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Abstract In this research, we have been obtained the
Dirac equation for second Poschl-Teller-like potential
including a Coulomb-like tensor interaction with arbitrary
spin—orbit coupling quantum number x. Under the condi-
tion of spin and pseudospin (p-spin) symmetries, we use
the basic concept of the supersymmetric shape invariance
formulism in quantum mechanics and the function analysis
method to obtain energy eigenvalues and corresponding
two-component spinors of the Dirac particle. We have also
shown that tensor interaction removes degeneracies
between spin and p-spin doublets. Some numerical results
are also given.

Keywords Dirac equation - Spin symmetry - Pseudospin
symmetry - Poschl-Teller-like potential - Coulomb-like
tensor potential - Supersymmetric quantum mechanics
(SUSYQUM)

Introduction

The spin and pseudospin symmetry concepts introduced in
nuclear theory [1, 2] have been used to explain the features
of deformed nuclei [3] and superdeformation [4], and to
establish an effective shell-model coupling scheme [5].
Within the framework of the relativistic mean field theory,
Ginocchio [6, 7] has found that a Dirac Hamiltonian with
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scalar and vector harmonic oscillator potentials in the case
of (V(r) — S(r) = 0) possesses not only a spin symmetry
but also a U(3)symmetry, but a Dirac Hamiltonian in the
case of (V(r) + S(r) = 0) possesses a pseudospin symme-
try and a pseudo-U(3)symmetry. Meng et al. [8] have
showed that the pseudospin symmetry is exact under the
condition (d(V(r) + S(r))/dr = 0). In addition, Alhaidari
et al. [9] have investigated in detail physical interpretation
on the three-dimensional Dirac equation in the case of spin
symmetry limit (V(r) — S(r) = 0) and pseudospin sym-
metry limit (V(r) + S(r) = 0). In recent years, by consid-
ering the importance of spin and pseudospin symmetries,
some authors have contributed many works in this field.
For more review of this, one can read the recent works by
Wei and Dong [10-13].

The p-spin symmetry refers to a quasidegeneracy of
single nucleon doublets with non-relativistic quantum
number (n, [,j =1+ 1/2)and (n — 1,1 + 2,j =1 + 3/2),
where n, [ and j are single nucleon radial, orbital and total
angular quantum numbers, respectively [1, 2]. The total
angular momentum j =+ § with [ =1+ 1 is a pseudo-
angular momentum and s is p-spin angular momentum
[14-18].

In this paper, we attempt to study the spin and
pseudospin symmetry solutions of the Dirac equation for
arbitrary quantum number x with the Poschl-Teller-like
potential. This is given by

V(r) (1)

The potential parameters V| and V, describe the property
of the potential well, V; > V,, while « is related to the
range of the potential [19-24]. The behavior of this
potential with respect to four different values of o is
shown in Fig. 1.
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Fig. 1 The behavior of the Poschl-Teller-like potential with respect
to four different values of «, and for V; = 0.5, V, = 0.1

Also Tensor potentials have been introduced into the
Dirac equation with the substitution p — p—imowf -
FU(r) and a spin—orbit coupling is added to the Dirac
Hamiltonian [25, 26]. For more review of tensor interac-
tion, one can refer to the [27-34] that authors used different
potential and different kinds of tensor potential. Here we
study a tensor potential in the Coulomb-like form as
follows:

U()C U — ZaZbez

U(V)Z—T7 oc = » T2Rc, (2)

4dme
where Rc = 7.78 fm is the coulomb radius, and Z, and Z,
denote the charges of the projectile a and the target nuclei
b, respectively.

