
Vol.:(0123456789)1 3

International Journal of Advanced Structural Engineering (2019) 11 (Suppl 1):S9–S18 
https://doi.org/10.1007/s40091-019-00251-9

ORIGINAL RESEARCH

Formulation of a new finite element based on assumed strains 
for membrane structures

Lahcene Fortas1 · Lamine Belounar1 · Tarek Merzouki2

Received: 8 August 2019 / Accepted: 4 November 2019 / Published online: 16 November 2019 
© The Author(s) 2019

Abstract
In this paper, a new triangular membrane finite element with in-plane drilling rotation has been developed using the strain-
based approach for static and free vibration analyses. The proposed element, having three degrees of freedom at each of the 
three corner nodes, is based on assumed strain functions satisfying both compatibility and equilibrium equations. Numerical 
investigations have been conducted using several tests, including static and free vibration problems, and the obtained results 
are compared with analytical and numerical available solutions. It is found that efficient convergence characteristics and 
accurate results can be achieved using the developed element.

Keywords Strain approach · Drilling rotation · Static analysis · Free vibration analysis

List of symbols
ρ  Material density
ν  Poisson’s ratio
E  Young’s modulus
H  Thickness of plate
Ω  Angular frequency
εx, εy  Normal strains
γxy  Shear strain
σx, σy  Normal stresses
τxy  Shear stress
u, v  Translations in the x- and y-directions, 

respectively
θ  In-plane rotation (about z-axes)
x, y  Co-ordinates system
[Ke]  Element stiffness matrix
[Me]  Element mass matrix
[K]  Structural stiffness matrix
[M]  Structural mass matrix

[A]  Transformation matrix
[N]  Displacement matrix
[Q]  Strain matrix
[D]  Elasticity matrix
{F}  Structural nodal forces’ vector
{q}  Structural nodal displacements’ vector
{qe}  Element nodal displacements’ vector

Introduction

The formulation of simple and robust finite elements has 
become one of the most important research fields in struc-
tural mechanics. However, membrane displacement-based 
elements such as the four-node quadrilateral element behave 
very poorly for such case of bending problems. Consider-
able efforts have been oriented to overcome the weaknesses 
of these elements by the development of efficient elements 
using different concepts and formulations such as the 
assumed strain or enhanced assumed strain elements (Li 
and Huang 2014; Piltner and Taylor 1999), the generalized 
conforming elements (Chen et al. 2004; Li and Huang 2014), 
the quasi-conforming elements (Wang et al. 2014; Xia et al. 
2017), and the quadrilateral area coordinate elements (Li and 
Huang 2014; Cen et al. 2015). Other robust membrane ele-
ments with in-plane rotation (Kugler et al. 2010; Cen et al. 
2011; Zouari et al. 2016) have been developed.

The strain-based approach has largely attracted the atten-
tion of its researchers for the development of new finite ele-
ments with high accuracy. Unlike the classical displacement 
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model, direct integration of the imposed strains field allows 
to obtain the displacements field. The main feature of this 
approach is that the resulting components of displacement 
can be enriched by higher order terms without the need of 
introducing non-essential degrees of freedom. This can lead to 
have elements with better accuracy on displacements, strains, 
and stresses. Also, a faster convergence of results for these 
elements is obtained when compared with the corresponding 
displacement elements having the same degrees of freedom.

The strain approach has been applied by many develop-
ers to construct robust and efficient finite elements. It was 
first used by Ashwell et al. (1971) for the case of curved 
problems. Afterward, this approach was introduced to plane 
elasticity (Sabir 1985a; Belarbi and Maalam 2005; Rebiai 
and Belounar 2013, 2014), and then extended for three-
dimensional elasticity problems (Belarbi and Charif 1999; 
Belounar and Guerraiche 2014; Guerraiche et al. 2018; Mes-
sai et al. 2019),for plate bending (Belounar and Guenfoud 
2005; Himeur and Guenfoud, 2011; Belounar et al. 2018, 
2019), and as well as for shell structures (Sabir and Lock 
1972; Assan 1999; Djoudi and Bahai 2003, 2004a, b; Sabir 
and Moussa 1996, 1997).

