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Abstract In this paper, the boundary element method is

applied to carry out the structural analysis of post-ten-

sioned flat slabs. The shear-deformable plate-bending

model is employed. The effect of the pre-stressing cables is

taken into account via the equivalent load method. The

formulation is automated using a computer program, which

uses quadratic boundary elements. Verification samples are

presented, and finally a practical application is analyzed

where results are compared against those obtained from the

finite element method. The proposed method is efficient in

terms of computer storage and processing time as well as

the ease in data input and modifications.

Keywords Post-tensioned slabs � Boundary element

method � Equivalent load method

Introduction

Flat slabs are desirable structural systems in engineering

due to architectural needs and speed of construction. In

order to construct flat slabs with large spans (about

12–15 m), pre-stressing cables are necessary (Post ten-

sioning manual 2000). Several finite element method

(FEM) (Zienkiewicz 1977) based packages are used to

carry out the structural analysis of plate structures; among

them are the SAP2000 (2006) and SAFE (2008), etc.

However, special packages are designed to treat the

presence of post-tensioned cables such as ADAPT (2007)

and SAFE-PT (2008). All of these packages, no exception,

are based on the finite element method.

The boundary element method (BEM) (Berrebia et al.

1984) has emerged as a powerful tool in engineering

practice. The BEM for thin plates started with the work of

Bézine (1978) and Stern (1979) for the direct formulation

and by Tottenham (1979) for the indirect formulation. Van

der Weeën (1982) was the first who applied the boundary

element method to shear-deformable plate-bending prob-

lems according to Reissner (1947). Rashed (2005a, b) ex-

tended formulation of Van der Weeën (1982) to model flat

plates over columns. It was presented in Ref. (Rashed

2005a, b; Nazief et al. 2010) that the Reissner plate-

bending model is more refined and accurate in theory for

thin slabs and thick foundation plates. To the author’s best

knowledge, none of these publications considered the

presence of pre-stressing cables in flat slabs.

This paper aims to include the effect of post-tensioning

cables within the boundary element formulation for flat

slabs. It can be regarded as a new structural analysis tool

for post-tensioned slabs. Unlike previous technology,

which is mainly based on the FEM, the proposed method is

based on the boundary element method. This will avoid

any internal meshing problems and will guarantee high

accuracy for both slabs and supporting elements. The

proposed method is easy in data input and modifications. It

is also fast in computer processing time and has less stor-

age requirements. Therefore, practical projects results

could be sent easily by e-mail. Cables are placed freely

inside the slab with no meshing constraints, which provides

robust tool for optimization and value engineering. Results

of the proposed model are compared against those obtained

from the FEM. This comparison proved the validity of the

present formulation.
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Boundary elements for flat slabs

Consider the slab shown in Fig. 1. According to Rashed

(2005a, b) columns or internal walls are modeled using

internal supporting cells with the real geometry of their

cross sections. This ensures avoiding overshooting stress

resultant values over supports. Three generalized forces are

considered at each internal support: two bending moments

in the two spatial directions (x1, x2) as well as a shear force

in the vertical direction (x3). These generalized forces are

considered to vary constantly over the column cross section

(Rashed 2005a, b). A suitable boundary integral equation

(in index form) can be written as follows (Rashed 2005a,

b):

Cij nð Þuj nð Þ þ
Z
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Tij n; xð Þuj xð ÞdC xð Þ ¼
Z
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where Uij(n,x) and Tij(n,x) are the fundamental solution

kernels (Vander Weeën 1982), uj(x), tj(x) are the boundary

displacements and tractions, Cij(n) is the jump term at

the source point, n (= � for n on smooth boundary),

XC(y) denotes the column’s y domain, y is a field point at

the column center, Sk(y) is the column’s y stiffness, A(y) is

the column’s y area, q is the uniform domain loading and

B(y) is a coefficient (equal to zero in case column stops

below the considered floor and equal to one in case column

continues above the considered floor). It has to be noted

that long walls and cores can be treated as column seg-

ments. Beams can be also modeled in similar way but using

special stiffness matrix. In order to solve the problem in

Eq. (1), additional collocation scheme is carried out at each

column center. In this case additional three integral equa-

tions similar to that of Eq. (1) could be written but with:

n = y and Cij(y) = 1. These new equations together with

Eq. (1) can solve the boundary value problem (Rashed

2005a, b).

After the boundary solution, values of the displacement

and forces at column centers are also calculated. General-

ized displacements at the internal point n can be obtained

using Eq. (1) with Cij(y) = 1. The stress resultants at the

internal point n are obtained as follows (Rashed 2005a, b):
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Fig. 1 A general post-

tensioned slab problem
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where the new kernels Uijk(n,x) and Tijk(n,x) are given in

Vander Weeën (1982).

