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Abstract Scatterings of electrons at quasiparticles or

photons are very important for many topics in solid-state

physics, e.g., spintronics, magnonics or photonics, and

therefore a correct numerical treatment of these scatterings

is very important. For a quantum-mechanical description of

these scatterings, Fermi’s golden rule is used to calculate

the transition rate from an initial state to a final state in a

first-order time-dependent perturbation theory. One can

calculate the total transition rate from all initial states to all

final states with Boltzmann rate equations involving Bril-

louin zone integrations. The numerical treatment of these

integrations on a finite grid is often done via a replacement

of the Dirac delta distribution by a Gaussian. The Dirac

delta distribution appears in Fermi’s golden rule where it

describes the energy conservation among the interacting

particles. Since the Dirac delta distribution is a not a

function it is not clear from a mathematical point of view

that this procedure is justified. We show with physical and

mathematical arguments that this numerical procedure is in

general correct, and we comment on critical points.

Keywords Electron scattering � Boltzmann rate

equations � Brillouin zone integration � Treatment of Diracs

delta distribution

Introduction

In solid-state physics, scatterings of electrons at periodic

perturbations (quasiparticles or photons) are very important

for many research fields and we give three examples in the

following:

1. In all-optical switching experiments [1] a thin ferri-

magnetic film, e.g., GdFeCo, is irradiated by a

femtosecond laser pulse which can be linearly or

circularly polarized and thereafter a demagnetization

with subsequent switching of the magnetization can be

observed under certain preconditions. The fundamental

mechanisms are strongly debated at the moment,

however, electron–photon scatterings, electron–pho-

non scatterings and electron–magnon scatterings cer-

tainly play a big role for the demagnetization of the

ferrimagnetic film.

2. In ultrafast demagnetization experiments [2] a thin

ferromagnetic film, e.g., Ni or Fe, is irradiated by a

femtosecond laser pulse which is normally linearly

polarized and thereafter an ultrafast demagnetization

(on the timescale of about 100 fs) without switching of

the magnetization can be observed. The magnetization

recovers on a timescale of several picoseconds.

Despite many years of research the fundamental

& Manfred Fähnle
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mechanisms are still unclear but scatterings of elec-

trons at phonons [3, 4] or at magnons [5] or at electrons

[6] have been discussed intensively.

3. Spin-polarized currents are important for devices in

spintronics [7], e.g., spin-transistors or spin-diodes.

The lifetime of the spin-polarized electrons is crucial

for the spintronics devices. The lifetimes are deter-

mined by scatterings of electrons at quasiparticles and

at interfaces or defects.

A correct numerical calculation of the various scattering

processes is important for the understanding of these

effects in solid-state physics. In quantum mechanics, Fer-

mi’s golden rule gives the transition rate Wk
jk;j0k0 from an

initial electronic state Wjk in a solid with energy ejk to a

final electronic state Wj0k0 with energy ej0k0 (j,j0: band indi-

ces; k, k0: wave vectors) due to a periodic perturbation

arising from a (quasi)particle [8]

Wk
jk;j0k0 ¼

2p
�h

Mk
jk;j0k0

�
�
�

�
�
�

2

�d ej0k0 � ðejk � �hxqkÞ
� �

: ð1Þ

��hxqk is the energy of the involved (quasi)particle (q:

wave vector, k: polarization) which may be, e.g., photons,

phonons, magnons, plasmons etc., with frequency xqk for

absorption (plus sign) or emission (minus sign), and Mk
jk;j0k0

is the scattering matrix element

Mk
jk;j0k0 ¼ hF0Wj0k0 Wqk

�
�

�
�FWjki; ð2Þ

where Fj i and F0j i are the initial and final (quasi)particle

states and Wqk is the scattering operator. Thereby,

momentum conservation k� q ¼ k0 þG is demanded (G:

reciprocal lattice vector). Fermi’s golden rule is the first-

order approximation of the time-dependent quantum-me-

chanical perturbation theory. It implies that the scattering

processes are Markovian which means that a scattering

process does not depend on preceding scattering processes.

Fermi’s golden rule is only valid in a time window where

the perturbation time on the one hand must be short enough

because of the first-order approximation and on the other

hand must be long enough to replace the sinðxÞ=x-function

appearing in the derivation of Fermi’s golden rule by the

Dirac delta distribution. The validity of Fermi’s golden rule

for a magnetization dynamics on the 100 fs timescale is

critically discussed in Ref. [4].