In the goal of the development of a 2D element that is 
more efficient than the Q4 element, a new three-node trian-
gular membrane element with drilling rotation has been for-
mulated using the strain approach for static and free vibra-
tion analyses. This element named “SBTDR” (strain-based 
triangular with drilling rotation) possesses three degrees of 
freedom at each node, two translations (U, V) and one in-
plane rotation (θz). It has first been tested for static and then 
for free vibration analysis through several examples. The 
numerical results obtained show the good accuracy and effi-
ciency of the present element.

Formulation of the developed element

The strain–displacement relations of an element for plan 
elasticity in the Cartesian coordinate system (Fig. 1) can 
be written as:

The strain components given by Eq. (1) must satisfy the 
following compatibility equation:

(1)
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The triangular element has three degrees of freedom at each 
of the three corner nodes, corresponding to two translations 
(U, V) and one in-plane rotation (θz). Therefore, the displace-
ment functions should contain nine independent constants. 
First, the resulting displacement field of the rigid body modes 
is obtained by equating the three strains given in Eq. (1) to 
zero, and after integration, the following can be obtained:

Since the three constants (a1, a2, and a3) are taken for rep-
resenting the displacements field of the rigid body modes, as 
shown in Eq. (3), the remaining six constants (a4, a5,…, a9) 
are used to express the imposed strains of the element appor-
tioned as:

The above strain functions of the current element given by 
Eq. (4) satisfy both the compatibility equation [Eq. (2)] and 
the equilibrium equations (Eqs. (5) and (6)), where ν is the 
Poisson’s ratio:
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Fig. 1  Three-node triangular membrane strain-based element 
(SBTDR)
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The assumed strains of Eq. (4) are substituted into Eq. (1), 
and after integration, the obtained displacements are:

where:

The obtention of the final displacement field for the present 
element is given by summing Eqs. (3) and (7) to have:

The displacement field given above [Eq. (8] satisfies both 
compatibility [Eq. (2)] and equilibrium [Eqs. (5), (6)]. These 
displacement functions given by Eq. (8) and the strain func-
tions of Eq. (4) can be, respectively, written in matrix form as:

With {a} =
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}T:
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The stress–strain relationship is given by:

For static and free vibration, the standard weak form can, 
respectively, be expressed as:

Equations (9), (10), and (11) are substituted into Eqs. (12) 
and (13); we obtain:

where the element stiffness and mass matrices are, respec-
tively, given as:

where [A] is a matrix relating to the nine nodal element dis-
placements to the nine constants (a1, a2–a9), and it is given 
in the “Appendix 1” with the matrices [B], [P], and [D].

The global equilibrium equation for the static domain is 
written as:

The global equilibrium equation for the free vibration 
domain is written as:
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where {q} is the structural global displacements vector, [K] 
and [M] are the structural stiffness and mass matrices, and 
{F} is the global load vector. These are obtained by assem-
bling the individual element contributions using the elemen-
tary matrices [Ke] and [Me].

All elements with their references used in the article are 
given in “Appendix 2”.

Static validation

Linear Mac‑Neal beam

In this test, the slender Mac-Neal beam (MacNeal and 
Harder 1985) is used to evaluate the efficiency of the devel-
oped element, where the geometrical and the material char-
acteristics are given in Fig. 2. The obtained results presented 
in Table 1 show that the developed element is insensitive 
to mesh distortion and its results are in good agreement 
with the exact solution. Besides, it should be noted that the 

(19)[K] − �2[M]{q} = 0,
developed element is more accurate than the strain-based 
element (SBTIEIR) in both load cases.

Cook’s membrane problem

The clamped trapezoidal plate, known as Cook’s membrane 
benchmark test (Cook 1974), is analyzed for a uniformly 
distributed shear load (F = 1) applied at the free end. The 
geometrical and material properties are presented in Fig. 3 
and the results of the displacement at the free end (point 
C) are given in Table 2. The results of the SBTDR element 
are found to be slightly better than those obtained using the 
other elements. It can be noted that good accuracy is pro-
vided for the current element regardless of mesh density.

