive models

Model Abbreviation References

Poisson Poi –
Discrete Lindley DsLi Gómez-Déniz and 

Calderín-Ojeda [10]
Discrete Burr-XII DsB-XII Krishna and Pundir [26]
Discrete Pareto DsPs Krishna and Pundir [26]
Discrete Burr–Hatke DsBH El-Morshedy et al. [16]
Discrete log-logistic DsLogL Para and Jan [27]
Discrete inverse Weibull DsIW Jazi et al. [28]
Discrete inverse Rayleigh DsIR Hussain and Ahmed [29]

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/country/south-korea/
https://www.worldometers.info/coronavirus/country/south-korea/
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DI of the used data set are 1.918, 4.180, and 2.179, respec-
tively. The theoretical mean, variance, and DI are closed to 
empirical ones.

Armenia

In the second application, we consider the daily new deaths 
in Armenia. The data are available at https:// www. world 
omete rs. info/ coron avirus/ count ry/ armen ia/ and contain the 
daily new cases between February 15 and October 4, 2020.

The above data set is modeled with DsGLi and other 
competitive models, and the estimated parameters and 

goodness-of-fit results are reported in Tables 7 and 8, 
respectively. According to the results in Table 8, we con-
clude that the DsGLi distribution is the best choice among 
other competitive models since it has the lowest values of 
the goodness-of-fit statistics. Additionally, the only dis-
tribution having the p value higher than 0.05 is DsGLi. 
Therefore, the proposed model is the best choice for mod-
eling the data used.

Figure 5 displays the estimated pmfs and PP plots of the 
fitted models. From these figures, it is concluded that the 
DsGLi model provides acceptable modeling performance 
for the used data.

Table 4  The estimated 
parameters of the fitted models 
for South Korea data set

Model � �

MLE SE CI MLE SE CI

DsGLi 0.804 0.239 [0.335, 1.272] 0.530 0.029 [0.472, 0.589]
DsLi 0.513 0.015 [0.484, 0.542] − − −
DsIR 0.227 0.023 [0.182, 0.273] − − −
DsLogL 1.727 0.096 [1.540, 1.915] 1.875 0.106 [1.667, 2.084]
DsIW 0.269 0.025 [0.219, 0.318] 1.407 0.083 [1.245, 1.569]
DsB-XII 0.593 0.031 [0.532, 0.654] 2.469 0.248 [1.983, 2.956]
DsPa 0.379 0.021 [0.337, 0.420] − − −
DsBH 0.905 0.020 [0.866, 0.945] − − −
Poi 1.918 0.079 [1.763, 2.073] − − −

Table 5  The goodness-of-fit test for South Korea data set

 X OF Expected frequency (EF)

DsGLi  DsLi  DIR DsLogL DsIW DsB-XII DsPa DsBH Poi

0 89 90.464 86.208 69.501 80.799 82.217 92.948 149.889 167.504 44.938
1 79 72.982 74.824 141.745 93.092 104.218 98.301 50.804 54.918 86.205
2 50 51.969 54.078 48.289 51.910 44.822 43.023 25.664 26.837 82.683
3 29 34.597 35.790 19.391 27.702 22.598 21.399 15.514 15.651 52.870
4 19 22.079 22.488 9.459 15.798 13.108 12.322 10.404 10.094 25.355
5 17 13.689 13.653 5.272 9.689 8.373 7.859 7.468 6.947 9.728
6 9 8.309 8.089 3.225 6.322 5.728 5.388 5.625 5.00 3.110
7 7 4.964 4.707 2.112 4.338 4.123 3.893 4.391 3.722 0.852
8 6 2.928 2.700 1.457 3.099 3.085 2.927 3.524 2.840 0.204
9 1 4.019 3.463 5.549 13.251 17.728 19.940 32.717 12.487 0.055
Total 306 306 306 306 306 306 306 306 306 306
−L 570.712 573.966 613.699 583.049 593.090 593.984 640.256 627.311 628.313
AIC 1145.424 1148.932 1229.399 1170.099 1190.180 1191.968 1282.512 1256.622 1258.625
CAIC 1145.463 1148.945 1229.412 1170.138 1190.220 1192.008 1282.525 1256.635 1258.638
BIC 1152.871 1153.656 1233.122 1177.546 1197.627 1199.415 1286.236 1260.346 1262.349
HQIC 1148.402 1150.421 1230.888 1173.077 1193.159 1194.946 1284.001 1258.111 1260.114
�2 3.154 4.286 111.544 25.884 42.918 29.137 130.491 121.219 158.077
df 5 6 6 6 5 5 7 7 5
p value 0.676 0.638 ≤ 0.001 0.0002 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

https://www.worldometers.info/coronavirus/country/armenia/
https://www.worldometers.info/coronavirus/country/armenia/
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Fig. 4  The estimated pmf (top) and PP plots (bottom) for South Korea data set
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Additionally, the theoretical values of the mean, variance, 
and DI measures of the DsGLi distribution are reported in 
Table 9 for Armenia data set. The empirical mean, variance, 
and DI of the used data set are 4.207, 19.783, and 4.703, 
respectively. The theoretical mean and skewness are closed 
to empirical ones.