Normally, one is not interested in a specific transition

rate Wk
jk;j0k0 from an initial state Wjk to a final state Wj0k0 but

in the total transition rate Wtotal from all initial states to all

final states. Thereby k and k0 are related via k� q ¼ k0 þG

if the scattering is at a quasiparticle with wave vector q.

This is calculated with Boltzmann rate equations [4, 9]

Wtotal ¼ Win �Wout ð3Þ

where

Win ¼ 1

X2
BZ

X

j;j0;k

Z

BZ

d3k

Z

BZ

d3k0 nj0k0 1 � njk
� �

Wk
j0k0;jk ð4Þ

Wout ¼
1

X2
BZ

X

j;j0;k

Z

BZ

d3k

Z

BZ

d3k0 njk 1 � nj0k0
� �

Wk
jk;j0k0 :

ð5Þ

XBZ is the Brillouin zone (BZ) volume and n is the dis-

tribution function for the electrons.

Often one is also interested in the rate of change of the

distribution function njk due to scattering which is also

calculated with Boltzmann rate equations [10]

dnjk

dt
¼ 1

XBZ

X

j0;k

Z

BZ

d3k0
n

nj0k0 1 � njk
� �

Wk
j0k0;jk

� njk 1 � nj0k0
� �

Wk
jk;j0k0

o

:

ð6Þ

So we have to calculate Brillouin zone integrals of the form
Z

BZ

d3k gðkÞ dðeðkÞÞ: ð7Þ

Because the quantities ejk, ej0k0 , Wk
j0k0;jk, Wk

jk;j0k0 can be

calculated numerically only for a finite number of k-

points, finite k-point grids have to be used for the

numerical calculation of the total transition rate Wtotal or

of the rate of change of the distribution function dnjk=dt.

Thereby, energy conservation ej0k0 ¼ ejk � �hxqk and

momentum conservation k� q ¼ k0 þG have to be ful-

filled; however, energy conservation in combination with

momentum conservation is in general never fulfilled for a

finite k-point grid. Therefore, the Dirac delta distribution

has to be replaced by a ‘‘smeared’’ delta function to

obtain a result which approximates the integral (which is

done, e.g., in Refs. [3, 4, 11–13] and in very many

other papers). To do this, often the following equation is

used

Z

BZ

d3k gðkÞ dðeðkÞÞ �
Z

BZ

d3k gðkÞ 1
ffiffiffi
p

p
r

exp � e2ðkÞ
r2

� 	

ð8Þ

and the smearing parameter r has to be chosen appropri-

ately, see Sect. 3. This means that the contribution of a

certain grid point to the total transition rate Wtotal or to the

rate of change of the distribution function dnjk=dt is small

if the energy conservation is fulfilled very badly, and vice

versa the contribution is large if the energy conservation is

fulfilled very well. However, from a mathematical point of

view it is not obvious that Eq. (8) holds since the Dirac

delta distribution is not a function and the smearing is with
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respect to the energy e but the integration is with respect to

the wave vector k. The problem is explained in more detail

in Sect. 2.

Mathematical proofs of Eq. (8) under certain precondi-

tions can be found in Ref. [14], Theorem 7.2.1, and in

Ref. [15], Theorem 6.1.5; however, the proofs are for

general distributions and are very abstract. We want to

show in this article that Eq. (8) is correct using also

physical arguments.

In Sect. 2 we explain in detail the problem which arises

when in a Brillouin zone integration Dirac’s delta distri-

bution is approximated by a Gaussian. This is done in

many papers without giving any justification. We, there-

fore, think that the outline of this problem is a novelty per

se. Then we give a justification of the Gaussian smearing

method by mathematical and physical arguments. Each of

these arguments has been used in other contexts in pre-

vious papers. The novelty of our paper is that we use these

arguments to justify the Gaussian smearing method for the

Brillouin zone integration. First, we consider a coordinate

transformation from the wave vector variables k ¼
kx; ky; kz
� �

to the variables �; #;u where � is the energy

and #;u are variables for the surface of constant energy.

This transformation involves the Jacobian J kx; ky; kz
� �

.

