
Stoch PDE: Anal Comp (2022) 10:1050–1081
https://doi.org/10.1007/s40072-022-00260-y

An application of the splitting-upmethod for the
computation of a neural network representation for the
solution for the filtering equations

Dan Crisan1 · Alexander Lobbe1 · Salvador Ortiz-Latorre2

This article is dedicated to István Gyöngy on the occasion of his 70th birthday.

Received: 16 November 2021 / Revised: 23 March 2022 / Accepted: 9 May 2022 /
Published online: 9 June 2022
© The Author(s) 2022

Abstract
The filtering equations govern the evolution of the conditional distribution of a sig-
nal process given partial, and possibly noisy, observations arriving sequentially in
time. Their numerical approximation plays a central role in many real-life applica-
tions, including numerical weather prediction [Llopis et al. (SIAM J Sci Comput
40(3):A1544–A1565, 2018), Galanis et al. (Geophysicae 24(10): 2451–2460, 2006)],
finance [Brigo and Hanzon (Insurance Math Econom 22(1):53–64, 1998), Date and
Ponomareva (IMA J Manag Math 22(3): 195–211, 2011), Crisan and Rozovskii
(The Oxford handbook of nonlinear filtering, 2011)] and engineering [Myötyri et
al. (Reliability Eng Syst Saf 91(2):200–208, 2005)]. One of the classical approaches
to approximate the solution of the filtering equations is to use a PDE inspired method,
called the splitting-up method, initiated by Gyongy, Krylov, LeGland, among other
contributors, see e.g., Gyöngy and Krylov (Stochastic inequalities and applications,
Progr. Probab. 56:301–321, 2003), Le Gland(Stochastic partial differential equations
and their applications (Charlotte,NC, 1991),Lect. Notes Control Inf. Sci.176:177–187,
1992). This method, and other PDE based approaches, have particular applicability for
solving low-dimensional problems. In this work we combine this methodwith a neural
network representation inspired by [Han et al. (ProcNatl acad Sci 115(34):8505–8510,
2018)]. The new methodology is used to produce an approximation of the unnor-

B Dan Crisan
d.crisan@imperial.ac.uk

Alexander Lobbe
alex.lobbe@imperial.ac.uk

Salvador Ortiz-Latorre
salvadoo@math.uio.no

1 Department of Mathematics, Imperial College London, SW7 2AZ London, UK

2 Department of Mathematics, University of Oslo, Postboks 1053, 0316 Blindern, Oslo, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-022-00260-y&domain=pdf
http://orcid.org/0000-0003-1486-1517
http://orcid.org/0000-0003-0929-8301

Stoch PDE: Anal Comp (2022) 10:1050–1081 1051

malised conditional distribution of the signal process. We further develop a recursive
normalisation procedure to recover the normalised conditional distribution of the sig-
nal process. The new scheme can be iterated over multiple time steps whilst keeping its
asymptotic unbiasedness property intact. We test the neural network approximations
with numerical approximation results for the Kalman and Benes filter.

Keywords Stochastic Filtering · Deep Learning · Numerical Approximation of
Stochastic PDEs

Mathematics Subject Classification 60H15 · 93E11 · 65C05 · 65C30

1 Introduction

This paper is concerned with the numerical approximation of the solution of the
stochastic filtering equations. In addition to its theoretical significance in stochastic
analysis and control (see, for example, [3, 10] or [6]), stochastic filtering is an important
modelling framework for many domains of application, such as numerical weather
prediction [14, 34], finance [8, 11] [10, Part IX] and engineering [35]. Hence, there
is a high demand for efficient and accurate numerical methods to approximate the
solution of the filtering problem, i.e. the solution of the filtering equations. Here, we are
presenting a first study in an ongoing effort to combine a machine learning approach,
that has risen in prominence within the numerical community over the past years,
with the classical PDE based approach to the numerical resolution of the stochastic
filtering problem. In particular, we base our algorithm on the SPDE splitting method
that was, among others, developed by Istvan Gyongy, Nikolay Krylov and Francois
LeGland [18, 32]. The chosen neural network based machine learning approach for
the approximation of the involved deterministic PDE is inspired by [22].