Proposed model for pre-stressing cables

In this section, the pre-stressing cables are introduced to

the boundary element formulation presented in Sect. 3

using the equivalent load method (Lin 1963).

The equivalent load method

Consider a general cable profile shown in Fig. 2. This

profile can be represented in terms of the following

parabolic equation:

Z Lð Þ ¼ a1L
2 þ a2Lþ a3 ð4Þ

where, a1, a2, and a3 are constants to be determined from

the cable boundary conditions. The coordinate L is mea-

sured from an arbitrary origin (see Fig. 1) along the cable

and Z is the cable eccentricity in the x3 direction measured

from slab centerline (see Fig. 2).

The derivatives of Eq. (4) w.r.t. the coordinate L are:

Z 0 Lð Þ ¼ 2a1Lþ a2 ð5Þ

Z 00 Lð Þ ¼ 2a1: ð6Þ

Equivalent cable loads on each segment are represented

(Lin 1963) by distributed load (W) along the cable length

together with two concentrated forces (F3(Ls), F3(Le)) and

two concentrated moments (Fa(Ls), Fa(Le)) at the segment

start (Ls) and end (Le) points (see Fig. 2). Equivalent dis-

tributed load is computed as follows (Lin 1963):

W ¼ PZ 00 ¼ Pð2a1Þ ð7Þ

Concentrated load values are computed as follows (Lin

1963):

F3 Lsð Þ ¼ PZ 0 Lsð Þ ¼ Pð2a1Ls þ a2Þ ð8Þ

F3 Leð Þ ¼ PZ 0ðLeÞ ¼ Pð2a1Le þ a2Þ ð9Þ

where, P is the pre-stressing force of the considered cable.

Concentrated moment values due to the cable eccen-

tricity are computed as follows (Lin 1963):

Fa Lsð Þ ¼ PZ Lsð Þ ð10Þ
Fa Leð Þ ¼ PZ Leð Þ ð11Þ

where the a-direction is the perpendicular to the L-direc-

tion and the right hand vector notation is used to represent

the bending moment. The FaðLsÞ and FaðLeÞ is going to be

resolved into: F1(Ls), F1(Le) and F2(Ls), F2(Le) in the x1
and x2 directions.

If cable profile has any local change in curvature, two

segments are used to model this cable. Hence, additional

concentrated load is added at the point of discontinuity,

with a value equal to the summation of end concentrated

loads for the two intersecting segments. Moreover,

equivalent load for any continuous cable having variable

segment profiles is calculated by dividing the cable into

series of parabolic segments.

Boundary element implementations

In the boundary element model, each cable is divided into

series of patch loading cells [n cells with centers located at

F3(Le)

Z(Le)
Z(L)

Cable 
Segment

F3(Ls)

F (Ls) F (Le)

The L- Coordinate 

Cable profile

Equivalent load

Le

LS

Origin

L (measured from the origin) 

Z(Ls)

Segment 
Start Point

Segment 
End Point

Centerline 
of Slab

W

Fig. 2 Elevation view showing the equivalent load for a general cable segment
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(X1, X2… Xn) as shown in Fig. 3] to model the distributed

load (W). The width of these cells is equal to the cable

width (c). The locations of such points could be obtained

easily using simple geometry relationships. Additional two

square cells (of dimensions equal to c 9 c) are placed at

the beginning (Xs = Xs(Ls) and at the end (Xe = Xe(Le)) of

each cable to represent the concentrated loads (F3) and

moments (Fa). In order to account for such new cable

loading additional terms have to be added to right hand side

of the boundary integral Eq. (1) as follows:

þ
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In addition, the following additional terms have to be

added to the right hand side of Eq. (2) for the moment

calculations:
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and the following terms have to be added to the right hand

side of Eq. (3) for the shear calculations:
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where, XN is the center point of the subdivision number N

(see Fig. 3),XS,Xe are the start and the end points of the cable

segment, respectively, F�
3 XNð Þ is the vertical pressure for

subdivision number N, and F�
k XQð Þ is the moment per unit

area when k = 1, 2 and it represents the vertical pressure

F�
3

� �
when k = 3. Values of F�

k can be obtained as follows:

F�
k XQð Þ ¼ Fk XQð Þ

�
c2 ð15Þ

and

F�
3 XNð Þ ¼ F3 XNð Þ

�
‘cable
n

� c

� �
ð16Þ

in which ‘cable is the horizontal distant from Xs to Xe.

Similar to Eqs. 1, 2 and 3 in Sect. 3, it has to be notes

that in Eq. (12) n has to be collocated at all boundary

points plus at internal columns and walls centers as well as

at beam cell centers. Whereas, in Eqs. (13) and (14), n has

to be any internal point.

