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Abstract This study is aimed to develop a new matrix

method, which is used an alternative numerical method to

the other method for the high-order linear Fredholm inte-

gro-differential-difference equation with variable coeffi-

cients. This matrix method is based on orthogonal Jacobi

polynomials and using collocation points. The improved

Jacobi polynomial solution is obtained by summing up the

basic Jacobi polynomial solution and the error estimation

function. By comparing the results, it is shown that the

improved Jacobi polynomial solution gives better results

than the direct Jacobi polynomial solution, and also, than

some other known methods. The advantage of this method

is that Jacobi polynomials comprise all of the Legendre,

Chebyshev, and Gegenbauer polynomials and, therefore, is

the comprehensive polynomial solution technique

Keywords Orthogonal Jacobi polynomials � Fredholm
integro-differential-difference equation � Residual error
technique � Matrix method

Introduction

Orthogonal Jacobi polynomials

The systems of polynomials remain a very active

research area in mathematics, physics, engineering and

other applied sciences; and the orthogonal polynomials,

among others, are definitely the most thoroughly studied

and widely applied systems [1–3]. The three of these

systems, namely, Hermite, Laguerre, and Jacobi, are

called collectively the classical orthogonal polynomials

[4]. There is excessive literature on these polynomials,

and the most comprehensive single account of the clas-

sical polynomials is found in the classical treatise of

Szegö [5].

Jacobi polynomials are the common set of orthogonal

polynomials defined by the formula [4]

P a;bð Þ
n xð Þ ¼ n!ð Þ�1 �2ð Þn 1� xð Þ�a

1þ xð Þ�b d
n

dxn

� 1þ xð Þnþb
1� xð Þnþa

h i
ð1Þ

Here, a and b are parameters that, for integrability

purposes, are restricted to a[ � 1; b[ � 1. However,

many of the identities and other formal properties of these

polynomials remain valid under the less restrictive condi-

tion that neither a is b a negative integer. Among the many

special cases, the following is the most important [4]

(a) The Legendre polynomials a ¼ b ¼ 0ð Þ
(b) The Chebyshev polynomials a ¼ b ¼ �1=2ð Þ
(c) The Gegenbouer (or ultraspherical) polynomials

a ¼ bð Þ

The Jacobi polynomials P a;bð Þ
n xð Þ are defined [6, 7] with

respect to the weight function xa;b xð Þ ¼ 1� xð Þa 1þ xð Þb
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mustafa.bahsi@cbu.edu.tr
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ða[ � 1; b[ � 1Þ on �1; 1ð Þ. It is proved that the Jacobi
polynomials satisfy the following relation [7]:

P a;bð Þ
n xð Þ ¼

Xn
k¼0

B a;b;nð Þ
n x� 1ð Þk; a; b[ � 1 ð2Þ

where

B a;b;nð Þ
n ¼ 2�k nþ aþ bþ k

k

� �
nþ a
n� k

� �
;

k ¼ 0; 1; 2; . . .; n
ð3Þ

These polynomials play role in rotation matrices [8], in

the trigonometric Reson–Morse potential [9], and the cases

of a few exact solutions in quantum mechanics [10, 11].

In very recent years, several researchers developed new

numerical algorithms for some problems using Jacobi

polynomials. Eslahchi et al. [12] gave a numerical solution

for some nonlinear ordinary differential equations using the

spectral method. Bojdi et al. [13] proposed a Jacobi matrix

method for differential-difference equations with variable

coefficients. Kazem [14] used the Tau method for solving

fractional-order differential equations by means of Jacobi

polynomials.

Recently, Bharwy et al. [15–22] have used Jacobi

polynomials both in operational matrix method and in

spectral collocation method for solving some class of

fractional differential equations; for instance, nonlinear

sub-diffusion equations, delay fractional optimal control

problems, time fractional Kdv equations, Caputo fractional

diffusion-wave equations, fractional nonlinear cable equa-

tion, and fractional differential equations.

Integro-differential-difference equations

Fredholm integro-differential-difference equations

(FIDDEs) are encountered in many model problems in

biology, physics, and engineering. Also, they have been

investigated using different methods by scientists [23–28].

Various numerical schemes for solving a partial integro-

differential equation are presented by Dehghan [29].

In this study, we generate a procedure to find a Jacobi

polynomial solution for the nth order linear FIDDE with

variable coefficients

Xn
i¼0

Pi xð ÞyðiÞ xð Þ þ
Xm
j¼0

Qj xð ÞyðjÞ x� sð Þ

¼ g xð Þ þ
Zb

a

K x; tð Þy t � sð Þdt; s� 0 ð4Þ

under mixed conditions

Xn�1

i¼0

akiy
ið Þ að Þ þ bkiy

ið Þ bð Þ þ ckiy
ið Þ gð Þ

h i
¼ lk;

k ¼ 0; 1; . . .; n� 1

ð5Þ

where Pi xð Þ, Qj xð Þ, K x; tð Þ, and g xð Þ are known functions

and aki, bki, cki, and lk are appropriate constants, while y xð Þ
is the unknown function. Note that a� g� b is a given

point in the spatial domain of problem.

