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Abstract Partial differential equations have recently been

used for image compression purposes. One of the most

successful frameworks solves the Laplace equation using a

weighting scheme to determine the importance of indi-

vidual pixels. We provide a physical interpretation of this

approach in terms of the Helmholtz equation which

explains its superiority. For better reconstruction quality,

we subsequently formulate an optimisation task for the

corresponding finite difference discretisation to maximise

the influence of the physical traits of the Helmholtz equa-

tion. Our findings show that sharper contrasts and lower

errors in the reconstruction are possible.
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Introduction

The reconstruction of an image from a sparse subset of all

pixels is known as inpainting [1]. For the application of

image compression, the selection of the data has to be

optimised. Let us emphasise that this is by no means a

simple task. Selecting 5% of the pixels from a 256� 256

pixel image offers more than 105000 possible choices. In

[2–7], corresponding strategies are devised via partial

differential equations (PDEs). Related models for the

inpainting step using the Allen–Cahn model have also been

considered in [8], whereas the authors of [9] analysed the

Cahn–Hilliard equation. Finally, a broader discussion on

fluid dynamics for image reconstruction tasks has been

discussed in [10]. The results from [2, 6] motivated the

authors of [11] to suggest an optimal control-based

approach with a relaxed formulation of the Laplace equa-

tion given for known data f by

c xð Þ u xð Þ � f xð Þð Þ þ 1� c xð Þð Þ �Dð Þu xð Þ ¼ 0 ð1Þ

and additional boundary conditions. The support of the

function c indicates that the data locations used for

reconstruction should be minimised while preserving a

good reconstruction quality. In [11], a local contrast

enhancing effect was also observed if c maps to values

outside of [0, 1]. Based on [6], this finding was reinforced

in [12] where an equivalence with a tuning of the data f was

proven. A concrete explanation for this behaviour was not

given. However, the understanding of the influence of c on

the reconstruction u is crucial for the understanding and

improvement of current and future approaches to optimise

the inpainting data.

Our Contributions. We show that (1) is related to the

Helmholtz equation with a non-constant refraction index if

cðxÞ[ 1 and deduce from this interpretation the benefits of

non-binary-valued functions c and thus the observations in

[11].

In addition, we provide details on how to maximise the

benefits gained from this insight. As discussed in [13], it is

important to assert that solutions of (1) exist and are unique

for each feasible choice of c, and 8 / 7 is stated as its upper

bound. To improve this finding, we formulate the finite

difference discretisation as an optimisation task. This

allows us to specify larger feasible ranges for the values of
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c than in [5, 13]. We obtain more accurate reconstructions

and a stronger contrast enhancing effect.

Inpainting and the Helmholtz equation

Let us briefly recall the mechanisms of inpainting with

homogeneous diffusion (IHD). Let f : X ! R be a smooth

function on some bounded and open domain X � R2 with a

sufficiently regular boundary oX. Moreover, let us assume

that there exists a closed non-empty set of known data

XK$X that we interpolate. IHD considers the following

PDE with mixed boundary conditions:

�Du ¼ 0 on X n XK ;

with u ¼ f on XK ; and onu ¼ 0 on oX n oXK

ð2Þ

and where onu denotes the derivative of u in the outer

normal direction. We refer to [14] for an extensive study on

the existence and uniqueness of solutions.

Following [6], we introduce the confidence function c :
X ! R indicating the presence of data. We set cðxÞ to 1 for
x 2 XK and 0 otherwise. Lets us rewrite (2) as

c xð Þ u xð Þ � f xð Þð Þ � 1� c xð Þð ÞDu xð Þ ¼ 0 on X ð3Þ

with Neumann boundary conditions along oX n oXK . As

shown in [2, 6], the choice of c has a substantial influence

on the solution. Interestingly, (3) also makes sense when c

is not binary-valued but takes values in R. This has been

exploited in [11], where (3) is complemented by a convex

energy to obtain a sparse and optimal support for c.