Thick circular beam under in‑plane shear load

The test shown in Fig. 4 concerns the thick circular beam 
subjected to a shear force F = 600 at its free end. Four regu-
lar meshes of 2 × 2, 4 × 2, and 6 × 2 plane stress triangular 
elements for this curved beam are considered. The obtained 
results of the vertical displacement at point A are given in 

E=107 ν=0.3    h=0.1

0.2

6

1

Mesh (c)

Mesh (b)

Mesh (a)

1
45°

45°

10

10

10

1

Case 
(1)

Case 
(2)

Fig. 2  Mac-Neal’s elongated beam subjected to end shear (1) and end bending (2)

Table 1  Normalized deflection 
at free end for Mac-Neal’s 
elongated beam subjected to 
end shear and bending

Element End bending End shear

Mesh (a) Mesh (b) Mesh (c) Mesh (a) Mesh (b) Mesh (c)

Q4 0.093 0.022 0.031 0.093 0.027 0.034
PS5β 1.000 0.046 0.726 0.993 0.052 0.632
AQ 0.910 0.817 0.881 0.904 0.806 0.873
MAQ 0.910 0.886 0.890 0.904 0.872 0.884
Q4S – – – 0.993 0.986 0.988
07β 1.000 0.998 0.992 0.993 0.988 0.985
SBTIEIR 0.437 0.015 0.374 0.435 0.005 0.333
SBTDR 1.000 1.000 1.000 0.992 0.904 0.888
Beamtheory (Mac-

Neal and Harder 
1985)

1.000 (0.270) 1.000 (0.1081)
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Table 3 and compared with those of other elements, showing 
that the developed element provides more accurate results 
than the CPS4 quadratic element and less accurate than the 
QACM4 one.

Shear wall with openings

A shear wall structure with openings (Fig. 5) has been ana-
lyzed to determine the efficiency and the accuracy of the 
SBTDR element. The geometrical and material properties 
of this eight-story coupled shear wall are illustrated in Fig. 5. 
The lateral displacements of the model at story 2, 4, 6, and 
8 (Table 4) have been computed and compared with those 
of commercial codes (SAP-2000, STAADPRO) given by 
(Paknahad et al. 2007). The obtained results using the devel-
oped SBTDR element are in a good agreement with those 
obtained using the OPT element and commercial software 
SAP-2000, STAADPRO.

Thin‑circular beam under in‑plane shear load

This test allows analyzing a thin-circular beam clamped at 
one end and subjected to a unit shear load at the free end 
(Fig. 6). Three regular meshes of 6 × 1, 12 × 2, and 24 × 4 
plane stress triangular elements are considered. The obtained 
results of the vertical displacement at the free end (point A) 
are given in Table 5. It should be noted that the SBTDR ele-
ment offers a better convergence towards the exact solution 
when compared with other elements.

Dynamic numerical validation

Three problems are presented to demonstrate the robustness 
and the accuracy of the current element for free vibration 
analysis.

48

44 44

16FC

E=1
ν=1/3
h=1
F=1

C
la

m
pe

d

X

Y

Fig. 3  Cook’s plate modeled with eight triangular elements

Table 2  Normalized 
displacement at the free end for 
tapered panel under end shear

Element model 2 × 2 mesh 4 × 4 mesh 8 × 8 mesh Error (%) 
(8 × 8)Vertical displacement Vertical displacement Vertical displacement

HTD 0.847 0.951 0.985 1.5
HT 0.502 0.765 0.921 7.9
MEAS 0.502 0.765 0.921 7.9
ALLMAN 0.823 0.938 0.981 1.9
TE4 0.848 0.941 – –
SBTDR 0.663 0.877 1.069 6.9
Bergan and Felippa 

(1985) (32 × 32)
1.000 (23.90)

Clamped

X

Y R2

R1

E=1000
ν=0
h=1
F=600
R1=15
R2=10

F

A

Fig. 4  Thick circular beam modeled with eight triangular elements
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In‑plane free vibration problem of a cantilever shear 
wall

The free vibration problem for in-plane of a cantilever shear 
wall, studied by Cheung (Cheung et al. 2000), is considered 
by taking the first three natural frequencies of the flexural 
modes. The geometrical and material properties are pre-
sented in Fig. 7, and the natural frequencies of the SBTDR 
element are calculated and compared with those obtained by 
other elements, as given in Table 6. The results obtained by 
the SBTDR element are less accurate than those obtained 
by the element T6, whereas the frequencies obtained by the 
elements Q4 and T3 are considerably higher than those of 
the analytical solution.