The main aim of our study, using orthogonal Jacobi

polynomials, is to provide an approximate solution for the

problem (4, 5), which is usually hard to find analytical

solutions.

We assume a solution expressed as the truncated series

of orthogonal Jacobi polynomials defined by

y xð Þ ffi y
a;bð Þ
N xð Þ ¼

XN
n¼0

anP
a;bð Þ
n xð Þ ð6Þ

where P a;bð Þ
n xð Þ, n ¼ 0; 1; . . .;N denote the orthogonal

Jacobi polynomials defined by (2, 3); N is chosen N� n

and an; n ¼ 0; 1; . . .;N are unknown coefficients to be

determined. Note that a and b are arbitrary parameters,

such that a[ � 1; b[ � 1ð Þ.

Fundamental matrix relations

We can transform the orthogonal Jacobi polynomials

P a;bð Þ
n xð Þ from algebraic form into matrix form as follow:

P a;bð Þ xð Þ ¼ X xð ÞM a;bð Þ ð7Þ

where

P a;bð Þ xð Þ ¼ P
a;bð Þ
0 xð Þ P

a;bð Þ
1 xð Þ P

a;bð Þ
2 xð Þ . . . P

a;bð Þ
N xð Þ

h i

ð8Þ

X xð Þ ¼ 1 x� 1ð Þ x� 1ð Þ2 . . . x� 1ð ÞN
� �

ð9Þ

and

M a;bð Þ ¼ m
ða;bÞ
ij

h i
; 1� i; j�N þ 1 ð10Þ

such that

m
a;bð Þ
ij ¼ 21�i aþ bþ i� 2þ j

i� 1

� �
aþ j� 1

j� i

� �
; i� j

0; i[ j

8<
:

We assume the solution y xð Þ, which is defined by the

truncated orthogonal Jacobi series (6) in matrix form as

follow

y
a;bð Þ
N xð Þ

h i
¼ P a;bð Þ xð ÞA ð11Þ

where

A ¼ a0 a1 . . . aN½ �T ð12Þ

By substituting the matrix form of Jacobi polynomials

(7) to (11) into (4, 5), we can obtain the fundamental
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matrix equation of approximate solution of unknown

function as

y
a;bð Þ
N xð Þ

h i
¼ X xð ÞM a;bð ÞA ð13Þ

Matrix representation of differential-difference part

of problem

Differential-difference part of problem is
Pn

i¼0 Pi xð ÞyðiÞ xð Þ
þ
Pm

j¼0 Qj xð ÞyðjÞ x� sð Þ:First, to explain the relation

between the matrix form of the unknown function and the

matrix form of its derivative yðiÞ xð Þ, we introduce the

relation between X xð Þ and its derivatives X ið Þ xð Þ can be

expressed as

X ið Þ xð Þ ¼ X xð ÞBi ð14Þ

where

B ¼

0 1 0 � � � 0

0 0 2 0

..

. . .
. ..

.

0 0 0 � � � N

0 0 0 N

2
66664

3
77775

ð15Þ

Then, using (13) and (14), we may write

yðiÞ xð Þ
h i

ffi y
a;bð Þ
N

� � ið Þ
xð Þ

� 	
¼ X ið Þ xð ÞM a;bð ÞA

¼ X xð ÞBiM a;bð ÞA ð16Þ

Similarly, the relation between the matrix form of

unknown function and matrix form of its delay forms’

derivatives yðjÞ x� sð Þ can be expressed as

y jð Þ x� sð Þ ¼ X jð Þ x� sð ÞM a;bð ÞA

¼ X x� sð ÞB jM a;bð ÞA

¼ X xð ÞBsB
jM a;bð ÞA

ð17Þ

where

Thus, it is seen that

yðjÞ x� sð Þ ¼ X xð ÞBsB
iM a;bð ÞA ð19Þ

Using (16) and (19), the matrix form of differential-dif-

ference part of Eq. (4) becomes

Xn
i¼0

Pi xð ÞyðiÞ xð Þ þ
Xm
j¼0

Qj xð ÞyðjÞ x� sð Þ

¼
Xn
i¼0

Pi xð ÞX xð ÞBiM a;bð ÞAþ
Xm
j¼0

Qj xð ÞX xð ÞBsB
jM a;bð ÞA

ð20Þ

Matrix representation of integral part of problem

Fredholm integral part of problem is
R b

a
K x; tð Þy t � sð Þdt,

where K x; tð Þ the kernel function of the Fredholm integral

part of main problem is. This function can be written using

the truncated Taylor Series [30] and the truncated orthog-

onal Jacobi series, respectively, as

K x; tð Þ ¼
XN
m¼0

XN
n¼0

kTmnx
mtn ð21Þ

and

K x; tð Þ ¼
XN
m¼0

XN
n¼0

kJmnP
a;bð Þ
m xð ÞP a;bð Þ

n tð Þ ð22Þ

where

kTmn ¼
1

m!n!

omþnK 0; 0ð Þ
oxmotn

; m; n ¼ 0; 1; . . .;N

is the Taylor coefficient and kJmn is the Jacobi coefficient.