Among all contributors, IstvanGyongyhasmade themost fundamental contribution
to the development of the splitting-up method as applied to the filtering equation and
beyond. In the followingwe give some brief details of his contribution to the topic. The
first ofGyongy’sworks in this directionwas published in 2002 [17]where he presented
numerical results for the approximation of stochastic PDEs with a particular focus
on the the splitting-up method. Soon after, he published the paper [19] with Nikolay
Krylov, in the Annals of Probability. In this work, he investigates the convergence rates
of the splitting method for various different classes of stochastic PDEs. Furthermore,
in the final part of the paper he explicitly treats the application of these results in the
context of stochastic filtering. In another work with Krylov in 2003, Gyongy proved
convergence rates in Sobolev norm for the splitting-up method. Notably, this result is
proved for the general case of time-dependent coefficients of the considered classes
of SPDEs and the rates are even shown to be sharp. A short while later, another work
of Gyongy, coauthored by Krylov, appeared in the year 2005 [20]. In this innovative
paper, Gyongy devised a theoretical method for the splitting-up approximation of
parabolic equations by constructing high order splitting-up methods out of low order
ones by means of Richardson extrapolation.

123

1052 Stoch PDE: Anal Comp (2022) 10:1050–1081

The paper is structured as follows: In Sect. 1.1 we introduce the notation in the
paper. Thereafter, in Sect. 1.2, we present the stochastic filtering problem at the level
of generality appropriate for the purposes of this work. Notably, Proposition 1 presents
the well-knownKallianpur-Striebel formula which establishes the distinction between
what we call, respectively, the normalised and unnormalised filter. Subsequently, in
Sect. 1.3, we discuss the filtering equations and recall the splitting-up method as
we will apply it to the stochastic filtering equations. Based on the SPDE for the
unnormalised filter, sometimes referred to as Zakai’s equation, we apply the splitting
method to decompose the SPDE into the deterministic PDE part and a normalisation,
or data-assimilation, step. The first step is commonly solved numerically by using
Galerkin methods or similar grid-based approximation schemes. This approach is
best applied in low-dimensional settings, due to the computational cost introduced by
the discretisation. The second step is to construct the (approximate) likelihood based
on the observation and to finally normalise the product of the likelihood function and
the PDE solution such that it integrates to unity.

Next, in Sect. 2, we analyse the case when the coefficient functions of the differ-
ential operator in the deterministic PDE that arises from the splitting-up method has
smooth coefficients. The consequence of this assumption is that the operator can be
split into a diffusion operator and a zero-order part. An elementary but crucial part of
our argument is then given in Lemma 1 which establishes the fact that the diffusion
operator arising from the PDE operator with smooth coefficients generates a stochastic
diffusion process, which we will later call auxiliary diffusion. Another central ingredi-
ent in the derivation of our method is the Feynman-Kac formula, given in Theorem 1
for final-value PDEs. As we are presented with an initial-value problem, we will need
the Feynman-Kac formula in a form that applies to such kind of PDEs. This is given in
Corollary 1. The significance of the Feynman-Kac formula and the auxiliary diffusion
derived in Sect. 2 lies in the fact that the solution to the deterministic PDE problem
can then be written as a conditional expectation with respect to the law of the auxiliary
diffusion given its initial value. We then give two examples of explicit representa-
tions of solutions to the particular filtering problems of the Kalman (linear) filter and
the Benes filter in terms of the Feynman-Kac representation. In Sect. 2.3 we prove
Proposition 2 based on arguments presented in [22] and thus show that the solution
of the PDE over a full hypercube-domain is represented by an infinite-dimensional
optimisation of an objective function given by the Feynman-Kac formula.

Section 3 is dedicated to the detailed description of our computational method.
In Sect. 3.1 we introduce some terminology on deep learning, and specify how a
parametrised neural network representation of the solution of the deterministic PDE is
approximated through a Monte-Carlo sampling-based minimisation of the objective
function given by the Feynman-Kac formula and the minimisation problem derived
before. In practise, the infinite-dimensional function space over whichwe theoretically
minimise is parametrised by the neural network parameters tomake it computationally
tractable. This enables us to use generic methods for the computational optimisation,
provided we are able to sample from the auxiliary diffusion process. Thereafter, in
Sect. 3.2 we describe the second part of the splitting method where we rely on the
Monte-Carlo approximation of the product of the neural network and the likelihood
function to obtain the necessary normalisation constant. Subsequently, in Sect. 3.3

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1053

we describe the neural network representation and the chosen optimisation algorithm
mathematically which results in a full specification of our method in terms of pseu-
docode. In particular, the algorithm may be iterated over several time steps whilst
remaining asymptotically unbiased.

The numerical results obtained for the Kalman and Benes filters are presented in
Sect. 4. In our one-dimensional examples, we observed that the method can success-
fully be iterated over several time-steps. To the best of our knowledge, we present the
first numerical results showing that the sampling based neural network representation
of the solution to the Fokker-Planck equation may be iterated while remaining accu-
rate with respect to the exact solution of the filtering problem. In fact, the filtering
framework is ideally suited for this kind of study, because of its inherently sequential
nature. Moreover, we identify the choice of the domain as a crucial factor for the suc-
cess of our approximation. Due to the normalisation procedure which uses samples
from the likelihood, we need to have a good signal-to-noise ratio in order to obtain a
large proportion of samples within our considered domain. If this is not the case, the
method diverges. Our study of the nonlinear Benes filter shows that the method is able
to handle also nonlinear dynamics.