The Potential in Eq. (1) is also one of the important
examples for the special case of the multiparameter
exponential-type potential model [35, 36]. By solving the
Klein—Gordon equation and Dirac equation with equal
scalar and vector Poschl-Teller-like potentials, the exact
relativistic energy equations have been obtained for the s-
wave bound states (I = 0) [37, 38]. Using the conventional
approximation scheme proposed by Greene and Aldrich
[39] to deal with the centrifugal term, Dong et al. [40, 41]
have investigated the arbitrary I-wave bound-state solu-
tions of the Schrodinger equation and Klein—Gordon
equation with the Poschl-Teller-like potential in terms of
the standard function analysis method. However, as far as
we know, one has not reported the investigation of the spin
and pseudospin symmetries solutions of the Dirac equation
with the Poschl-Teller-like potential including a Coulomb-
like potential as a tensor interaction for the arbitrary spin—
orbit quantum number x. In this paper, we solve approxi-
mately the Dirac equation with the Poschl-Teller-like
potential for the spin—orbit quantum number x. Under the
condition of spin and pseudospin symmetries, we study the
bound-state energy equation and corresponding spinor
wave functions in terms of the basic concept of the
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supersymmetric shape invariance formalism [42, 43] and
the function analysis method.

Dirac equation including tensor coupling

The Dirac equation for fermionic massive spin-1/2 parti-
cles moving in attractive scalar S(r), repulsive vector V(r)
and tensor U(r) potentials is (in units h = ¢ = 1)

@+ pM + S(r)) —i B - FU()Y ()

=[E-V(]y(7), (3)
where E is the relativistic energy of the system, p = —i v

is the three-dimensional momentum operator and M is the
mass of the fermionic particle. Further, & and f8 are the
4 x 4 Dirac matrices given by

(3 9) 05 %)

where [ is 2 X 2 unitary matrix and & are three-vector spin
matrices

s () e O
(5)

The total angular momentum operator J and spin—orbit
K=(c L+ 1), where L is orbital angular momentum of
the spherical nucleons, commute with the Dirac Hamilto-
nian. The eigenvalues of spin—orbit coupling operator are
K= (]—l—%) >0 and k = —(j—i—%) <0 for unaligned spin
j=1- % and the aligned spin j =1+ % respectively. (H?,
K, Jz, J,) can be taken as the complete set of the conser-
vative quantities. Thus, the spinor wave functions can be
classified according to their angular momentum j; spin—
orbit quantum number x and the radial quantum number n
can be written as follows:

ch(r) 1
- an(F) — r Y/m(67q))
W, (F) = ( = ) = l,an(r) Y][m(O, o) ’ (6)

where f,.(7) is the upper (large) component and g,.(¥) is
the lower (small) component of the Dirac spinors. Y,”»,,,(G, )
7 . . . .
and ij(aqﬁ) are spin and p-spin spherical harmonics,
respectively, and m is the projection of the angular
momentum on the z-axis. Substituting Eq. (6) into Eq. (3)

and using the following relations:

(7-4)(3-B)=A-B+iz- (AxB),

(&-ﬁ):&’-ﬁ(fﬁ+ia'L>

(7a)

(70)
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together with the following properties: d_z2 k(K 2— 1) n 2K U(r) + au(r) Uz(r)} Golr)

(- D)7}, (0.9) = (s — DY}, (0.9). e

(@)Y}, 0.6) = ~(x ~ DY (0.9), o e E 5 (g o U0 )G

(@ - 7)Y, (0, ) = =Y, (0, ), = (M + Epe — A(F))(M — Epg + 2(7))]Go ()

(8- 1)71,(0.0) = ~7,,(0,9), (12)
one obtains two coupled differential equations for upper ~ Where K(x — 1) = I(I+1) and k@ + 1) = I + 1).

and lower radial wave functions F,,(r) and G, (r) as:

(45— 000 ) oslr) = 1+ Ens = ADIGu(), (98

o1 ) 1
—(J+§> (s1/2,p3)2,€tc.)  j=1+=

2
+ '—I—l (p1)2,d352,etc.) j=1 !
J ) 1/2,43/2,€tC.) ] = )

3

)