Numerical implementations

The previous boundary element formulation is imple-

mented into computer code using quadratic boundary

F3(Xe)F3(X
F (Xs F (Xe)

X1 X2

Xe

Xn

Xs

n - divisions

Plan view of the 
proposed segment 
division

Plan view of the 
proposed segment 
equivalent loads

c

c

s)
)
F3(X1)

F3(X2)

F3(Xn-1)

F3(Xn)

The considered 
cable segment

The prestressing 
cable
(Elevation view)

Fig. 3 The proposed boundary

element modeling of the cable

segment equivalent loads
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elements. This code is called the PLPAK. Two main

software tools are implemented to add the effect of the

prestressing cables. The first tool is called the ‘‘Cable

Calculator’’, which allows inputting the cable data using

different formats and determine the constants a1, a2 and a3
from the cable geometry (recall Sect. 3.1). The second tool

is the ‘‘PTUpdater’’ which changes the cable data into

equivalent load as described in Sect. 3.1. It also updates the

boundary element model with such equivalent loads as

demonstrated in Sect. 3.2. Hence, the traditional steps of

solution for boundary elements are carried out (SAP2000

2006).

Numerical verifications

The purpose of this section is to verify the proposed for-

mulation presented in Sect. 3 for simple problems where

analytical solutions are existed in the literature.

Load balancing of simply-supported slab own weight

In this example, the slab shown in Fig. 4 is considered.

The slab has cross-section dimensions of 1.0 9 0.6 m.

The material properties taken are E = 2.21 9 106 t/m2,

t = 0 to allow comparison against results for the beam

theory. The slab is pre-stressed with one cable of force

Fig. 4 The simply supported slab considered in Sect. 4.1

Cable 

Quadratic 
boundary 
element 

Fig. 5 Boundary element and cable internal cells for the simply

supported slab considered in Sect. 4.1

Fig. 6 Deflection and bending

moment distribution under the

slab own weight along the slab

center line in the simply

supported slab considered in

Sect. 4.1
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equal to the balancing force 23.4 tons. The cable profile

and eccentricity are shown in Fig. 4. The slab is sup-

ported on two supports of 0.1 9 1.0 m in cross section

and 1.5 m in height as shown in Fig. 4. The slab

boundary is modeled (see Fig. 5) using 16 boundary

elements. A simply supported boundary condition is

employed. Such conditions are simulated using two col-

umn support of 1.0 9 0.1 m with zero rotational stiff-

nesses and high value of (1010) for the axial stiffness.

Eleven internal cells are used to represent the cable

equivalent loading. The numbers of Gauss points used for

integration purposes are ten. The total number of extreme

Table 1 Comparison of central deflection against analytical values (m)

Fig. 7 Deflection and bending

moment distributions under the

slab own weight plus the

balancing force prestressing

cable along the slab center line

in the simply supported slab

considered in Sect. 4.1
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points is 52. The results are calculated along a strip along

the cable center line.

Figure 5 demonstrates the deflection and bending mo-

ment distributions along the slab center line under its own

weight only. Figure 6 demonstrates the same deflection and

bending moment distributions under both own weight plus

the balancing pre-stressing force. It can be seen that de-

flection approaches zero compared to the deflection dis-

tribution in Fig. 5. The bending moment in Fig. 6

approaches zero also; except near the end supports as such

supports are not knife edge and has width of 0.1 m;

therefore small negative moment is expected.

Comparison of central deflection against analytical

values

The same example in Sect. 4.1 is reconsidered herein using

different cable profile (see Table 1). The present boundary

element results for the deflection at the mid span are shown

in Table 1. It can be seen from Table 1 that the results for

the central deflection are in excellent agreement with

analytical values obtained from Ref. Michael and Denis

(1997). The symbols used in Table 1 are: P is pre-stressing

force, e, ec are the centerline eccentricity, ee is end ec-

centricity, E is modulus of elasticity, I is section moment of

Table 2 Comparison of fixed end moments against analytical values (m.t)

Fig. 8 The practical slab geometry and section locations (dimensions are in mm)
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inertia, b is the ratio of the distance from the harping point

to the beam end, to the beam length. This ratio is equal to

1.4/4.9 in the considered case (Fig. 7).

Comparison of fixed end moments against analytical

values

Using the same slab in Sect. 4.1, alternative cases are

considered herein to verify values of the fixed end mo-

ments. The cable profiles shown in Table 2 are considered.

In this case the fixed–fixed boundary condition is em-

ployed. Such conditions are simulated within the boundary

element model using the same previous columns but with

very high value of (1010) for the axial and the rotational

stiffnesses in the two directions. The results of the pro-

posed model fixed end moments together with the analy-

tical values obtained from Michael and Denis (1997) are

given in Table 2. It can be seen that the obtained results are

in excellent agreement with analytical values. It is worth

mentioning that in the last case, the end fixations are

Fig. 9 Cables layout in the X-direction

Fig. 10 Cables layout in the Y-direction
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spaced by distant 5.0 m away from the cable end to avoid

the placement of the concentrated moment near the fixed

column.