In conclusion, based on the limited testing performed in this study, we believe
that the use of neural network based representations in the numerical approximation
of the stochastic filtering problem can be a viable alternative to existing numerical
methods. Nevertheless, we emphasize the following two important caveats. First, the
mathematical analysis of deep learning algorithms such as the one we employed here
is not advanced enough to guarantee explicit convergence rates which might be unde-
sirable in certain settings. Secondly, more numerical studies have to be performed to
accurately evaluate the capabilities of neural networks in situations of higher prac-
tical relevance than the synthetic study we have performed in this work. We plan to
investigate this topic further in future work.

1.1 Notation

Throughout this paper,N denotes the natural numbers without zero andN0 is the set of
natural numbers including zero. The real numbers are denoted byR and, given n ∈ N,
R

n is n-dimensional Euclidean space. Form, n ∈ N the set ofm ×n-matrices with real
entries is denoted by R

m×n . For a given matrix M ∈ R
m×n , M ′ denotes its transpose

and Tr(M) denotes its trace. For k ∈ N0 ∪ {∞} and separable normed R-vector
spaces A and B we denote by Ck(A, B) the set of k-times continuously differentiable
functions from A → B. Moreover, we use the shorthand Ck(A)whenever A = B and
always identify C0(A, B) = C(A, B). Similarly, the spaces of k-times continuously
differentiable functions with compact support are denoted by Ck

c (A, B) and the ones
of bounded functions with bounded derivatives of all orders by Ck

b (A, B). For an

interval I ⊂ R and d ∈ N we write C1,2
b (I ×R

d ,R) for the set of bounded functions
f : I ×R

d → R that are once continuously differentiable with bounded derivative in
the first variable and twice continuously differentiable with bounded derivative in the
second variable. For a topological space (T ,T), B(T) is the Borel sigma-algebra on
T . Further, if (T0,T0) is another topological space, then B(T , T0) denotes the set of
bounded Borel-measurable functions from T → T0. For a measurable space (M,M)

123

1054 Stoch PDE: Anal Comp (2022) 10:1050–1081

we write P(M) for the set of probability measures on (M,M) andM(M) for the set
of all measures on (M,M). For d ∈ N and a ∈ C1(Rd ,Rd×d) we write

−→
div(a) =

(
d∑

i=1

∂i ai j

)d

j=1

.

Moreover, when f ∈ C1(Rd ,R) we denote the gradient of f by grad f and the
divergence of f by div f . When g ∈ C2(Rd ,R) we denote the Hessian of g by
Hess g.

1.2 Stochastic filtering problem

In this section we are following Bain and Crisan [3]. Let (Ω,F ,P) be a probability
space with a normal filtration (Ft)t≥0.1 Let d, p ∈ N and let X : [0,∞) × Ω → R

d

be a d-dimensional stochastic process satisfying, for all t ∈ [0,∞) and P-a.s., that

Xt = X0 +
∫ t

0
f (Xs) ds +

∫ t

0
σ(Xs) dVs , (1)

where f : R
d → R

d and σ : R
d → R

d×p are globally Lipschitz continuous
functions and V : [0,∞) × Ω → R

p is a p-dimensional (Ft)t≥0-adapted Brownian
motion. Then X admits the infinitesimal generator A : D(A) → B(Rd) given, for all
ϕ ∈ D(A), by

Aϕ = 〈 f ,∇ϕ〉 + Tr(a Hessϕ), (2)

where D(A) denotes the domain of the differential operator A and where we defined
the function a(·) = 1

2σ(·)σ ′(·) : Rd → R
d×d . We assume from now on that a dense

core for the domain D(A) is C2
c (Rd).

In the context of stochastic filtering, X is called the signal process. Further, we
assume the observation process Y : [0,∞)×Ω → R

m to be given, for all t ∈ [0,∞)

and P-a.s., by

Yt =
∫ t

0
h(Xs) ds + Wt , (3)

where W : [0,∞) × Ω → R
m is an (Ft)t≥0-adapted Brownian motion independent

of V . The sensor function h : Rd → R
m is a globally Lipschitz continuous function

1 We call the filtration (Ft)t≥0 normal, if

– F0 contains all P-nullsets of F , and
– (Ft)t≥0 is right-continuous.