Table 6  The numerical values 
for the statistical properties 
of the DsGLi distribution for 
South Korea data set

Mean Variance DI

1.915 4.342 2.267

Table 7  The estimated 
parameters of the fitted models 
for Armenia data set

Model � �

MLE SE C. I MLE SE C. I

DsGLi 0.228 0.089 [0.053, 0.404] 0.784 0.037 [0.712, 0.855]
DsLi 0.692 0.012 [0.668, 0.716] − − −
DsIR 0.112 0.019 [0.075, 0.149] − − −
DsLogL 2.871 0.2426 [2.395, 3.346] 1.388 0.086 [1.219, 1.557]
DsIW 0.201 0.026 [0.149, 0.252] 0.958 0.060 [0.839, 1.076]
DsB-XII 0.643 0.034 [0.576, 0.711] 1.811 0.210 [1.399, 2.223]
DsPa 0.493 0.0229 [0.448, 0.538] − − −
DsBH 0.976 0.01136 [0.953, 0.998] − − −
Poi 4.207 0.135 [3.943, 4.471] − − −

Table 8  The goodness-of-fit test for Armenia data set

 X OF EF

DsGLi  DsLi DsIR DsLogL DsIW DsB-XII DsPa  DsBH Poi

0 56 43.852 28.244 25.963 43.595 46.600 61.116 89.881 118.830 3.455
1 31 35.735 32.849 108.220 43.908 54.931 51.488 35.422 39.565 14.535
2 22 29.078 31.939 47.702 32.046 30.935 28.237 19.636 19.748 30.573
3 25 23.629 28.475 20.435 22.694 19.142 17.094 12.704 11.823 42.874
4 11 19.176 24.116 10.220 16.344 12.936 11.396 8.997 7.860 45.089
5 14 15.545 19.741 5.765 12.076 9.313 8.146 6.747 5.598 37.937
6 14 12.587 15.774 3.552 9.152 7.023 6.123 5.280 4.181 26.601
7 10 10.182 12.378 2.336 7.115 5.487 4.777 4.262 3.241 15.986
8 11 8.229 9.578 1.615 5.647 4.406 3.842 3.524 2.5801 8.407
9 3 6.643 7.328 1.165 4.549 3.619 3.159 2.967 2.101 3.929
10 10 5.359 5.556 0.863 3.738 3.022 2.649 2.540 1.741 1.653
11 7 4.320 4.180 0.661 3.127 2.566 2.255 2.202 1.465 0.632
12 4 3.480 3.125 0.513 2.615 2.204 1.944 1.933 1.248 0.222
13 5 2.801 2.323 0.411 2.232 1.914 1.696 1.709 1.075 0.072
14 2 2.252 1.719 0.329 1.916 1.679 1.494 1.524 0.934 0.022
15 2 1.811 1.267 0.271 1.679 1.485 1.327 1.371 0.819 0.006
≥ 16 6 7.321 3.408 1.979 19.566 24.738 25.257 31.300 9.191 0.008
Total 232 232 323 232 232 232 232 232 232 232
−L 590.8589 604.567 719.922 609.5819 625.479 629.887 644.982 657.924 836.109
AIC 1185.718 1211.134 1441.844 1223.164 1254.958 1263.773 1291.963 1317.848 1674.220
CAIC 1185.770 1211.151 1441.862 1223.216 1255.011 1263.825 1291.981 1317.865 1674.237
BIC 1192.611 1214.58 1445.291 1230.057 1261.852 1270.666 1295.410 1321.295 1677.666
HQIC 1188.498 1212.524 1443.234 1225.944 1257.738 1266.553 1293.353 1319.238 1675.610
�2 19.025 53.708 397.614 39.965 75.526 82.634 113.538 185.041 486.741
d.f 11 11 6 10 9 8 9 8 7
p value 0.061 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001
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Fig. 5  The estimated pmf (top) and PP plots (bottom) for Armenia data set
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OECD

In the third application, the counts of deaths due to the 
COVID-19 are modeled for the OECD countries by the 
DsGLi regression model. The predictive performance of the 
DsGLi regression model is compared with Poisson regres-
sion. The response variable is the counts of deaths up to the 
date May 16, 2020. According to the Health at a Glance 
report (see OECD [30]), the important risk factors on health 
are the use of smoking and alcohol, overweight (obese), and 
air pollution. These variables are available in [30] and meas-
ured in the year 2019. We try to explain the variability in the 
counts of deaths ( yi ) due to the coronavirus with covariates, 
smoking ( xi1 , % population aged 15+ ), alcohol ( xi2 , % popu-
lation aged 15+ ), and overweight ( xi3 , % population with 
BMI ≥ 25 for population aged 15+ ). We also consider the 
population size for each country as an explanatory variable. 
The population size is transformed in three-level categorical 
variable and two dummy variables are created: the popula-
tion size between 7 and 35 million ( xi5 , 1 = yes, 0 = no) and 
the population size over 35 million xi6 , 1 = yes, 0 = no). The 
population size lower than 7 million is considered as a base-
line category. To avoid the extreme outlier observations, we 
exclude the countries having less than 1 million population 
and over 100 million population sizes. The regression model 
in (24) is fitted by DsGLi and Poisson regression models.