The quantum number x is related to the quantum

numbers for spin symmetry / and p-spin symmetry [
as:

aligned spin (k <0)

unaligned spin (k > 0),

(5~ 54 U0))Gunlr) = 01— By 4 Z0DFn(r). - 90)

where
A(r) =V(r) = S(r), (10a)
B ( ) j=i-t
B = J 3 S1/2,P3/2,€1C.) ] = 3
o= . 1 a1
+(+1) =+{J +§ (d3j2,f5)2,8tc.) = l+§

b

and the quasidegenerate doublet structure can be
expressed in terms of a p-spin angular momentum § =

1/2 and pseudoorbital angular momentum I, which can
be defined as:

alinged p — spin (k <0),

unaligned p — spin (x > 0),

Z(r)y=V(r)+S(r), (10b)

are the difference and the sum potentials, respectively.
Eliminating F,,(r) and G, (r) from Egs. (9), we finally
obtain the following two Schrodinger-like differential
equations for the upper and lower radial spinor compo-
nents, respectively:

2 k(k K r
% - % + 27 U(r) — d%p - Uz(r)} Foe(r)
dA(r) "
B —an (i V) )
= [(M + Epc — A(r))(M — Epc + 2(r))|F (1),

(11)

where k = + 1, £ 2, .... For example, (lsy/2, 0ds,2)
and (1ps/2, Ofs,2) can be considered as p-spin doublets.

Spin symmetry limit

In this section, we will solve Dirac equation under spin
symmetry limit with Poschl-Teller-like potential and
Coulomb-like potential as a tensor interaction. The exact
spin symmetry occurs in Dirac equation when (d[V(r) —
S(N/dr = dA(r)/dr = 0) or A(r) = C, = constant [44—
47]. Substituting Eqs. (1), (2) into Eq. (11) and taking X(r)
as the Poschl-Teller-like potential, the equation obtained
for the upper component of the Dirac spinor, F,.(r),
becomes

Y
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& A+ 1) (Vi—Vicos har\ o,
dr r? B sin h2ar — B Fuelr)

=0,
(13)

where A, =k + Uyc, =M+ E,. — C; and f>=
M—-E, )M+ E,. —Cy. Also, k =1 and k = —[ — 1
for k¥ < 0 and x > 0, respectively.

P-spin symmetry limit

Within the pseudospin symmetry case, (d[V(r) + S(r)]/
dr = d2(r)/dr = 0) or 2(r) = C,s = constant and p-spin
symmetry is exact in the Dirac equation [8, 48—50]. In this
part, we consider A(r) as the Poschl-Teller-like potential,
the equation obtained for the lower component of the Dirac
spinor, G,,(r), becomes

& A(he—1) _[(Vi—Vycos har =
dr? r? 7 sin h2ar — B Gulr)
=0,

(14)

where .=k + Upe, 7=M —E,c + Cp, [52 = (M+
E..) (M — E, + Cps). Also, k =—[ and k=141 for
Kk < 0 and k > 0, respectively.

Equations (13) and (14) can be solved analytically only
for the case of 4, = — 1 and A, = 1 due to the pseudo-
centrifugal terms, A (4, + D/ and LA — DIF,
respectively. Using the approximation scheme suggested
by Greene and Aldrich [39], we can express approximately
the pseudocentrifugal term in the following form [51-54]:

(15)

—or

1 , €

r2 (1 —e)?

This is a good approximation for small values of the
parameter o and it breaks down for large values of o. For
the case of ar < 1, one can show that (see Fig. 2)
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Fig. 2 1// and its approximations for o = 1/2
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where ¢y = 1/12 is a dimensionless constant.

Bound States of the Poschl-Teller-like potential
with Coulomb tensor interaction

Spin symmetry solution

Substituting Eq. (16) into Eq. (13) leads us to obtain the
following Schrodinger-like equation for the upper spinor
component:

{_d_z ol + Do (Vi = Vo) (Vi + Va)
dr?