The inverse function theorem [14] says that if this Jaco-

bian is non-zero at a k-point, this transformation is

invertible. Then the integration in k-space including d �ð Þ
can be represented by an integration over �; #;u of a

function which involves the Jacobian eJ �; #;uð Þ ¼
J kx; ky; kz
� �� ��1

and, which now can without any problem

be replaced by a Gaussian. The problem is that there are

special k-points where rk� kð Þ ¼ 0. For these special

points the Jacobian J kx; ky; kz
� �

is zero, and the reverse

transformation involving eJ �; #;uð Þ is not defined in a

rigorous mathematical interpretation. According to a

general theorem of M. Morse the dispersion relation � kð Þ
exhibits such special points because it is periodic in all

components. There are special points which can be

identified easily, e.g., the C-point and points on the

Brillouin zone boundary. These points can be avoided by

shifting the grid of k-points considered in the Brillouin

zone integration accordingly [16]. Other special points

cannot be easily found, and they might be in the shifted k-

point grid. Van Hove has shown [17] that for three

dimensions the appearance of these special points does

not appreciably modify the result of a numerical inte-

gration. We motivate these steps by physical reasoning.

In Sect. 3 we give practical hints for the appropriate

choice of the smearing parameter r. Finally, our results are

summarized in Sect. 4.

Numerical integration of the Dirac delta
distribution

It is very well known that in integrals involving the Dirac

delta distribution, the distribution can be replaced by a

Gaussian for the limes r ! 0. It reads
Z þ1

�1
de gðeÞ dðeÞ ¼ lim

r!0

Z þ1

�1
de gðeÞ 1

ffiffiffi
p

p
r

exp � e2

r2

� 	

ð9Þ

where gðeÞ is a continuously differentiable function which

depends on the energy e. The Dirac delta distribution is

approximated by a Gaussian

Z þ1

�1
de gðeÞ dðeÞ �

Z þ1

�1
de gðeÞ 1

ffiffiffi
p

p
r

exp � e2

r2

� 	

ð10Þ

for a numerical calculation of the integral and r has to be

chosen appropriately, see Sect. 3.

However, the integrals in Eqs. (3)–(6) are not over the

energy e but over the wave vector k. For the sake of sim-

plicity we discuss the following integral
Z

BZ

d3k gðkÞ dðeðkÞÞ ð11Þ

where gðkÞ is a continuously differentiable function of the

wave vector k, and the generalization to the expression

d ej0k0 � ðejk � �hxqkÞ
� �

used in Eqs. (3)–(6) is straightfor-

ward. In explicit numerical calculations it is always

assumed that also the relation
Z

BZ

d3k gðkÞ dðeðkÞÞ ¼ lim
r!0

Z

BZ

d3k gðkÞ 1
ffiffiffi
p

p
r

exp � e2ðkÞ
r2

� 	

ð12Þ

holds without giving any justification, reference or com-

ment and that this may be approximated by

Z

BZ

d3k gðkÞ dðeðkÞÞ �
Z

BZ

d3k gðkÞ 1
ffiffiffi
p

p
r

exp � e2ðkÞ
r2

� 	

:

ð13Þ

However, the Dirac delta distribution is defined by Eq. (9)

and not by Eq. (12). We show in the following how the use

of Eq. (13) can be justified.

We consider a coordinate transformation from the wave

vector variables k ¼ ðkx; ky; kzÞ to the variables e; #;u (e:
energy; #;u: variables for the surface of constant energy)

e ¼ eðkx; ky; kzÞ
# ¼ #ðkx; ky; kzÞ
u ¼ uðkx; ky; kzÞ

ð14Þ
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where the energy dispersion relation eðkx; ky; kzÞ is known

and the surfaces of constant energy can be parametrized

with two variables # and u. The inverse function theorem

says [18] that every continuously differentiable, vector-

valued function which maps values from an open set of Rn

to other values of an open set of Rn [so-called coordinate

transformation, e.g., Eq. (14)] and whose Jacobian

determinant

Jðkx; ky; kzÞ ¼ det

oe
okx

oe
oky

oe
okz

o#

okx

o#

oky

o#

okz

ou
okx

ou
oky

ou
okz

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð15Þ

is non-zero at a point is invertible in the neighborhood of

this point, i.e., the reverse transformation of Eq. (14)

kx ¼ kxðe; #;uÞ
ky ¼ kyðe; #;uÞ
kz ¼ kzðe; #;uÞ

ð16Þ

exists and can in principle be given in the neighborhood of

every point ðkx; ky; kzÞ if the above-mentioned conditions

are fulfilled.