Let us now combine the idea of a non-binary-valued

confidence function c with the mixed boundary value

problem given in (2). We consider:

c xð Þ u xð Þ � f xð Þð Þ � 1� c xð Þð ÞDu xð Þ ¼ 0 on X n XK ;

with u ¼ f on XK ; and onu xð Þ ¼ 0 on oX n oXK :

ð4Þ

Proposition 1 If we define XK :¼ fx 2 X j c xð Þ � 1g,
then (4) is equivalent to (3) for non-binary-valued c and

equivalent to (2) for binary-valued c with range 0; 1f g.

The major difference between (4) and the previous

formulations lies in the distinction between c ¼ 1 and

c 6¼ 1. We now proceed to the first important finding of this

paper.

Theorem 1 If the confidence function c from (3) is con-

tinuous, then the inpainting equation from (4) corresponds

to the Helmholtz equation in those regions where cðxÞ[ 1.

Proof Due to the intermediate value theorem and the fact

that the level sets where c � 1 form closed contours around

the regions, where c xð Þ[ 1, we can subdivide X n XK into

disjoint regions, where c\1 and where c[ 1. These

regions are separated by XK on which the solutions u are

enforced to coincide with f. Thus, the problem decouples

and allows us to discuss these two cases independently.

The case 0 6 c xð Þ\1 has already been discussed in [13]

and will not be investigated further in this paper. Inside

those regions, where c[ 1, we can divide (4) by 1� c xð Þ
and obtain the following formulation:

Du xð Þ þ g2 xð Þu xð Þ ¼ g xð Þon X n XK ;

with u ¼ f on XK and onu xð Þ ¼ 0on oX n oXK ;

ð5Þ

where g2 xð Þ ¼ c xð Þ
c xð Þ�1

and g xð Þ ¼ g2 xð Þf xð Þ. Equation (5) is

the inhomogeneous Helmholtz equation with a refraction g
and mixed boundary conditions [15]. h

Theorem 1 gives us valuable insight into the properties

of our inpainting equation. The Dirichlet data in XK in (5)

can be interpreted in physical terms as a radiation source.

The solutions u model the spread of this radiation inside

X n XK and the superposition of radiated waves causes the

contrast enhancement. Thus, our observations provide a

physically motivated explanation for the equivalence

shown in [12] and the usage of mask values outside of the

range 0; 1½ �. Furthermore, the largest refraction numbers g
are obtained for values of c slightly above 1 (g ! 1 for

c & 1). If c ! 1, then g ! 1, and the sharpening effect

vanishes. This explains why values for c significantly lar-

ger than 1 are rarely observed in practice.

To get the best possible results for image reconstruc-

tions, it is essential to maximise the admissible range of g.
At the same time, it should be asserted that the discrete

setup is well posed. In [13], the author analysed (3) and

provided bounds that guarantee that the discretised PDE in

(3) has a unique solution. For standard finite difference

schemes, these bounds are given by 0 6 ci 6 8=7 for all

stencil points ci and 0\ci for at least one ci.

Improved schemes for the inpainting equation

We now follow the philosophy to optimise key features of

our discrete operator for fixed grid parameters and max-

imise the feasible range for the refraction directly within

the design process. For simplicity, we restrict ourselves to

3� 3 stencils.

To pursue our goals, we need the 2D Taylor expansion.

For a sufficiently smooth function f : R2 ! R, the Taylor

expansion of order n around x0 is given by

f xð Þ �
P

aj j6n
Daf x0ð Þ

a! x� x0ð Þa, where we employ multi-in-

dex notation on a 2 N2 and where Daf x0ð Þ denotes the
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partial derivatives of f evaluated at x0. Given a regular 2D

grid with constant step sizes h in each direction, we use the

Taylor approximations in all 8 neighbouring pixels. Each

Taylor expansion uses x0 :¼ x0; y0ð Þ as centre. This yields
the 9 combinations f x0 þ kh; y0 þ jhð Þ �

P
aj j6n

Daf x0;y0ð Þ
a!

kh; jhð Þa with k and j 2 �1; 0; 1f g each. In a next step, we

express the desired derivative Daf x0; y0ð Þ as a linear com-

bination of all these positions in our stencil:

Daf x0; y0ð Þ � k1f ðx0 � h; y0 � hÞ þ
k2f ðx0 � h; y0Þ þ . . .þ k9f ðx0 þ h; y0 þ hÞ:

ð6Þ

Inserting corresponding Taylor expansions and performing

a comparison of coefficients leads to a linear system of

equations. Its solutions represent the coefficient vectors k
for the stencil. Omitting, for clarity, the common argument

ðx0; y0Þ, we have

Daf ¼
X9

j¼1

kjf þ
X3

i¼1

k6þi � ki

 !

hfx þ

X2

i¼0

k3ðiþ1Þ � k1þ3i

 !

hfy þ
X3

i¼1

ki þ k6þi

 !
h2

2
fxx þ

X1

i¼0

k7þ2i � k1þ2i

 !

h2fxy þ
X2

i¼0

k1þ3i þ k3ðiþ1Þ

 !
h2

2
fyy

ð7Þ

up to Oðh3Þ. Unfortunately, this approach does not lead, in

general, to a square system matrix. The number of

unknowns coincides with the number of stencil positions.

On the other hand, if we perform a Taylor expansion up to

order n, we obtain nðnþ 1Þ=2 equations. These numbers

rarely match. Nevertheless, unless the equations contradict,

it is still possible to determine a particular solution k ¼

kið Þ9i¼1 as well as a basis m1; m2; . . .f g for the nullspace of

the matrix and express all solutions as kþ
P

j bjmj.

By computing a particular solution of the linear system

for an approximation of the second-order derivatives fxx,

we arrive at the parametric representations presented in

Fig. 1. The stencil for fyy is obtained analogously and

corresponds to transposing the stencil of oxxf . The stencil

for the Laplacian as in Fig. 1 is obtained by adding the

stencils for fxx and fyy:

Let us now compute the stencil entries for our inpainting

task from (3) resp. (4). As discussed in [11], these equa-

tions can be discretised and written as follows:

A cð Þu :¼ diag cð Þ þ I� diag cð Þð Þ �Lð Þð Þu ¼ diag cð Þf
ð8Þ

where c, u, and f are the discretised variants of c, u, and f

respectively. The matrix L is the discrete analogue of the

Laplace operator with incorporated boundary conditions,

whereas I is the identity matrix. We assume that L is

discretised with the stencil from Fig. 1. The system matrix

of (8) is large and banded. A straightforward computation

for non-boundary pixels i shows that the stencil is given as

in Fig. 2.

For b ¼ �1=2, the corresponding stencils for the

Laplacian as well as for the inpainting matrix perform an

undesirable odd-even decoupling. As a remedy, values for

b should be chosen in the range �1;�1=2½ Þ. If b ¼ �1, we

obtain the well-known standard five point stencil for the

Laplacian.

Following [5, 13], we can use the stencil entries to

obtain estimates on the ci for which invertibility of the

system matrix is asserted below. This finding extends

results in [5] with feasible range 0; 1f g and from [13] with

feasible range 0; 8=7½ �.

Theorem 2 The inpainting matrix A cð Þ from (8) corre-

sponding to the stencil from Fig. 2 is invertible when all ci
lie in the range 0; 4=3½ � for h ¼ 1 and b ¼ �1=2. This is

the largest possible range for the Laplacian from Fig. 1.

Furthermore, the lower bound ci > 0 for the mask entries

ci can only be asserted when b 2 �1;�1=2½ �.

Proof We follow the ideas from [5, 13]. By applying

Geršgorin’s circle theorem at the rows of the matrix A cð Þ,
we obtain pointwise estimates for the position of its

eigenvalues. We note that all non-zero entries in any of the

∂xx

β + h−2/2 −2β β + h−2/2
−2β − h−2 4β −2β − h−2

β + h−2/2 −2β β + h−2/2
,

Δ

β + h−2 −2β − h−2 β + h−2

−2β − h−2 4β −2β − h−2

β + h−2 −2β − h−2 β + h−2

Fig. 1 Differential operators and corresponding stencils. The free

parameter b stems from the fact that the nullspace of the matrix is one

dimension

A (c)
(β + h−2)(ci − 1) (−2β − h−2)(ci − 1) (β + h−2)(ci − 1)

(−2β − h−2)(ci − 1) ci + 4β(ci − 1) (−2β − h−2)(ci − 1)
(β + h−2)(ci 1) ( 2β h−2)(ci 1) (β + h−2)(ci − 1)

Fig. 2 Stencil for the inpainting matrix A cð Þ from (8) for a non-boundary pixel at position i. These stencil entries correspond to the non-zero

entries of A cð Þ in the i-th row. Along the image boundaries, the stencil has to be adapted to consider the boundary conditions
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rows of A cð Þ are given by the stencil entries from Fig. 2.