The expressions (21) and (22) can be written using matrix

forms of the Jacobi polynomials, respectively, as

K x; tð Þ ¼ X xð ÞB�1KT X tð ÞB�1ð ÞT; KT ¼ kTmn
� �

ð23Þ

K x; tð Þ ¼ P a;bð Þ xð ÞKJ P a;bð Þ tð Þ
� �T

; KJ ¼ kJmn
� �

ð24Þ

The following relation can be obtained from Eqs. (7), (23),

and (24),

Bs ¼

0

0

� �
ð�sÞ0

1

0

� �
ð�sÞ1

2

0

� �
ð�sÞ2 � � �

N

0

� �
ð�sÞN

0
1

1

� �
ð�sÞ0

2

1

� �
ð�sÞ1

N

1

� �
ð�sÞN�1

..

. . .
. ..

.

0 0 0 � � �
N

N

� �
ð�sÞ0

2
666666666664

3
777777777775

ð18Þ
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X xð ÞB�1KT B�1ð ÞTXT tð Þ ¼ P a;bð Þ xð ÞKJ P a;bð Þ tð Þ
� �T

¼ X xð ÞM a;bð ÞKJ M a;bð Þ
� �T

XT tð Þ

) B�1KT B�1ð ÞT¼ M a;bð ÞKJ M a;bð Þ
� �T

) KJ ¼ M a;bð Þ
� ��1

B�1KT B�1ð ÞT M a;bð Þ
� �T

� ��1

or

KT ¼ B�1ð Þ�1M a;bð ÞKJ M a;bð Þ
� �T

B�1ð ÞT
� ��1

ð25Þ

By substituting the Eqs. (19) and (25) into
R b

a
K x; tð Þy

t � sð Þdt, we derive the matrix relation

Zb

a

K x; tð Þy t � sð Þdt ¼
Zb

a

P a;bð Þ xð ÞKJ P a;bð Þ tð Þ
� �T

� X tð ÞBsM
a;bð ÞAdt

¼ P a;bð Þ xð ÞKJQA ð26Þ

such that

Q ¼
Zb

a

P a;bð Þ tð Þ
� �T

X tð ÞBsM
a;bð Þdt

¼
Zb

a

M a;bð Þ
� �T

XT tð ÞX tð ÞBsM
a;bð Þdt

¼ M a;bð Þ
� �T

HBsM
a;bð Þ

where

H ¼
Zb

a

XT tð ÞX tð Þdt ¼ hij
� �

;

hij ¼
1

i� 1þ j
b� 1ð Þi�1þj� a� 1ð Þi�1þj

� �
;

i; j ¼ 1; 2; 3. . .;N þ 1

Finally, substituting the form (7) into expression (26)

yields the matrix relation

Zb

a

K x; tð Þy t � sð Þdt ¼ X xð ÞM a;bð ÞKJQA ð27Þ

Matrix representation of conditions

In this section, we write to the matrix form of mixed

conditions of the problem given Eq. (5), using the matrix

relation (16), as

Xn�1

i¼0

akiy
ið Þ að Þ þ bkiy

ið Þ bð Þ þ ckiy
ið Þ gð Þ

h i

¼
Xn�1

i¼0

akiX að Þ þ bkiX bð Þ þ ckiX gð Þ½ �BiM a;bð ÞA ¼ lk;

k ¼ 0; 1; . . .; n� 1 ð28Þ

Method of solution

We substitute obtained matrix relations in the previous sub-

sections given inEqs. (20) and (27) into fundamental problem

to build the fundamental matrix equation of the problem. For

this purpose, we can define collocation points as follow:

xs ¼ aþ b� a

N
s; s ¼ 0; 1; 2; . . .;N

As can be observed, standard collocation points dividing

the domain interval ½a; b� of the problem into N equal parts

are employed.

Accordingly, we obtain the system of matrix equations

Xn
i¼0

Pi xsð ÞX xsð ÞBiM a;bð ÞAþ
Xm
j¼0

Qj xsð ÞX xsð ÞBsB
jM a;bð ÞA

¼ g xsð Þ þ X xsð ÞM a;bð ÞKJQA

The fundamental matrix equation becomes

Xn
i¼0

PiXB
iM a;bð Þ þ

Xm
j¼0

QjXBsB
jM a;bð Þ �XM a;bð ÞKJQ

( )
A¼G

ð29Þ

where

Pi ¼

Pi x0ð Þ 0

0 Pi x1ð Þ
� � �

0

0

..

. . .
. ..

.