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1055

with the property that for all t ∈ [0,∞), P-a.s.,

E

[∫ t

0
h(Xs)

2 ds

]
< ∞ and E

[∫ t

0
Zsh(Xs)

2 ds

]
< ∞,

where the stochastic process Z : [0,∞) × Ω → R is defined such that for all
t ∈ [0,∞),

Zt = exp{−
∫ t

0
h(Xs) dWs − 1

2

∫ t

0
h(Xs)

2 ds}.

We specify the observation filtration for t ≥ 0 by

Yt = σ(Ys, s ∈ [0, t]) ∨ N and write Y = σ

⎛
⎝ ⋃

t∈[0,∞)

Yt

⎞
⎠ ,

where N is the collection of P-nullsets of F . Then we are interested in the (Yt)t≥0-
adapted stochastic processπ : [0,∞)×Ω → P(Rd) that is definedby the requirement
that for all ϕ ∈ B(Rd ,R) and t ∈ [0,∞) it holds P-a.s. that

πtϕ = E [ϕ(Xt) |Yt] .

The process π is often called the filter. Under this model, the stochastic process Z is
an (Ft)t≥0-martingale and by Novikov’s condition we can use Girsanov’s theorem to

define the change of measure given by dP̃t

dP

∣∣∣Ft
= Zt , t ≥ 0. Note that on

⋃
t∈[0,∞) Ft

we have a consistent measure P̃ in place of P̃t . Moreover, the signal and observation
processes X and Y are independent under the newmeasure and Y is a Brownianmotion
under P̃. Furthermore, under P̃, we can define the stochastic process ρ : [0,∞)×Ω →
M(Rd) by the requirement that for all ϕ ∈ B(Rd ,R) and t ∈ [0,∞) it holds P-a.s.
that

ρtϕ = E

[
ϕ(Xt) exp{

∫ t

0
h(Xs) dYs − 1

2

∫ t

0
h(Xs)

2 ds}
∣∣∣∣Yt

]
. (4)

The following important Proposition 1, known in the literature as the Kallianpur-
Striebel formula, justifies the terminology to call ρ the unnormalised filter.

Proposition 1 (Kallianpur-Striebel formula)For all t ≥ 0 and ϕ ∈ B(Rd ,R) it holds
P̃-a.s. that

πt (ϕ) = ρt (ϕ)

ρt (1)
=

Ẽ

[
ϕ(Xt) exp{

∫ t

0
h(Xs) dYs − 1

2

∫ t

0
h(Xs)

2 ds}
∣∣∣∣Y

]

Ẽ

[
exp{

∫ t

0
h(Xs) dYs − 1

2

∫ t

0
h(Xs)

2 ds}
∣∣∣∣Y

] ,

123

1056 Stoch PDE: Anal Comp (2022) 10:1050–1081

where 1 is the constant function R
d x �→ 1.

The proof of Proposition 1 can be found in, e.g., [3].

1.3 Filtering equation and general splittingmethod

It is well established in the literature (see, e.g., [3]), that the unnormalised filter ρ,
defined in (4), satisfies the filtering equation, i.e. for all t ≥ 0 it holds P̃-a.s. that

ρt (ϕ) = π0(ϕ) +
∫ t

0
ρs(Aϕ) ds +

∫ t

0
ρs(ϕh′) dYs . (5)

Moreover, it is known (see, e.g., [3, Theorem 7.8]) that if π0 is absolutely continuous
with respect to Lebesgue measure and such that it has a square-integrable density, and
if additionally the sensor function h is uniformly bounded, then ρt admits a square-
integrable density pt with respect to the Lebesgue measure on R

d . Then, assuming
the necessary regularity for pt (see, e.g., [3, Theorem 7.12], for the precise condition),
the Zakai equation (5) implies that, for all t ≥ 0 and ϕ ∈ C∞

c (Rd ,R), we have P̃-a.s.
that

ρt (ϕ) =
∫
Rd

ϕ(x)pt (x) dx,

The PDE method we will consider is from [9] and seeks to approximate the following
stochastic partial differential equation (SPDE) for the density pt given, for all t ≥ 0,
x ∈ R

d , and P-a.s. as

pt (x) = p0(x) +
∫ t

0
A∗ ps(x) ds +

∫ t

0
h′(x)ps(x) dYs

and relies on the splitting-up algorithm described in [31] and [33]. Here, A∗ is the
formal adjoint of the infinitesimal generator A of the signal process X , given by the
relation

∫
Rd

Aϕ(x)pt (x) dx =
∫
Rd

ϕ(x)A∗ pt (x) dx; t ≥ 0.