. - Fu(r)

4sin h2z 4cos b2z | "™
= Emcch(r)

(17)

where E,, is defined as E, = (En — M)(M + E,,. — C;)
— (A + 1)a?co. Using the basic concept of the super-
symmetric shape invariance formulism [42, 43], we solve
Eq. (17). The ground-state upper component F ,(r) can be
written as:

Foulr) =eso( = [ W), (18)

where W(r) is called a superpotential in supersymmetric
quantum mechanics [43]. Substituting Eq. (18) into
Eq. (17), we have the following equation for W(r)

_dw(r) _ I (D + D)o +9(Vy — Va)

W2
") =4 Asin 12z
y(Vi+Va) -
- = —F, 19
4 cos h?z 01 (19)

where EO,K is the ground-state energy. Considering the
compatibility between the superpotential function W(r) and
the right-hand side of Eq. (19), we write the superpotential
W(r) in the following form:

W(r) = Atan h%—l—Bcot h% (20)

Substituting Eq. (20) into (18) leads us to obtain the
ground-state upper component

—2A/a —2B/a
Fox(r), Fo.(r)= (cos h%) (sin h%)

(21)

For the bound-state solutions, the upper component F,,
(r) must satisfy the boundary conditions that F,,(r)/
r becomes zero when r — oo, and F,(r)/r is finite if
r = 0. In view of these regularity conditions, we have the
restriction conditions: A >0, B< 0 and A > —B.
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Substituting Eq. (20) into Eq. (19) and comparing equal
powers of two sides in Eq. (19), we obtain the following
relationships:

(A+B)*= —Ey, )

A?+ %A _ V(V144+V2) 23)
— 2

B4 %B (Vi —=Va) +4/1K(,1K + 1) o

Considering the regularity conditions, A > 0 and B < 0, we
obtain the coefficients A and B by solving Eqgs. (23) and
(24),

o 4y(Vi + V,)
A=-|-1 | IEEAAANE ST 2
1 +4/1+ o (25)
o 2 (Vi = Va)
B=-|-1—1/(1 +24)+—~1 "% 26
4l \/( +2L)°+ " ] (26)

Using the expression given in Eq. (20), we construct the
following two supersymmetric partner potentials:

dw
V() = w2(r) = )
.
B>TFlaB A% FlaA
= (A +B)? i 2 27
(A+B)+ sin h?%2  cos h?% @7)

Setting (ag, bg) = (A, B), one can get the following shape-
invariant relationship,

Vi (r,a0,by) = V_(r,a1,b1) + R(ai, by), (28)

where a; and b are the functions of a, and b, respectively,
i.e., ay =f(a0) =dy — OC/Z, bl Zf(bo) = bo — oc/2, and
the remainder R(a;, b;) is independent of r, R(a;, b)) =
(ao + bp)* = (a; + b)* = (A + B — (A + B — o)”.
The energy eigenvalues of the potential V_(r) can be
determined using the shape invariance approach [42]. The
energy eigenvalues of the potential V_(r) are given by

Ey) =0, (29)

K

E) = ZR(akJ?k) = R(a1,b1) + R(az,b2) + - - - + R(an, by)
=

= (ap + bo)*—(ay + b)) *+(ay + b)) *—(ay + by)*
+ o (@ + byr) = (an + ba)
= (ao + bo)*—(an + by)*= (A + B)*—(A + B — nx)?,
(30)

where the quantum number n =0, 1,2, .... From

Egs. (19) and (27), we have the following relation:

Al + D)o? +9(Vi = Vo) 9(Vi +Va) .
- =V Eo..
4sin h2z 4 cos h?z (r) + Eo,

(31)

From Egs. (17) and (31), we can find the solution for

E,. in Eq. (17),

En = Eo, +ES) = —(A+ B —na)?, (32)

where we have employed the relation Ey, = —(A + B)®.
Substituting Egs. (25) and (26) into Eq. (32) and using
Epe = (Epe — M)(M + Epe — Cy) — Je( A + 1)oPco,  we
can find the energy eigenvalue equation of the relativistic
Poschl-Teller-like potential under the condition of spin
symmetry,