0 0 � � � Pi xNð Þ

2
66664

3
77775
; G ¼

g x0ð Þ
g x1ð Þ
..
.

g xNð Þ

2
66664

3
77775

Qj ¼

Qj x0ð Þ 0

0 Qj x1ð Þ
� � �

0

0

..

. . .
. ..

.

0 0 � � � Qj xNð Þ

2
66664

3
77775
; X ¼

X x0ð Þ
X x1ð Þ

..

.

X xNð Þ

2
66664

3
77775

Equation (29), which is matrix representation of the

Eq. (4), corresponds to a system of N þ 1 algebraic equa-

tions. This system indicates N þ 1 unknown coefficients,

such that a0; a1; a2; . . .; aN . Briefly, if we define

W ¼
Xn
i¼0

PiXB
iM a;bð Þ þ

Xm
j¼0

QjXBsB
jM a;bð Þ

� XM a;bð ÞKJQ

86 Math Sci (2016) 10:83–93
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under last definition W matrix Eq. (29) transforms into the

augmented matrix form

W;G½ �: ð30Þ

Similarly, from (28), the matrix form of mixed condi-

tions can be obtained briefly as

UkA ¼ lk or Uk; lk½ �; k ¼ 0; 1; 2; . . .; n� 1 ð31Þ

such that

Uk ¼
Xn�1

i¼0

akiX að Þ þ bkiX bð Þ þ ckiX gð Þ½ �BiM a;bð Þ

Consequently, to find the Jacobi polynomial solution of

Eq. (4) under the mixed conditions (5), we replace the row

matrix (31) by last n rows of the augmented matrix (30),

which yields the new matrix equation form written as

follow

~W; ~G
� �

: ð32Þ

If rank ~W ¼ rank ~W; ~G
� �

¼ N þ 1, then we can find the

matrix of unknown coefficient of Jacobi series via

A ¼ ~W

 ��1 ~G. Note that the matrix A (thereby, the coef-

ficients a0; a1; a2; . . .; aN) is uniquely determined [22].

Equation (4) has also a unique solution under the condi-

tions (5). Thus, we get the Jacobi polynomial solution for

arbitrary parameters a and b:

y xð Þ ffi y
a;bð Þ
N xð Þ ¼

XN
n¼0

anP
a;bð Þ
n xð Þ

Error analysis

In this part of study, it is given to a useful error estimation

procedure for orthogonal Jacobi polynomial solution of the

problem. Also, this procedure is used to obtain the

improved solution of the problem (4, 5) according to the

direct Jacobi polynomial solution. For this purpose, we use

the residual correction technique [31, 32] and error esti-

mation by the known Tau method [33, 34].

Recently, Yüzbaşı and Sezer [35] solved a class of the

Lane–Emden equations using the improved BCM with

residual error function. Yüzbaşı et al. [36] proposed an

improved Legendre method for to obtain the approximate

solutions of a class of the integro-differential equations. Wei

and Chen [37] presented a numerical method called spectral

methods for classes Volterra type integro-differential equa-

tions with weakly singular kernel and smooth solutions.

For the purpose of calculating the corrected solution, we

now define the residual function using the Jacobi polyno-

mial solution by obtained the our method as

RN xð Þ ¼
Xn
i¼0

Pi xð Þ y
a;bð Þ
N

� �ðiÞ
xð Þ

þ
Xm
j¼0

Qj xð Þ y
a;bð Þ
N

� �ðjÞ
x� sð Þ � g xð Þ

�
Zb

a

K x; tð Þy a;bð Þ
N t � sð Þdt ð33Þ

where y
a;bð Þ
N xð Þ is the approximate solution of Eqs. (4, 5)

for arbitrary parameters a and b. Hence, y a;bð Þ
N xð Þ satisfies

the problem

Xn
i¼0

Pi xð Þ y
a;bð Þ
N

� � ið Þ
xð Þ þ

Xm
j¼0

Qj xð Þ y
a;bð Þ
N

� � jð Þ
x� sð Þ

�
Zb

a

K x; tð Þy a;bð Þ
N t � sð Þdt ¼ g xð Þ þ RN xð Þ

Xn�1

i¼0

aki y
a;bð Þ
N

� � ið Þ
að Þ þ bki y

a;bð Þ
N

� � ið Þ
bð Þ þ cki y

a;bð Þ
N

� � ið Þ
gð Þ

� 	

¼ lk; k ¼ 0; 1; . . .; n� 1 ð34Þ

The error function eN xð Þ can also be defined as

e
a;bð Þ
N xð Þ ¼ y xð Þ � y

a;bð Þ
N xð Þ ð35Þ

where y xð Þ is the exact solution of the Eqs. (4, 5). Substi-

tuting (35) into (4, 5) and also using (33) and (34), we derive

the error differential equation with homogenous conditions:

Xn
i¼0

Pi xð Þ e
a;bð Þ
N

� �ðiÞ
xð Þ þ

Xm
j¼0

Qj xð Þ e
a;bð Þ
N

� �ðjÞ
x� sð Þ

�
Zb

a

K x; tð Þe a;bð Þ
N t � sð Þdt ¼ �RN xð Þ

Xn�1

i¼0

aki e
a;bð Þ
N

� � ið Þ
að Þ þ bki e

a;bð Þ
N

� � ið Þ
bð Þ þ cki e

a;bð Þ
N

� � ið Þ
gð Þ

� 	
¼ 0

ð36Þ

By solving the problem (36) using the presentmethod given in

the previous section, we get the error estimation function

e
a;bð Þ
N;M xð Þ to e

a;bð Þ
N xð Þ. Note that M must be bigger than N and

error estimation is found using the residual function RN xð Þ.
Consequently, bymeans of the orthogonal Jacobi polynomials

y
a;bð Þ
N xð Þ and e a;bð Þ

N;M xð Þ, we obtain the corrected Jacobi solution
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y
a;bð Þ
N;M xð Þ ¼ y

a;bð Þ
N xð Þ þ e

a;bð Þ
N;M xð Þ ð37Þ

Finally, we construct the Jacobi error function e
a;bð Þ
N xð Þ

and the corrected Jacobi error function E
ða;bÞ
N;M xð Þ

e
a;bð Þ
N xð Þ ¼ y xð Þ � y

a;bð Þ
N xð Þ; ð38Þ

E
ða;bÞ
N;M xð Þ ¼ y xð Þ � yN;M xð Þ: ð39Þ

Illustrative examples

We apply the Jacobi matrix method to four examples via

the symbolic computation program Maple [38]. In these

examples, the term e
a;bð Þ
N xð Þ

���
��� represent absolute error

function and also E
a;bð Þ
N;M xð Þ

���
��� represent the absolute error

function of the corrected Jacobi polynomial solution.

Example 1 As the first example, we consider the FIDDE

[23, 24]

y
0
xð Þ þ xy

0
x� 1ð Þ � y xð Þ þ y x� 1ð Þ

¼ gðxÞ þ
Z1

�1

Kðx; tÞy t � 1ð Þdt ð40Þ

with initial condition

y 1ð Þ � 2y 0ð Þ þ y �1ð Þ ¼ 0

Here, m ¼ 1; s ¼ 1;P1 xð Þ ¼ 1;P0 xð Þ ¼ �1; g xð Þ ¼ x�
2;Q1 xð Þ ¼ x;Q0 xð Þ ¼ 1;K x; tð Þ ¼ xþ t; a ¼ �1; b ¼ 1; g
¼ 0; a00 ¼ 1; b00 ¼ �2; c00 ¼ 1; l0 ¼ 0. We assume that

the Eq. (40) has a Jacobi polynomial solution in the fol-

lowing form,

y xð Þ ¼ a0P
a;bð Þ
0 xð Þ þ a1P

a;bð Þ
1 xð Þ þ a2P

a;bð Þ
2 xð Þ

where N ¼ 2 and a; bð Þ ¼ 0:5;�0:5ð Þ, which are chosen

arbitrary; then, according to (8)

P a;bð Þ xð Þ ¼ P
a;bð Þ
0 xð Þ P

a;bð Þ
1 xð Þ P

a;bð Þ
2 xð Þ

h i

¼ 1
1

2
þ x � 15

8
þ 15

4
xþ 3 x� 1ð Þ2

2

� 	
:

The collocation points are computed as

x0 ¼ �1; x1 ¼ 0; x2 ¼ 1f g

and from Eq. (30), the matrix equation of the Eq. (40) is

P1XBMþ P0XMþQ1XB1BM�Q0XB1M� XMKJQf g
A ¼ G

where

P1 ¼ Q1 ¼
1 0 0

0 1 0

0 0 1

2
64

3
75;

P0 ¼
�1 0 0

0 �1 0

0 0 �1

2
64

3
75;

Q1 ¼
�1 0 0

0 0 0

0 0 1

2
64

3
75;

X ¼
1 �2 4

1 �1 1

1 0 0

2
64

3
75; B ¼

0 1 0

0 0 2

0 0 0

2
64

3
75;

B1 ¼
1 �1 0

0 1 �2

0 0 0

2
64

3
75; G ¼

�3

�2

�1

2
64

3
75

M ¼

1
3

2

15

8

0 1
15

4

0 0
3

2

2
666664

3
777775
; KJ ¼

�1 1 0

1 0 0

0 0 0

2
64

3
75;

Q ¼

2 �1
7

4

1
1

6

�5

8
1

4

3

8

�81

160

2
666664

3
777775

Hence, we obtain the matrix W as follows

W ¼

2
�8

3
10

0
�2

3
3

�2
4

3
2

2
666664

3
777775

Using Eq. (31), we can write the matrix equation of the

condition of the problem as

U; k½ � ¼ 0 0 3; 0½ �

Consequently, to find the Jacobi polynomial solution of the

problem under the mixed conditions, we replace the row

matrix U; k½ � by last row of the matrix W;G½ � and obtain

the matrix ~W; ~G
� �

as
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~W; ~G
� �

¼
2

�8

3
10; �3

0
�2

3
3; �2

0 0 3; 0

2
6664

3
7775:

Solving the new augmented matrix ~W; ~G
� �

, we obtain the

Jacobi polynomial coefficient matrix

A ¼ 5

2
3 0

� 	T
:

From Eq. (11), the Jacobi polynomial solution of the

problem is y
0:5;�0:5ð Þ
2 xð Þ ¼ 3xþ 4, which is the exact solu-

tion of the problem. Furthermore, we can obtain the exact

solution of the problem for any value of N and corre-

sponding suitable values of a; bð Þ.
Example 2 We consider a third-order FIDDE with variable

coefficients

y
000
xð Þ þ y

00
x� 1ð Þ � xy

0
xð Þ � xy x� 1ð Þ

¼ gðxÞ þ
Z1

�1

y t � 1ð Þdt ð41Þ

with the initial conditionsy 0ð Þ ¼ 0; y
0
0ð Þ ¼ 1; y

00
0ð Þ ¼ 0.

where g xð Þ ¼ � xþ 1ð Þ sin x� 1ð Þð þ cos xð ÞÞ � cos 2ð Þ þ 1.

The exact solution of problem is y xð Þ ¼ sin xð Þ:
After several trials, it has been determined that a; bð Þ ¼

�0:4; 0:5ð Þ gives the most accurate result; therefore, the

approximate solution of the third-order FIDDE has been

derived by employing these values, as y
�0:4;0:5ð Þ
6 xð Þ ¼ 0:299

3926085þ 0:5377164192x� 0:4041110104 x� 1ð Þ2�0:68

37651331e � 1 x� 1ð Þ3 þ 0:4006530189e� 1 x� 1ð Þ4þ
0; 2888171229e� 2 x� 1ð Þ5� 0:8352418987e� 3 x� 1ð Þ6

and the estimated error function is e
�0:4;0:5ð Þ
6;7 xð Þ ¼ 0:58

5645023e� 3 þ 0:460274411e � 2x � 0:1546818100

e� 1 x� 1ð Þ2 � 0:2185948038e� 1 x� 1ð Þ3� 0:47 16294

762e� 2 x� 1ð Þ4þ 0:2241198695e� 2 x� 1ð Þ5� 0:167994

29 91 e� 3 x� 1ð Þ6� 0:1485433260e� 3 x� 1ð Þ7. Then,

we calculate the corrected solution function simply as the

sum of the approximate solution and the estimated error

function

y
�0:4;0:5ð Þ
6;7 xð Þ ¼ y

�0:4;0:5ð Þ
6 xð Þ þ e

�0:4;0:5ð Þ
6;7 xð Þ

Table 1 shows the relative absolute error function

e
�0:4;0:5ð Þ
6 xð Þ

���
��� and the corrected absolute error function

E
�0:4;0:5ð Þ
6;7 xð Þ

���
��� for this example.

Now, we determine the maximum error for y
a;bð Þ
N xð Þ as,

E
a;bð Þ
N ¼ y

a;bð Þ
N xð Þ � y xð Þ1

¼ max y
a;bð Þ
N xð Þ � y xð Þ

���
���; a� x� b

n o

The maximum errors E
a;bð Þ
N for different values of N are

given in Table 2, and it is seen that the error decreases

continually as N increases.

The maximum error for the corrected Jacobi polynomial

solution (37) is calculated in a similar way,

E
a;bð Þ
N;M ¼ y

a;bð Þ
N;M xð Þ � y xð Þ1

¼ max y
a;bð Þ
N;M xð Þ � y xð Þ

���
���; a� x� b

n o

Table 1 Relative absolute error

function e
�0:4;0:5ð Þ
6 xð Þ

���
��� and the

corrected absolute error

function E
�0:4;0:5ð Þ
6;7 xð Þ

���
��� for

Example 2

xi Present method Taylor method [23] Tau method [24]