Choose a final time T > 0 and an integer N ∈ N and let {t0 = 0 < · · · < tN = T }
be a discretisation of the time interval [0, T]. Then the first step of the splitting-up
approach, also called prediction step, is to numerically approximate theFokker-Planck
equation

∂q

∂t
(t, z) = A∗q(t, z), (t, z) ∈ (0, T] × R

d ,

q(0, z) = p0(z), z ∈ R
d ,

(6)

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1057

over the discretised interval. To this end, note that the first prediction step of themethod
consists of the numerical approximation of the solution q1 of the PDE

∂q1

∂t
(t, z) = A∗q1(t, z), (t, z) ∈ (0, t1] × R

d ,

q1(0, z) = q0(0, z) := p0(z), z ∈ R
d .

Wedenote the numerical approximation of q1(t1, ·) by p̃1. Next, we employ the second
step of the method, the so-called correction step, which consists of the normalisation
of the obtained Fokker-Planck approximations using the observation process Y , as
given by (3), and the Kallianpur-Striebel formula (see Proposition 1). To illustrate
this, the first correction step is calculated as follows. Let

z1 = 1

t1 − t0
(Yt1 − Yt0),

consider the function

R
d z �→ ξ1(z) = exp

(
−1

2
||z1 − h(z)||2

)
,

and define for all z ∈ R
d ,

p1(z) = C1ξ1(z) p̃1(z),

where C1 is the normalisation constant such that
∫
Rd p1(z) dz = 1.

Therefore, we formulate the splitting-up method below in Note 1.

Note 1 The full method is defined by iterating the above steps with p0(·) = p0(·) and
such that for all n ∈ {1, . . . , N } we iteratively calculate

1) an approximation p̃n of the solution to

∂qn

∂t
(t, z) = A∗qn(t, z), (t, z) ∈ (tn−1, tn] × R

d ,

qn(0, z) = pn−1(z), z ∈ R
d ,

(7)

at time tn and
2) the normalisation based on

zn = 1

tn − tn−1
(Ytn − Ytn−1)

and the function

R
d z �→ ξn(z) = exp

(
− tn − tn−1

2
||zn − h(z)||2

)
,

123

1058 Stoch PDE: Anal Comp (2022) 10:1050–1081

so that we can define for all z ∈ R
d ,

pn(z) = 1

Cn
ξn(z) p̃n(z),

where Cn = ∫
Rd ξn(z) p̃n(z) dz.

In this article, we replace the predictor step 1 in Note 1 above by a deep neural
network approximation algorithm to avoid an explicit space discretisation which has
exponential complexity in the space dimensiond. Thiswill be achieved by representing
each p̃n(z) by a feed-forward neural network and approximating the initial value
problem (7) based on its stochastic representation using a sampling procedure.

2 Feynman-Kac representation and auxiliary diffusion

In this section we consider the case when the coefficient functions of the signal and
the observation processes are sufficiently smooth and thus allow the expansion of the
partial differential operator A∗. Based on this expansion we can rewrite the Fokker-
Planck equation (6) as aKolmogorov equationplus, in general, a zeroth-order term.The
reason to do so is that the so obtained representation enables the use of the Feynman-
Kac formula (see Theorem 1 below) to rewrite the solution of the PDE problem as an
expectation of an appropriately chosen stochastic process. Thus, we can approximate
this expectation by Monte-Carlo sampling from the diffusion.

This particular approach follows a recent streamof research into deep learning based
approximations of PDEs which is mainly focused on high dimensional problems, see,
e.g. [4, 5, 13, 21] and related works within the context of stochastic optimal control
[24, 25, 36, 36, 37]. Alternative approaches, typically based on incorporating the PDE
directly into the loss function, for the approximation of a neural network representation
of solutions of PDEs are also actively developed in the literature, see, for example, [2,
38, 39].

2.1 Fokker-Planck equation

We begin by expanding the differential operator under the assumption that it has
smooth coefficient functions. As before, we let d, p ∈ N, f = (fi)

d
i=1 ∈ C1(Rd ,Rd),

σ = (σi j)
i=1,...,d
j=1,...,p ∈ C2(Rd ,Rd×p), and let a = (ai j)

d
i, j=1 be the function that maps

x �→ 1
2σ(x)σ ′(x). Furthermore, f and σ are assumed to have bounded derivatives and

A∗ : C∞
c (Rd ,R) → C(Rd ,R) be the partial differential operator with the property

that for all ϕ ∈ C∞
c (Rd ,R),

A∗ϕ = −
d∑

i=1

∂

∂xi
fiϕ +

d∑
i, j=1

∂2

∂xi∂x j
ai jϕ.