E2 —M? — Cy(Ep — M) — (1 + Uoc) (i + Upc + 1)o*co
:_a2< 1 1\/1+4(M—|—E,1,<—C5)(V1+V2)

oty 2
2
1 4(M+E,.—Cs)(Vi—V,)
_Z\/(1+2(K+ U()c))2+ 2

(33)

where the quantum number n=0,1,2,..., <(A + B).
Using the recursion operator approach [55, 56], we can
determine the excited state upper components from the
superpotential W(r) given in Eq. (20) and the ground-state
upper component, Fy (r) given in Eq. (21).

To find the corresponding wave functions, we take the
function analysis method to calculate the unnormalized
excited state upper components. Substituting Eq. (32) into
Eq. (17), we obtain

L& At Dy = Va) 3(Vi+ Vo) "
dr? 4sin h2z dcoshy )"

= —(A+B—no)’Fp(r). (34)

Defining a new variable of the form s = —sin hz%’ and

making a transformation of the upper spinor component of

A _B
the form F,.(r) = (1 —s)* sofuc(s), Eq. (34) can be
written as follows:

d*foe 1 2B
.

o o

24 2B\ ] dfuc(s)
)%

(35)

This equation is the well-known differential equation
satisfied by the hypergeometric function ,F(a, b; c; s), i.e.,

fmc(s) = 2F1 (a,b; (& S)

__I(o) ir(a+k)r(b+k) st (36)
F@rb) 2 Ttk &
where a=—n, b=n—-2-2 and ¢ =1-2 Using

the original variable r, the upper component F,,(r) cor-
responding to energy level E,,. can be expressed as
follows:

Y
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_A _B
Foelr) = (1 +sin h2g> ’(— sin hz%) :

( 2A° 2B1 2B ) 2ocr)
X Fi| —n,n — — — ;—sin h°— |,
o

P ]

(37)
where A and B are given in Egs. (25) and (26), respec-
tively. Using Eq. (9a) and the expression of F,,(r) given in
Eq. (37), we obtain the lower spinor component G,,(r)
corresponding to the upper component F,,(r) and energy
level E,,.,

G (1) :m (jr#;— U(r)) Fo(r)

1 or\ 4 or\ 2
= (s ) (i)
(M—i—E,m—CS)( —+sin 5 sin 5

Asinhar Bcosh%  k+Upc
— + —
2(1+sinh?%)

sinh% r

2A 2B 1 2B . 0r

X F | —n,n————;———; —sinh"—
o o 2

’
o

nacsinhocr(n—%—%g)
2(3-%)
2A 2B3 2B
X, Fy —n—i—l,n—i—l————;———;—sinh2ﬂ ,
o o2 o 2

(38)

where E,,. # — M + C,. From Egs. (37) and (38), we can
observe that the upper component F,,(r) and lower com-
ponent G,,(r) can satisfy the regularity conditions for the
bound states when A > 0 and B <0 and A > —B.

The energy level E,,. is given implicitly by energy
eigenvalue Eq. (33) which is a rather complicated tran-
scendental equation. To show the procedure of determining
the bound-state energy eigenvalues from Eq. (33), we take
a set of physical parameter values, C; =2, o= 1.2,
M=10, V=5, V, =3, and ¢y = 1/12, to give a
numerical example. When n =0 and x =1, Eq. (33)

1000 -

995

985

E, ¢ (1/fm)