N ¼ 6 N;M ¼ 6; 7 N ¼ 6 N ¼ 7 N ¼ 6 N ¼ 7

�1:0 2:88e�02 1:04e�03 8:58e�02 6:03e�02 3:84e�02 5:05e�03

�0:8 1:36e�02 5:72e�04 3:93e�02 2:28e�02 1:83e�02 2:38e�03

�0:6 5:22e�03 2:53e�04 1:50e�02 6:63e�03 7:00e�03 9:14e�04

�0:4 1:38e�03 7:70e�05 4:12e�03 1:20e�03 1:86e�03 2:42e�04

�0:2 1:52e�04 9:68e�06 4:85e�04 6:90e�05 2:04e�04 2:65e�05

0:0 0 0 0 0 0 0

0:2 1:10e�04 9:22e�06 4:59e�04 5:30e�05 1:48e�04 1:91e�05

0:4 7:20e�04 6:97e�05 3:69e�03 8:09e�04 9:67e�04 1:25e�04

0:6 1:90e�03 2:15e�04 1:28e�02 3:82e�03 2:55e�03 3:30e�04

0:8 3:34e�03 4:71e�04 3:17e�02 1:14e�02 4:44e�03 5:78e�04

1:0 4:36e�03 8:26e�04 6:57e�02 2:73e�02 5:76e�03 7:53e�04

Table 2 Maximum error

(E
�0:4;0:5ð Þ
N ) for Example 2

N 4 6 8 10 12

E
a;bð Þ
N

1:6321e�01 2:8883e�02 6:2300e�03 2:9748e�03 2:9748e�04
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and the results are shown in Table 3 for miscellaneous

values of N, M. The decrease in maximum error, as M

increases, is indisputable.

Finally, the third-order FIDDE has also been solved

using Legendre, Gegenbauer (also Chebyshev), and Jacobi

polynomials, for comparison purposes. The maximum error

values are given in Table 4, and it is seen that Jacobi-based

solution gives slightly better results.

Example 3 The third example is a second-order FIDE

[24–26] with variable coefficients

y
00
xð Þ þ 4xy

0
xð Þ ¼ �8x4

x2 þ 1ð Þ3
� 2

Z1

0

t2 þ 1

x2 þ 1ð Þ2
y tð Þdt;

0� x� 1

ð42Þ

under the boundary conditions

y 0ð Þ ¼ 1; y 1ð Þ ¼ 1=2:

Here, P2 xð Þ ¼ 1;P1 xð Þ ¼ 4x;P0 xð Þ ¼ 0;Q0 xð Þ ¼ 0; g xð Þ
¼ �8x4= x2 þ 1ð Þ3; a ¼ 0; b ¼ 0;K x; tð Þ ¼ �2 t2 þ 1ð Þ=
x2 þ 1ð Þ2; s ¼ 0; a ¼ 0.

The exact solution of this problem is x2 þ 1ð Þ�1
.

Figure 1 shows a comparison of the Jacobi polynomial

solution y
0;0ð Þ
N xð Þ, and the corrected Jacobi polynomial

solution is y
0;0ð Þ
N;M xð Þ, for N;Mð Þ ¼ 5; 6ð Þ and ða ¼ b ¼ 0Þ,

with the exact solution yðxÞ. It is apparently seen that the

corrected Jacobi polynomial solution almost coincides with

the exact solution.

Table 5 and Fig. 2 show a comparison of the absolute

error with the corrected absolute errors, for N ¼ 5; 8 and

Table 3 Maximum error (E
�0:4;0:5ð Þ
N;M ) for Example 2

N;M 6; 7 6; 8 10; 11 10; 15

E
a;bð Þ
N;M

1:0480e�03 6:7241e�04 3:5602e�04 1:7160e�05

Table 4 Comparison of different polynomial bases for maximum

error values for Example 2

a;bð Þ E
a;bð Þ
4 E

a;bð Þ
6

Legendre base 0; 0ð Þ 0:1632109624 0:02888311052

Gegenbauer base ð�0:5;�0:5Þ 0:1632109623 0:0288831090

Jacobi base ð�0:4; 0:5Þ 0:1632109622 0:0288831072

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Exact Solu�on
Jacobi Polinomial Solu�on
Improved Jacobi Polynomial Solu�on

Fig. 1 Comparison of the

Jacobi polynomial solution

y
a;bð Þ
5 xð Þ and the corrected

Jacobi polynomial solution

y
a;bð Þ
5;6 xð Þ with the exact solution

for Example 3

Table 5 Comparison of the

absolute error with the corrected

absolute errors for Example 3

xi Absolute error Corrected absolute errors

e
ð0;0Þ
5 xð Þ

���
��� e

ð0;0Þ
8 xð Þ

���
��� E

ð0;0Þ
5;6 xð Þ

���
��� E

ð0;0Þ
5;7 xð Þ

���
��� E

ð0;0Þ
5;7;8 xð Þ

���
��� E

ð0;0Þ
5;7;9 xð Þ

���
���

0:125 2:097e�2 1:087e�2 1:298e�3 2:627e�4 2:723e�4 6:754e�5

0:250 3:883e�2 2:010e�2 2:347e�3 4:903e�4 5:024e�4 1:252e�4

0:375 5:295e�2 2:737e�2 3:197e�3 6:574e�4 6:821e�4 1:703e�4

0:500 6:296e�2 3:264e�2 3:799e�3 7:817e�4 8:114e�4 2:027e�4

0:625 6:815e�2 3:596e�2 4:173e�3 8:862e�4 8:957e�4 2:239e�4

0:750 6:581e�2 3:656e�2 4:257e�3 1:128e�3 9:439e�4 2:345e�4

0:875 4:838e�2 2:992e�2 3:403e�3 1:501e�3 9:147e�4 2:260e�4
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M ¼ 6; 7; 8; 9. The parameters are taken as ða ¼ b ¼ 0Þ.
The corrected absolute errors are corrected, once more and

the last two columns show these values. It is noticed that

sequential corrections tend to decrease the absolute error.