Practical application

The previous simple cases (in Sect. 4) verified the present

formulation. In this example, the slab shown in Fig. 8 is

considered. The purpose of this example is to demonstrate

that the present formulation can be used as an alternative to

the existing finite element based software packages. The

slab has maximum dimensions of 61 9 26 m with spans

about 7 to 11 m and thickness of 0.24 m. The material

properties taken are E = 2.1 9 106 t/m2, m = 0.16. The

slab is pre-stressed with cables in X & Y directions as

shown in Figs. 9 and 10, respectively. Cables spacing

varies from 0.6 to 1.6 m and cable force are equal to

12 ton. Cable groups are used. Each group contains 2 to 5

cables. Cable layout and eccentricity are shown in Figs. 9

and 10, respectively. The slab is supported on group of

irregular columns (cross section varies from 2 to 4 m2) and

central core as shown in Fig. 9. The floor height is 3 m.

The slab boundary is modeled using the proposed

boundary element models using 159 boundary elements

and 4124 internal cells are used to represent the equivalent

loading of cables as shown in Fig. 11. The number of

Fig. 11 The boundary element model with cable cells and support cells

Fig. 12 The finite element model
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Fig. 13 Bending moment along section A (m.t)
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Gauss points used is 4. Total number of extreme points is

8787. The results are calculated along several sections

using 515 internal points and internal point meshes of

1 9 1 m are used for contour map calculations. The

internal columns and cores are represented by multiple

supporting cells (2 to 4 cells).

The same slab is considered using finite element ana-

lysis with 0.2 9 0.2 m mesh, columns are represented as

3D solids, shear walls and cores are represented using shell

element. The used finite element model has 87,003 nodes

and 22,098 four-node plate-bending elements as well as

48,990 solid elements as shown in Fig. 12. It has to be

noted that results presented in this section will concentrate

on slab results. Discussions on results for supporting ele-

ments are similar to those of slabs without pre-stressing

cables which have been already considered by Rashed

(2005a, b).

Figures 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

and 26 demonstrate the distribution of bending moment

and deflection results along sections A, B, C, D, E, F and G

in the considered slab (see Fig. 8). It can be seen that the
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presented formulation (BEM) results are in good agree-

ment when compared to results obtained from finite ele-

ment analysis (FEM). Figures 27, 28, 29, 30, 31 and 32

demonstrate the contour map results of bending moment

and deflection, respectively. An effort is made to have as

much a similar color range as possible in the two analyses
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Fig. 23 Bending moment
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Fig. 27 Contour map for bending moment Mxx in the finite element model (m.t)

Fig. 28 Contour map for bending moment Mxx in the boundary element model (m.t)
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Fig. 29 Contour map for bending moment Myy in the finite element model (m.t)

Fig. 30 Contour map for bending moment Myy in the boundary element model (m.t)

Fig. 31 Contour map for vertical deflection Uz in the finite element model (m)
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(BEM and FEM). It can be seen that the results of the

present (BEM) agree with those obtained from the (FEM)

results. Table 3 demonstrates a comparison in terms of

computer running time and computer storage requirements

between the present (BEM) and (FEM). The superiority of

the present formulation can be seen from this table.

Conclusions

The present paper developed a new boundary element

formulation that account for the effect of pre-stressing

cables in flat slabs. The equivalent load method is used to

simulate the effect of pre-stressing cables. The formulation

is automated and tested against simple cases and practical

problems. The present formulation has many advantages

over the existing finite element based codes in terms of data

preparations, computer time and storage requirements.

Analysis of pre-stressed foundation plates, punching cal-

culations and pre-stressing losses could be easily consid-

ered using the proposed model. However, they will be

considered as future research. The present method could

also be regarded as a fast checking tool for results obtained

from existing FEM-based software packages. It is also a

promising tool for value engineering.
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Vander Weeën F (1982) Application of the boundary integral

equation method to Reissner’s plate model. Int J Numer Methods

Eng 18:1–10

Zienkiewicz OC (1977) The finite element method, 3rd edn, McGraw-

Hill, New York

158 Int J Adv Struct Eng (2015) 7:143–158

123


	Boundary element analysis of post-tensioned slabs
	Abstract
	Introduction
	Boundary elements for flat slabs
	Proposed model for pre-stressing cables
	The equivalent load method
	Boundary element implementations
	Numerical implementations

	Numerical verifications
	Load balancing of simply-supported slab own weight
	Comparison of central deflection against analytical values
	Comparison of fixed end moments against analytical values

	Practical application
	Conclusions
	Open Access
	References