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1059

Then, for all ϕ ∈ C∞
c (Rd ,R) we have

A∗ϕ = Tr(a Hessϕ) + 〈2−→div(a) − f , grad ϕ〉 + div(
−→
div(a) − f)ϕ. (8)

Definition 1 Let d, p ∈ N, f = (fi)
d
i=1 ∈ C1

b(Rd ,Rd), let σ = (σi j)
i=1,...,d
j=1,...,p ∈

C2
b (Rd ,Rd×p), and let a = (ai j)

d
i, j=1 ∈ C2

b (Rd ,Rd×d) be the function that maps

x �→ 1
2σ(x)σ ′(x). Then we define the partial differential operator Â : C∞

c (Rd ,R) →
C(Rd ,R) such that for all ϕ ∈ C∞

c (Rd ,R),

Âϕ = Tr(a Hessϕ) + 〈2−→div(a) − f , grad ϕ〉

and we define the function r : Rd → R such that for all x ∈ R
d ,

r(x) = div(
−→
div(a) − f)(x).

Remark 1 The assumptions on the derivatives of the coefficients f and σ may be
relaxed by assuming that they are locally Lipschitz in conjunction with a suitable
assumption so that the moments of the diffusion remain bounded.

Lemma 1 For all x ∈ R
d the operator Â defined in Definition 1 is the infinitesimal

generator of the Itô diffusion X̂ : [0,∞) × Ω → R
d given, for all t ≥ 0 and P-a.s.

by

X̂t = x +
∫ t

0
b(X̂s)ds +

∫ t

0
σ(X̂s)dŴs,

where Ŵ : [0,∞)×Ω → R
d is a d-dimensional Brownian motion and b : Rd → R

d

is the function

b = 2
−→
div(a) − f .

Proof cf. [26, Chapter IV, Theorem 6.1] ��
The next Theorem 1 is the well-known Feynman-Kac formula.

Theorem 1 (Feynman-Kac formula) Let d ∈ N, T > 0, k ∈ C(Rd , [0,∞)), let
Â be the operator defined in Definition 1, and let ψ : Rd → R be a function2. If
v ∈ C1,2

b ([0, T) × R
d ,R) satisfies the Cauchy problem

−∂v

∂t
(t, x) + k(x)v(t, x) = Âv(t, x), (t, x) ∈ [0, T) × R

d ,

v(T , x) = ψ(x), x ∈ R
d ,

(9)

then we have for all (t, x) ∈ [0, T) × R
d that

v(t, x) = E

[
ψ(X̂T) exp

(
−

∫ T

t
k(X̂τ) dτ

)∣∣∣∣ X̂t = x

]
,

123

1060 Stoch PDE: Anal Comp (2022) 10:1050–1081

where X̂ is the diffusion generated by Â at most polynomially growing function2.

Proof See [28, Chapter 5, Theorem 7.6]. The assumption that the coefficients of Â
have bounded derivatives ensures that the required conditions are met. ��

From Theorem 1 above we can deduce the Corollary 1 below about the initial value
problem corresponding to (9).

Corollary 1 Under the assumptions of the previous Theorem 1, suppose that u ∈
C1,2

b ((0, T] × R
d ,R) satisfies the Cauchy problem

∂u

∂t
(t, x) + k(x)u(t, x) = Âu(t, x), (t, x) ∈ (0, T] × R

d ,

u(0, x) = ψ(x), x ∈ R
d .

(10)

Then, for all (t, x) ∈ (0, T] × R
d , we have that

u(t, x) = E

[
ψ(X̂t) exp

(
−

∫ t

0
k(X̂τ) dτ

)∣∣∣∣ X̂0 = x

]
,

where X̂ is the diffusion generated by Â.

Proof For all (s, x) ∈ (0, T]×R
d , set u(s, x) = v(T −s, x), where v ∈ C1,2

b ([0, T)×
R

d ,R) satisfies (9). Then, u ∈ C1,2
b ((0, T] × R

d ,R) and (9) implies that u satisfies
(10), i.e.

∂u

∂t
(t, x) + k(x)u(t, x) = Âu(t, x), (t, x) ∈ (0, T] × R

d ,

u(0, x) = ψ(x), x ∈ R
d .

Hence, we are in the realm of the claim. Further, since X̂ is a time-homogeneous
Markov process, we have for all (s, x) ∈ (0, T] × R

d ,

u(s, x) = v(T − s, x) = E

[
ψ(X̂T) exp

(
−

∫ T

T −s
k(X̂τ) dτ

)∣∣∣∣ X̂T −s = x

]

= E

[
ψ(X̂s) exp

(
−

∫ s

0
k(X̂τ) dτ

)∣∣∣∣ X̂0 = x

]
.