Example 4 [25, 26] The last example is the second-order

Fredholm integro-differential equation

x2y
00 þ 50xy

0 � 35y ¼ 1� exþ1

xþ 1
þ x2 þ 50x� 35

 �

ex

þ
Z1

0

exty tð Þdt

with conditions

y 0ð Þ ¼ 1; y 1ð Þ ¼ e

The exact solution of problem is

Taking ða ¼ 0:4; b ¼ 0:5Þ, the absolute errors of Jacobi

polynomial solution for N ¼ 7 and the absolute errors of

the improved Jacobi polynomial solution for N ¼ 7;M ¼ 8

are compared with those of the wavelet Galerkin, the

wavelet collocation, and the Chebyshev finite difference

(ChFD) methods [25, 26], in Table 6. Considering the

errors of the different methods, it is observed that the

smallest errors are obtained using the improved Jacobi

polynomial solution.

Example 5 Consider the first-order linear FIDDE [39]

Zx

0

yðtÞ
ðx� tÞ

1
2

dt ¼ 4

105
x3=2 24� x2


 �
; 0� x� 1:

We assume that the problem has a Jacobi polynomial

solution in the form

y xð Þ ¼ a0P
a;bð Þ
0 xð Þ þ a1P

a;bð Þ
1 xð Þ þ a2P

a;bð Þ
2 xð Þ þ a3P

a;bð Þ
3 xð Þ

where N ¼ 3 and a; bð Þ ¼ 0:2;�0:3ð Þ, which are chosen

arbitrary. Using the mentioned methods, the Jacobi poly-

nomial solution of the problem is obtained by

y
0:2;�0:3ð Þ
3 xð Þ ¼ x� x3, which is the exact solution of the

problem [39]. Furthermore, we can obtain the exact solu-

tion of the problem for any value of N� 3 and corre-

sponding suitable values of a; bð Þ.

Conclusions

A new matrix method based on Jacobi polynomials and

collocation points has been introduced to solve high-order

linear FIDDE with variable coefficients. Jacobi polyno-

mials are the common set of orthogonal polynomials,

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

Absolute Error

Corrected Absolute Error

Fig. 2 Comparison of the

absolute error functions of the

Jacobi polynomial solution

e
a;bð Þ
5 xð Þ

���
��� with the corrected

Jacobi polynomial solution

E
a;bð Þ
5;6 xð Þ

���
��� for Example 3

Table 6 Comparison of the

absolute errors of Jacobi

polynomial solution, improved

Jacobi polynomial solution,

wavelet collocation, wavelet

Galerkin, and ChFD methods

for Example 4

xi Present method Wavelet collocation [26] Wavelet Galerkin [26] ChFD [17]

e
ð:4;:3Þ
7 xð Þ

���
��� E

ð:4;:3Þ
7:8 xð Þ

���
��� N ¼ 7

0:125 8:5e�10 1:1e�11 2:6e�02 2:7e�04 1:8e�10

0:250 6:3e�10 5:0e�11 1:3e�02 3:0e�05 4:4e�10

0:375 1:0e�09 5:8e�11 9:3e�03 2:6e�04 1:4e�09

0:500 1:3e�09 7:6e�11 5:1e�03 4:3e�04 2:4e�10

0:625 1:6e�09 7:5e�11 2:5e�03 5:6e�04 1:7e�09

0:750 4:0e�09 1:1e�10 1:0e�03 6:5e�04 7:7e�10

0:875 3:8e�09 1:5e�10 2:6e�04 7:2e�04 1:3e�09
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which are the most extensively studied and widely applied

systems. The solution of the FIDDE is expressed as a

truncated series of orthogonal Jacobi polynomials, which is

then transformed from algebraic form into matrix form.

The problem and the mixed conditions are also represented

in matrix form. Finally, the solution is obtained as a trun-

cated Jacobi series written in matrix form using collocation

points. A new error estimation procedure for polynomial

solution and a technique to find a high accuracy solution

are developed.

Most of the previous studies dealt with solutions using

Legendre, Chebyshev, and Gegenbauer polynomials. In

this study, however, we have proposed a Jacobi polynomial

solution that comprises all of these polynomial solutions.

The new Jacobi matrix method has been applied to four

illustrative examples. It is well seen from these examples

that the method yields either the exact solution or a high

accuracy approximate solution for delay integro-differen-

tial equation problems. The accuracy of the approximate

solution can be increased using the proposed error analysis

technique depending on residual function.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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5. Szegö, G.: Orthogonal Polynomials, vol. 23. Amer Mathema

Soci, Colloquium Publication, New York (1939)
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