If Eq. (14) is invertible in the neighborhood of every

point k ¼ ðkx; ky; kzÞ—whereby only points k with eðkÞ ¼
0 are relevant because of the Dirac delta distribution in

Eq. (11)—it is possible to make for this neighborhood a

local coordinate transformation (using Eq. (16)) for the

function gðkÞ ¼ egðe; #;uÞ appearing in Eq. (11). Then, the

integral over the wave vector k can be replaced by the

integral over the variables e; #;u
Z

BZ

d3k gðkÞ dðeðkÞÞ

¼
Z

de
Z

d#

Z

du jeJðe; #;uÞj � g
�

kxðe; #;uÞ;

kyðe; #;uÞ; kzðe; #;uÞ
�

� dðeÞ

¼
Z

de
Z

d#

Z

du jeJðe; #;uÞj � egðe; #;uÞ � dðeÞ

ð17Þ

where eJðe; #;uÞ is the Jacobian determinant of the reverse

transformation (16)

eJðe; #;uÞ ¼ det

okx

oe
okx

o#

okx

ou
oky

oe
oky

o#

oky

ou
okz

oe
okz

o#

okz

ou

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð18Þ

Note that eJðe; #;uÞ ¼ J�1ðkx; ky; kzÞ with ðe; #;uÞ expres-

sed by Eq. (14). It is now definitely allowed to approximate

the Dirac delta distribution by a Gaussian in analogy to

Eqs. (9) and (10)
Z

BZ

d3k gðkÞ dðeðkÞÞ

�
Z

de
Z

d#

Z

du jeJðe; #;uÞj � egðe; #;uÞ � 1
ffiffiffi
p

p
r

exp � e2

r2

� 	

¼
Z

d3k gðkÞ 1
ffiffiffi
p

p
r

exp � e2ðkÞ
r2

� 	

ð19Þ

where in the last step the integration variables are changed

back again to an integration over the wave vector using

Eq. (14). This is exactly what we wanted to show in

Eq. (13).

One must keep in mind that the Jacobian determinant

Jðkx; ky; kzÞ given by Eq. (15) is zero for special points

k ¼ ðkx; ky; kzÞ, where rkeðkÞ ¼ 0. This is the case for the

C-point and usually for points on the Brillouin zone

boundary [19], and even the transformation (14) could be

not continuously differentiable for special points. Then, the

reverse transformation (16) used in Eq. (19) is not defined

anymore in a rigorous mathematical interpretation. How-

ever, these problems arise because of two idealizations, the

long-time idealization and the infinite-solid idealization,

and the following remarks have to be considered:

1. In a physical interpretation the Dirac delta distribution

appearing in Fermi’s golden rule, Eq. (1), is only a

long-time idealization which should be replaced by a

sinðxÞ=x-function for realistic physical calculations.

However, this would yield time-dependent rates which

is usually not desired.

2. For a numerical calculation an infinite periodicity of

the lattice is assumed (infinite-solid idealization). k-

points of this numerical calculation only sometimes

coincide exactly with a point where the reverse

transformation (16) is not defined and the k-point grid

can always be shifted so that there is no point where

the reverse transformation is not defined. For an

arbitrary gðkÞ it is not clear that one gets a correct

result when omitting these k-points. In a real solid in

the ground state only a finite number of energy levels

are occupied. These energy levels do not correspond to

states with defined wave vectors k. In the numerical

treatment of these finite systems the energy levels are

approximated by the energies of a lattice with infinite

periodicity at a number of discrete points on a k-point

grid. For sufficiently large systems the result must be

independent of the detailed choice of the k-point grid.

If we know the critical points, we can shift the k-point

grid in such a way that it does not include the above-
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defined critical points (see also Ref. [16]). One could

argue that a k-point very close to a critical k-point

could yield an extremely large contribution because

the Jacobian determinant eJðe; #;uÞ (18) appearing in

Eq. (17) may be very large for this point. This means

that the second line of Eq. (19) would not be a good

approximation for a choice of the k-point grid which

contains points very close to critical points, but the

near equality of the first line with the third line of

Eq. (19) still holds because for the transition between

the first and the third line the integration variables have

been changed back again and this corresponds to the

multiplication with eJ�1ðe; #;uÞ ¼ Jðkx; ky; kzÞ, so alto-

gether, a possibly large value of eJðe; #;uÞ does not

matter. However, it is extremely complicated to

identify all critical points and, therefore, it is not clear

whether a chosen k-point grid contains critical points

or not. To avoid these cumbersome investigations one

can also do the following: one performs calculations

for denser and denser grids and/or for shifted and

rotated grids and compares the results. If the results are

very similar, this means that the grids either do not

contain critical points or that the critical points do not

make a big contribution so that they do not falsify the

results, in agreement with Ref. [17].