9.80

975 +

0 01 02 03 04 05 06 07 08 09 1

2%
—0py, 0dy, 0fs
—0dy, —0f 5, 0gy,

Fig. 3 (color online) Contribution of the tensor Coulomb potential
parameter to the energy levels in the case of spin symmetry

yields the following values of Ey : 9.727533, —7.948904.
We choose Ej; = 9.727533 as the solution of Eq. (33),
and find that the values of A and B are A = 5.66197 and
B = —3.41027, respectively. These values satisfy the reg-
ularity conditions: A > 0, B < 0 and A > — B. If we take
Eo; = —7.948904 as the solution of Eq. (33), the values of
A and B are A = 0.138395 and B = —1.21408, which do
not satisfy the regularity condition: A > — B. Therefore,
we can only take the positive energy value
Eo1 = 9.727533 as the solution of Eq. (33). Using the
same parameter values of o, M, Vi, V, and Ci, the
numerical solutions of Eq. (33) for the other values of
n and xk are presented in Table 1. In Fig. 3, we have
investigated the effect of the tensor potential on the bound
states.

P-spin symmetry solution
In this subsection, we will obtain the energy eigenvalues

and the corresponding wave functions for the p-spin sym-
metric limit by substituting Eq. (16) into Eq. (14) that

Table 1 The spin symmetric bound-state energy levels (in unit of fin~") of the Coulomb potential taking several values of n and x

I nmk<0 (Lj=1+1122) EneUc=0 Eponlc=1 nrx>0 @j=1-12) EyeoUsc=0 Epeo Upc=1
1 0,-2 0ps2 9.727533734 9.683443227 0, 1 0p112 9.727533734 9.807727942
20, -3 0ds) 9.807727942 9.727533734 0,2 0ds 9.807727942 9.911973645
30,4 Ofp 9.911973645 9.807727942 0,3 0fs2 9.911973645  10.02835022

4 0,-5 0go> 10.02835022 9911973645 0, 4 0g772 10.02835022 10.14718163

1 1,-2 1p3 9.949464374 9921517656 1, 1 11 9.949464374 9.999543951
2 1,-3 1ds» 9.999543951 0949464374 1,2 1ds 9.999543951  10.06287108
31,4 1fon 10.06287108 9999543951 1,3 1fsi2 10.06287108 10.13048571

4 1,-5 1gon 10.13048571 10.06287108 1,4 lg7n 10.13048571 10.19492768

Y4
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leads us to obtain the following Schrodinger-like equation _ar 4 _ Lor £
for the lower spinor component: Gue(r) = (1 +sin h —) (— sin h —>

2 2 (45)

& = DR HFVI = V) §(Vi+ Vo)
dr? 4sin W2z
= Enichc(r);

G (1)

dcos h2z | "

(39)

where E,,. is defined asE,, = (Epe + M) (E,m - M — Cps)
—Jue(Jue — 1)0co. We write the super-potential W (r) in the
following form:

W(r) = Atan hg +Beot kY (40)

2 Y

that leads us to obtain the ground-state upper component

or *ZA/“ . or 723/1
Gox(r), Goxlr)= (cos h?) (sm h?> ,
(41)
where
i 45(Vi + Va)
A= |-yl —5—— )
4 + + ) ) (42)
g% 2 4V —Va)
B:Zl—l—\/(l—ZAK) —‘,—T , (43)

To avoid repetition in our solution to Eq. (14), We
follow the same procedures explained in the previous
section to obtain the energy eigenvalue equation,

EﬁK —]\42 — Cps(Emc +M) — (K+ Uoc)<K+ UOC — 1)0(2

1 1
2
=— —n——=4+—1/1+
Co oc<n 2 \/

1 2 4(M7Emc +Cps) (Vl - V2)

—Z\/(l —2(k+ Upc) )+

4(M - EnK + Cps) (Vl + V2)
o2

o2
(44)

and the corresponding wave functions for the lower Dirac
spinor as:

( 24 2B 1
XzFl —-n,n———
o

2B or
o Y.
x2 ! 2)