To exclude 0 from the spectrum, we must solve

ci þ 4 ci � 1ð Þ � 4 �2b� h�2
� �

ci � 1ð Þ
�
�

�
�

�

þ bþ h�2
� �

ci � 1ð Þ
�
�

�
�
�
[ 0:

ð9Þ

For h ¼ 1, a lengthy but simple computation shows that

0\ci\8b=ð1þ 8bÞ must hold whenever b 6 �1=2. Other

values for b yield ranges which do not include the interval

(0, 1] and thus are of no interest to us. Maximising the

upper bound is possible for b ¼ �1=2 and yields the range

(0, 4 / 3]. An identical analysis for the cases where a pixel

is placed along a boundary or in a corner does not yield

further restrictions. h

Let us now demonstrate the benefits of larger feasible

ranges for the mask values c. Our objective in this is to

improve image reconstructions by IHD. Thus, we con-

sider for quantitative evaluation a small synthetic image

and measure the reconstruction error in function of the

mask values. Our test image consists of 25� 25 pixels

representing a sampled version of the function x2 þ y2

over 0; 1½ � � 0; 1½ �. Our mask contains 5 non-zero entries.

In each corner, we fix the mask value to be 1. The

remaining non-zero entry is placed at the centre of the

image and we measure the mean-squared error (MSE) of

the reconstruction as a function of the mask value at this

position. We study this setup for different values b, as
shown in Fig. 3.

In a second experiment, we show that our discretisations

allow a contrast enhancing effect. To this end, we select a

small 10� 12 grey-scale image patch with pixel value 0.25

on the left half and 0.75 on the right half. Our masks

consists of a small strip with 2 pixels width along the image

edge. We set all non-zero mask values to the same value

8b=ð1þ 8bÞ, and let b vary in the admissible range

�1;�1=2½ �. For each value of b, we consider the recon-

struction at the two neighbouring pixels from each side of

the image. Table 1 confirms the desired contrast

improvements.

Conclusions

This paper shows the relation between the classic Helm-

holtz equation and the inpainting problem. Thus, we relate

two up to now unconnected fields from science. In the

future, we hope to develop better performing inpainting

models based on this insight.

Acknowledgements The author thanks Michael Breuß for his sup-

port and many helpful comments.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing

interests.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Bertalmı́o, M., Sapiro, G., Caselles, V., Ballester, C.: Image

inpainting. In: Proc. SIGGRAPH, pp. 417–424. ACM Press, New

York (2000)

2. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to

choose interpolation data in images. SIAM J. Appl. Math. 70(1),
333–352 (2009)

3. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-

based image compression. Comput Res Repos (2014)

0 1

β = -1/2
β = -5/8
β = -3/4

β = -7/8
β = -1

M
S
E

0,01

0,02

0,03

Mask value c

Fig. 3 MSE for different stencil choices in function of the mask

value. For each stencil, the MSE is monotonically decreasing. Most

stencils yield similar errors. The huge gap in the error between the

stencil for b ¼ �1=2 and all the others is due to the odd-even

decoupling of the corresponding stencil. The vertical lines indicate

the maximal allowed value of c for each case

Table 1 Possible contrast enhancement for different stencils. Values

b in �1;�1=2ð � correspond to our discretisations with enhanced

contrast properties. The improved contrast is clearly visible for

increasing b

Parameter value b �1 �7=8 �3=4 �5=8 �1=2

Maximal mask value for c 8/7 7=6 6/5 5/4 4/3

Maximal difference 2/3 7/10 3/4 5/6 1

76 Math Sci (2017) 11:73–77

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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