Practical hints for the appropriate choice
of the smearing parameter

The appropriate choice of the smearing parameter r
appearing in Eq. 10 is crucial for the correct numerical

calculation of the Boltzmann rate equation. The appropri-

ate choice of r depends on two quantities:

1. First, the smearing parameter r depends on the energy

scale of the involved (quasi)particle which may be,

e.g., a photon, phonon, magnon, plasmon (see Sect. 1).

The energy scale for a phonon is in the order of some

mRy (about 40 meV) and for a magnon the energy

scale is a factor 10 larger than for a phonon. The

energy scale for a plasmon is much larger, in the order

of 700 mRy (about 10 eV). An appropriate choice of

the smearing parameter is in the same order as the

energy scale of the involved (quasi)particle.

2. Second, the smearing parameter r depends on the grid

spacing. A typical ansatz is r ¼ p=N1 where N1 is the

number of k-points in one direction and the total

number of k-points is N3
1 . For a fixed proportionality

constant p it is guaranteed that the smearing parameter

is smaller, the larger the N1.

In the following we discuss the choice of r for the case of

electron–phonon scatterings. In Ref. [3] the smearing

parameter is fixed to 15 meV (about 1 mRy) for the

numerical calculation of the electron–phonon Boltzmann

rate equation. In Ref. [4] we tested our numerical results of

the electron–phonon Boltzmann rate equation for many

different grids and smearing parameters. In this publication

we considered the case of ultrafast demagnetization, see

Sect. 1. Among other quantities we calculated the rate of

the magnetic moment change per atom dM=dtðtsÞ for a

time ts (see Eq. (14) of Ref. [4]). ts is the time after the

laser pulse irradiation where the electron system has ther-

malized, i.e., the electron distribution can be described by a

Fermi–Dirac distribution with the electron temperature Te:

Figure 1 shows the rate of the magnetic moment change

per atom dM=dtðtsÞ for Fe and an electron temperature of

Te ¼ 2000 K. We calculated dM=dtðtsÞ for different grids

(number of k-points in one direction N1) and for different

smearing parameters r. One can see that the results for

dM=dtðtsÞ depend hardly on the chosen grid and on the

chosen smearing parameter except for N1 ¼ 10. Therefore,

the above-discussed critical points do not falsify our results

and the smearing parameter is in the right order of mag-

nitude (about several mRy). Of course it is trivial that

increasing the number of k-points increases the conver-

gence. By Fig. 1 we just want to show that the results

depend only very slightly on the specific choice of r if the

number of k-points is above a certain value.

Conclusions

Scattering processes of electrons at periodic perturbations

are very important in solid-state physics and also a correct

numerical treatment is crucial for the quantitative analysis

of scattering processes in many research activities, e.g.,
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Fig. 1 Rate of the magnetic moment change per atom dM=dtðtsÞ vs.

number of k-points in one direction N1 for different smearing

parameters r. For iron and an excitation temperature of Te ¼ 2000 K
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spintronics. In quantum mechanics, Fermi’s golden rule is

used which contains the Dirac delta distribution. The Dirac

delta distribution is usually replaced by a Gaussian to

integrate numerically the Boltzmann rate equations on a

finite grid of k-points. It is not obvious from the very

beginning that this numerical treatment is correct since the

Dirac delta distribution is not a function and the smearing

variable differs from the integration variable. We have

shown in the present article that this procedure is in general

correct. There are special k-points for which it is in prin-

ciple not justified to replace the Dirac delta distribution by

a Gaussian; however, we have given mathematical and

physical arguments why this procedure is nevertheless a

good approximation for the integration of the Boltzmann

rate equation and should not falsify the results, at least for

three dimensions. It is not clear whether the same holds

also for d ¼ 2 or even for d ¼ 1. In conclusion, the naive

replacement of the Dirac delta distribution by a Gaussian

gives in general correct results for the Boltzmann rate

equation but this has to be checked for denser and/or for

shifted and rotated grids to avoid wrong contributions from

the above-described special k-points where the replace-

ment is critical.
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