Finally, the upper-spinor component of the Dirac equation
can also be obtained via Eq. (9b) as:

e e U0 )6

1 - -4
e —— (1 + sin h2ﬂ> (— sin /1 ﬂ)
(M — Epy + Cps) 2 2

Foue(r) =

Asin hor Ecosh% K+ Upc
- +—
2(1+sin k%) sinh% r
2A 2B 1 2B . ,or
X F| =nn————;=——;—sinh"—
o o '2 o« 2
nasinhar(n—%—%?)
+ 1_ 2B
2(5*7)
2A 2B 3 2B
X2 F —n-l—l,n—}—l————;———;—s’nhzﬂ ,
o o2 o 2

(40)

where E,. # M + Cp.

By taking a set of physical parameter values, Cps = 2,
«o=12,M=10,V; =5,V,=13,¢cy = 1/12, when n = 1
and x = 2, Eq. (44) yields the following values of E|,:
—9.92187466, 11.814382. We choose E;, = —9.92187466
as the solution of Eq. (44), and find that the values of A and
B are A = 6.32825 and B = —3.73088, respectively. These
values satisfy the regularity conditions: A > 0, B<0 and
A > —B. If we take E;, = 11.814382 as the solution of
Eq. (44), the values of A and B are A =0.379142 and
B = —1.25016, which do not satisfy the regularity condi-
tion: A > — B. Therefore, we can only take the negative
energy value E;, = —9.92187466 as the solution of
Eq. (44). Using the same parameter values of o, M, V{, V,
and C,,, the numerical solutions of Eq. (44) for the other
values of n and « are presented in Table 2.

Table 2 The p-spin symmetric bound-state energy levels (in unit of fm_l) of the Coulomb potential taking several values of n and

I n, k<0 [(W)) E, <0, E, <0, n—1,k>0 I+2,j+1 E, >0 E, >0
Upc =0 Upe = 1 Uoc =0 Uoc =1

1 1, —1 Isin —9.921874665 —9.896961773 0,2 0ds» —9.921874665 —9.967517561
2 1, -2 1pan —9.967517561 —9.921874664 0,3 Ofs/n —9.967517561 —10.02721223
3 1, =3 lds)» —10.02721223 —9.967517561 0,4 0g71 —10.02721223 —10.09381971
4 1, -4 12 —10.09381971 —10.02721223 0,5 Ohgr —10.09381971 —10.16103413
1 2, —1 2812 —10.00901073 —9.995644024 1,2 1ds) —10.00901073 —10.03267841
2 2, =2 2p3n —10.03267841 —10.00901073 1,3 1fsp —10.03267841 —10.06171352
3 2, -3 2ds;, —10.06171352 —10.03267841 1,4 1g7» —10.06171352 —10.09077285
4 2, —4 2f712 —10.09077285 —10.06171352 1,5 1hos» —10.09077285 —10.11504725
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Fig. 4 (color online) Contribution of the tensor Coulomb potential
parameter to the energy levels in the case of p-spin symmetry

Also in Fig. 4, we have investigated the effect of the
tensor potential on the p-spin doublet splitting by consid-
ering some pairs of orbitals.

Conclusion

In this paper, we have approximately studied the bound-
state solutions of the Dirac equation for the Poschl-Teller-
like potential with a Coulomb-like tensor interaction within
the framework of spin and pseudospin symmetry limits. By
employing an improved approximation scheme to deal with
the pseudocentrifugal term 1//* and the SUSYQUM tech-
nique, We have obtained the energy levels in a closed form
and the corresponding wave functions in terms of the
hypergeometric function ,F;(a, b; c¢; s). Some numerical
values of the energy levels are reported in Tables 1 and 2
under the condition of the spin and p-spin symmetries,
respectively. Obviously, the degeneracy between the
members of doublet states in spin and p-spin symmetries is
removed by tensor interaction. The p-spin spectra of the
present potential are identical to those ones obtained in
Ref. [57] as the potential parameters Uyc = 0,
o=0.15M=1.0,C =5.

ps =
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