(11)

Therefore, replacing s by t in the above equation (11) proves the assertion. ��
In view of our original problem, the Fokker-Planck equation (7) that we want to

solve numerically, in this case, reads for all n ∈ {1, . . . , N } as
∂qn

∂t
(t, z) = Âqn(t, z) + r(z)qn(t, z), (t, z) ∈ (tn−1, tn] × R

d ,

qn(0, z) = pn−1(z), z ∈ R
d .

2 I.e. there exist real numbers λ ≥ 1 and L ≥ 0 such that for all x ∈ R
d , |ψ(x)| ≤ L(1 + ‖x‖2λ).

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1061

Therefore, considering k = −r , and assuming that −r is non-negative in (10), Corol-
lary 1 gives, for all n ∈ {1, . . . , N }, t ∈ (tn−1, tn], z ∈ R

d , the representation

qn(t, z) = E

[
pn−1(X̂t) exp

(∫ t

tn−1

r(X̂τ) dτ

)∣∣∣∣ X̂tn−1 = z

]
.

To be explicit, in the next subsectionwe formulate two specific examples of filtering
problems and show how they fit into the framework developed thus far by providing
the auxiliary diffusion and conditional expectation representations for each of these
cases.

2.2 Two simple examples of filteringmodels

The following are two simple examples for filtering problems, which will be used
as benchmarks in the numerical studies. The results from the previous section hold
true for these examples, even though the corresponding coefficients do not satisfy the
uniform boundedness. The linear filter in Example 1 below is formulated in arbitrary
finite dimensions. Additionally, we give in Example 2 the model for the purely one-
dimensional, but nonlinear, Benes filter. For more details on the presented examples
the reader may consult [3, Chapter 6]

Example 1 (Linear Filter) For the Kalman filter we have the signal process given by
the coefficient functions

f (x) = Mx + η and σ(x) = Σ

and the observation process is determined by the sensor function

h(x) = H x + γ.

In this case, when X0 is assumed normally distributed, the solution πt of the filtering
problem is known to be a Gaussian distribution with known mean and covariance,
see for example [3, Chapter 6.2]. Then, for the linear filter, we see that the auxiliary
diffusion process takes the form

X̂t = X̂0 −
∫ t

0
M X̂s + η ds +

∫ t

0
Σ dŴs,

and is thus the well-known Ornstein-Uhlenbeck process, plus an additional drift rep-
resented by η, with explicit representation, in terms of the usual matrix exponential,

X̂t = exp{−Mt}
(

X̂0 +
∫ t

0
exp{Ms}Σ dŴs

)
.

123

1062 Stoch PDE: Anal Comp (2022) 10:1050–1081

Moreover, r(x) = − div f (x) = −Tr M . Then the method for the linear filter is given
by the representation

qn(t, z) = E

[
pn−1(X̂t) exp (−Tr M(t − tn−1))

∣∣∣ X̂tn−1 = z
]
.

Example 2 (Benes Filter) For the Benes filter we have one-dimensional signal and
observation processes. The signal is given by the coefficient functions

f (x) = ασ tanh(β + αx/σ) and σ(x) ≡ σ ∈ R,

where α, β ∈ R and the observation is given by the affine-linear sensor function

h(x) = h1x + h2,

with h1, h2 ∈ R. Note that here we have given a special case of the more general
class of Benes filters, see [3, Chapter 6.1]. Now, similar to the previous example, we
compute the auxiliary diffusion

X̂t = X̂0 −
∫ t

0
ασ tanh(β + α X̂s/σ) ds +

∫ t

0
σ dŴs,

and the coefficient

r(x) = − div f (x) = −α2 sech2(β + αx/σ).

This yields the scheme for the Benes case to be derived from the representation

qn(t, z) = E

[
pn−1(X̂t) exp

(
−

∫ t

tn−1

α2 sech2(β + α X̂τ /σ) dτ

)∣∣∣∣ X̂tn−1 = z

]
.

In the following subsection we introduce the optimisation problem associated with
the filtering problem discussed above, and which is based on the simulation of the
auxiliary diffusion.

2.3 Optimisation problem for the prior

Above we have found a Feynman-Kac representation for the solution of the Fokker-
Planck equation in the case of smooth coefficients of the signal process. In analogy to
[5, Proposition 2.7] we formulate the following result about a minimisation property
in Proposition 2 below.