Free vibration analysis of a cantilever beam

This analysis has been performed in the case of a plane 
stress problem of a cantilever beam, with its character-
istics given in Fig. 8. The numerical results of the first 
four frequencies for the SBTDR element (Table 7) have 
been compared with those of several elements (SFEM, 

Table 3  Normalized vertical displacement at point A

Mesh HS-A7 QACM4 CPS4 SBTDR

2 × 1 0.987 – 0.251 0.322
4 × 1 0.994 0.938 0.643 0.766
6 × 1 – 0.979 0.811 0.937
Error (%) (6 × 1) – 2.1 18.9 6.3
Reference solution 

(Zouari et al. 2016)
90.1

Fig. 5  Geometrical and material 
properties of coupled shear wall

Ec=2E+7 KN/m2; ν=0.25;  h=0.4 m;  P=500 KN

42

3.2

0.8

4

P

P

P

P

8*4

Table 4  Comparison of the lateral deflection at different story levels

Floor 2 4 6 8

SAP 2000 0.55 1.48 2.54 3.62
STAAD-PRO 0.68 1.68 2.78 3.86
OPT element 0.71 1.91 3.19 4.43
SBTDR 0.62 1.72 2.89 4.017

X

Y

E=107

ν=0.25
h=0.1
F=1
R1=4.12
R2=4.32

R1

R2

F

Clamped

A

Fig. 6  Thin circular beam modeled with 12 triangular elements



S15International Journal of Advanced Structural Engineering (2019) 11 (Suppl 1):S9–S18 

1 3

FEM T3, and Q4) to examine the accuracy of the pre-
sent element. A much better convergence of the results is 
achieved with the element SFEM and the element SBTDR 
offers better results than that when using T3 or Q4 ele-
ments, with an appreciable accuracy compared to the ref-
erence solution.

Free vibration of a cantilever beam with variable 
cross section

In this test, a cantilever beam with variable cross section 
is studied, for which geometry and mesh are presented in 
Fig. 9 (L = 10; H(0) = 5, H(L) = 3, t = 1.0, E = 3.0 × 107, 
υ = 0.3, and ρ = 1.0.). The computed results of the first 
four natural frequencies using the SBTDR element are 
given in Table  8. Indeed, the obtained results of the 
SBTDR element are less accurate than those of the four-
node QBI element and it behaves much less than eight-
node Q9 and SFEM elements.

Conclusion

In the current paper, a three-node triangular membrane finite 
element with in-plane drilling rotation has been studied using 
the strain approach for both linear static and free vibration 
analyses. The developed element (SBTDR) has three degrees 
of freedom at each corner node where its displacements field 
contains higher polynomial terms and satisfies the compatibil-
ity equations as well as the equilibrium equations as additional 
conditions. According to the tested problems, the obtained 
numerical results show a high degree of accuracy and achieve 
a rapid convergence to analytical solutions with relatively 
coarse meshes. This element provides satisfactory results 
compared to other robust elements given in the literature.

Table 5  Normalized vertical displacement at the free end

Mesh CPS4 HT SBTDR

6 × 1 0.073 0.075 0.2025
12 × 2 0.247 0.251 0.454
24 × 4 0.572 0.555 0.797
Error (%) (24 × 4) 42.8 44.5 20.3
Reference solution (Choo 

et al. 2006)
0.08734

E=3.4474x1010 N/m2

ν=0.1
ρ=568.2 kg/m3

h=0.2289

15.24 

Clamped

60
.9

6

Clamped

2x8

Fig. 7  Geometry and mesh discretization of a cantilever shear wall

Table 6  First three frequencies (Hz) of the flexural modes of a canti-
lever shear wall

Mode 1 2 3

Q4 5.252 28.028 67.652
T3 6.658 33.759 79.341
T6 4.959 25.772 60.221
SBTDR 4.31 24.11 60.50
Theoretical value (Cheung 

et al. 2000)
4.973 26.391 62.066
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Fig. 8  Meshes of the cantilever 
beam
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Table 7  First four natural 
frequencies (× 104 Hz)