 The estimated regression parameters and their correspond-
ing standard errors (SEs), as well as p values, are listed in 
Table 10. The mean and variance of the response variable are 

(24)
�i = exp

(
�0 + �1xi1 + �2xi2 + �3xi3 + �4xi4 + �5xi5 + �6xi6

)
.

5391.4 and 104275974, which shows that it is highly over-
dispersed. Because of the over-dispersed response variable, 
the Poisson regression model produces inaccurate results 
with higher AIC and BIC values than the DsGLi regression 
model. There are dramatic differences between the AIC and 
BIC values of two regression models. The DsGLi regression 
model enables to model over-dispersed response variable on 
the contrary to the Poisson regression model.

Figure 6 displays the results of the residual analysis of the 
DsGLi regression model. As seen from these figures, there 
is no observation to be evaluated as an outlier observation 
since all plotted points are in the envelopes.

Discussion of empirical results

In this section, the empirical results are interpreted in detail. 
The first two applications are based on the modeling of the 
counts of daily deaths of South Korea and Armenia, respec-
tively. Using the estimated model parameters, some proba-
bilities can be calculated. For instance, a researcher wants to 
know what is the probability that 3 or more deaths will occur 
in South Korea and Armenia in one day. To answer these 
research question, the estimated parameters of the DsGLi 
distribution and its cdf can be used. The probabilities related 
to this research question are calculated for different values 
of the count of deaths and reported in Table 11.

The counts of deaths in OECD countries are modeled 
with some covariates by using the DsGLi and Poisson 
regression models in the third application. According to the 
estimated regression parameters, we conclude the following 
results. 

∙  The proportion of smokers in the population does not 
affect the counts of deaths.

Table 9  The numerical values 
for the statistical properties 
of the DsGLi distribution for 
Armenia data set

Mean Variance DI

4.208 21.250 5.049

Table 10  The results of Poisson 
and DsGLi regression models

Parameters Poisson DsGLi

Estimates SEs p values Estimates SEs p values

�
0

5.0493 0.0295 < 0.0001 7.0174 0.0033 < 0.0001

�
1

0.1108 0.0007 < 0.0001 0.1075 0.0734 0.14303
�
2

-0.0899 0.0017 < 0.0001 -0.2265 0.0763 0.0029
�
3

0.0070 0.0003 < 0.0001 -0.0097 0.0099 0.3265
�
4

-0.0206 0.0002 < 0.0001 -0.0472 0.0296 0.1108
�
5

3.6286 0.0190 < 0.0001 4.2760 0.0119 < 0.0001

�
6

1.5763 0.0202 < 0.0001 2.0978 0.0114 < 0.0001

� - - - 0.9998 < 0.0001 -
−� 72891.2000 273.6595
AIC 145796.4000 563.3190
BIC 145806.2000 574.5286
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∙  In a kind of funny way, the countries having more alco-
hol consumption have lower counts of deaths.

∙  The proportion of obese individuals in the population 
does not affect the counts of deaths.

∙  The air pollution does not affect the counts of deaths.
∙  The countries with a population of over 35 million have 

exp(4.2760) = 71.9521 times more counts of deaths than 
countries with a population below 7 million.

∙  The countries with a population of 7–35 million have 
exp(2.0978) = 8.1482 times more counts of deaths than 
countries with a population below 7 million.

Conclusion remarks

COVID-19 is still an unclear infectious disease. Each coun-
try’s social and policy responsibility is affected by the 
COVID-19 outbreak. In this paper, our aim is to try to serve 
humanity in this difficult situation by modeling this outbreak 
by utilizing a new probability distribution, and therefore, we 

have proposed a new two-parameter discrete gamma Lind-
ley distribution for modeling such these count data. Some 
important statistical properties have been derived in closed 
forms which makes this model more flexible in practical 
fields. The model parameters have been estimated by using 
the maximum likelihood approach which gives a unique 
estimator. The flexibility of the proposed model has been 
explained by utilizing three COVID-19 data sets in different 
countries.

Statistical modeling is very important to combat such 
epidemics. With the help of the models proposed in this 
study, the expected number of new cases and deaths during 
the epidemic can be predicted. Thus, controlling the epi-
demic can be achieved more quickly. The modeling phase 
can also be divided into cities or smaller settlements instead 
of the whole country. We hope that the results obtained here 
will be useful for researchers, politicians, and healthcare 
organizations.
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