Mesh SFEM (4 SC) FEM-T3 FEM (4-node Q4) SBTDR Reference 
FEM-Q4 
(100 × 10)

10 × 1 0.0861 0.1692 0.1000 0.0798 0.0824
0.5071 0.9163 0.6077 0.4960 0.4947
1.2828 1.2869 1.2863 1.1623 1.2825
1.3124 2.1843 1.6423 1.3982 1.3037

20 × 2 0.0834 0.1117 0.0872 0.0739 0.0824
0.4993 0.6539 0.5264 0.4605 0.4947
1.2828 1.2843 1.2837 1.1863 1.2825
1.3141 1.6748 1.4011 1.2377 1.3037

10

5

C
la

m
pe

d

X
Y

3

10x4
v

C
la

m
pe

d

Fig. 9  A cantilever beam with a variable cross section and its mesh

Table 8  First four natural frequencies (× 104 Hz) of a variable cross-
section cantilever beam

SFEM (4 SC) FEM (4-node 
Q4)

FEM (8-node 
Q9)

FEM 
(4-node 
QBI)

SBTDR

0.4156 0.4219 0.4167 0.4149 0.4054
1.4572 1.5102 1.4623 1.4540 1.4348
1.5140 1.5183 1.5155 1.5137 1.4793
2.9119 3.1156 2.9534 2.9031 2.8759

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix 1

The matrix [A] with the dimension (9 × 9) for the SBTDR 
element relating to the nodal displacements vector {qe} and 
the constant parameters vector {a} is obtained by applying 
Eq. (9) for each of the three-element node coordinates (xi, 
yi), (i = 1, 2, 3) as:

With 
{

qe
}

=
{

U1,V1, �1,U2,V2, �2,U3,V3, �3
}T;

and the transformation matrix [A] is:

Using Eq. (20), the constant parameter vector {a} can be 
obtained as:

By substituting Eq. (22) into Eqs. (9) and (10), we obtain:

With [P] = [N][A]−1; 

where the elasticity matrix [D] is given below for plane 
stress and plane strain.

For the case of plane stress problems, the elasticity matrix 
[D] is:

For the case of plane strain problems, the elasticity matrix 
[D] is:

(20)
{

qe
}

= [A]{a}.

(21)[A] =

⎡

⎢

⎢

⎣

�

N
�

x1, y1
��

�

N
�

x2, y2
��

�

N
�

x3, y3
��

⎤

⎥

⎥

⎦

.

(22){a} = [A]−1
{

qe
}

.

(23)
{

Ue

}

= [N][A]−1
{

qe
}

= [P]
{

qe
}

,

(24){�} =
[

Q(x, y)
]

[A]−1
{

qe
}

= [B]
{

qe
}

.

(25)[B] =
[

Q(x, y)
]

[A]−1,

[D] =
E

(1 − �2)

⎡

⎢

⎢

⎣

1 � 0

� 1 0

0 0
1−�

2

⎤

⎥

⎥

⎦

.

[D] =
E

(1 + �)(1 − 2�)

⎡

⎢

⎢

⎣

(1 − �) � 0

� (1 − �) 0

0 0
(1−2�)

2

⎤

⎥

⎥

⎦

.

Appendix 2

Note on the elements to compare is given:
PS5β: (Pian and Sumihara 1984)
AQ: (Cook 1986)
MAQ: Hybrid finite element with rotational degrees of 

freedom (Yanus et al. 1989)
Q4S: (MacNeal and Harder 1988)
07β: (Sze et al. 1992)
SBTIEIR: (Sabir 1985b)
HTD, HT, MEAS, and TE4: (Choo et al. 2006)
SFEM (4 SC), FEM (4-node Q4), FEM (8-node Q9), 

and FEM (4-node QBI): (Dai and Liu 2007)
ALLMAN: (Allman 1988)
QACM4: (Cen et al. 2007)
HS-A7: (Rezaiee-Pajand and Karkon 2013)
CPS4: (Zouari et al. 2016)
SAP 2000, STAAD-PRO, OPT: (Paknahad et al. 2007)
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