Proposition 2 Let d ∈ N, T > 0, a < b ∈ R, k ∈ C(Rd , [0,∞)), let Â be the
operator defined in Definition 1, and let ψ : Rd → R be an at most polynomially

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1063

growing function. Suppose that u ∈ C1,2
b ((0, T]×R

d ,R) satisfies the Cauchy problem

∂u

∂t
(t, x) + k(x)u(t, x) = Âu(t, x), (t, x) ∈ (0, T] × R

d ,

u(0, x) = ψ(x), x ∈ R
d ,

let ξ : Ω → [a, b]d be a continuous, uniformly distributed F0-random variable and
let X̂ be the diffusion generated by Â and with the property that, P-a.s., X̂0 = ξ . Then
there exists a unique continuous function U : [a, b]d → R such that

E

[∣∣∣∣ψ(X̂T) exp

(
−

∫ T

0
k(X̂τ) dτ

)
− U (ξ)

∣∣∣∣
2]

= inf
v∈C([a,b]d ,R)

E

[∣∣∣∣ψ(X̂T) exp

(
−

∫ T

0
k(X̂τ) dτ

)
− v(ξ)

∣∣∣∣
2]

and for all x ∈ [a, b]d we have U (x) = u(T , x).

Proof Let T > 0. For all x ∈ R
d , let X̂ x be the Â-diffusion starting at x . Since, by

assumption, k is non-negative and ψ has polynomial growth it follows that there exist
real numbers L > 0 and λ ≥ 1 such that for all x ∈ R

d ,

E

[∣∣∣∣ψ(X̂ x
T) exp

(
−

∫ T

0
k(X̂ x

τ) dτ

)∣∣∣∣
2]

≤ E

[∣∣∣L(1 + ‖X̂ x
T ‖2λ)

∣∣∣2] < ∞. (12)

Further, because the map

R
d x �→ ψ(X̂ x

T) exp

(
−

∫ T

0
k(X̂ x

τ) dτ

)

is continuous and at most polynomially growing, [5, Lemma 2.6] implies that the
function

R
d x �→ E

[
ψ(X̂ x

T) exp

(
−

∫ T

0
k(X̂ x

τ) dτ

)]
(13)

is continuous. Note that the function

R
d × Ω (x, ω) �→ ψ(X̂ x

T (ω)) exp

(
−

∫ T

0
k(X̂ x

τ (ω)) dτ

)
(14)

is B([a, b]d) ⊗ F/B(Rd)-measurable. Finally, by virtue of (12), (13), (14), and
[5, Proposition 2.2], there exists a unique continuous function U : [a, b]d → R

123

1064 Stoch PDE: Anal Comp (2022) 10:1050–1081

such that

∫
[a,b]d

E

[∣∣∣∣ψ(X̂ x
T) exp

(
−

∫ T

0
k(X̂ x

τ) dτ

)
− U (x)

∣∣∣∣
2]

dx

= inf
v∈C([a,b]d ,R)

∫
[a,b]d

E

[∣∣∣∣ψ(X̂ x
T) exp

(
−

∫ T

0
k(X̂ x

τ) dτ

)
− v(x)

∣∣∣∣
2]

dx

and such that for all x ∈ [a, b]d we have

U (x) = E

[
ψ(X̂ x

T) exp

(
−

∫ T

0
k(X̂ x

τ) dτ

)]
.

Now, for all V ∈ C([a, b]d ,R) we have that the map

C([0, T],Rd) γ �→
∣∣∣∣ψ(γT) exp

(
−

∫ T

0
k(γτ) dτ

)
− V (γ0)

∣∣∣∣
2

∈ R

is at most polynomially growing. Thus [5, Lemma 2.6] implies that for all V ∈
C([a, b]d ,R) we have that

E

[∣∣∣∣ψ(XT) exp

(
−

∫ T

0
k(Xτ) dτ

)
− V (ξ)

∣∣∣∣
2]

= 1

(b − a)d

∫
[a,b]d

E

[∣∣∣∣ψ(X x
T) exp

(
−

∫ T

0
k(X x

τ) dτ

)
− V (x)

∣∣∣∣
2]

dx .

Then, for all V ∈ C([a, b]d ,R) with the property that

E

[∣∣∣∣ψ(XT) exp

(
−

∫ T

0
k(Xτ) dτ

)
− V (ξ)

∣∣∣∣
2]

= inf
v∈C([a,b]d ,R)

E

[∣∣∣∣ψ(XT) exp

(
−

∫ T

0
k(Xτ) dτ

)
− v(ξ)

∣∣∣∣
2]

,

a direct calculation shows that

∫
[a,b]d

E

[∣∣∣∣ψ(X x
T) exp

(
−

∫ T

0
k(X x

τ) dτ

)
− V (x)

∣∣∣∣
2]

dx

= inf
v∈C([a,b]d ,R)

∫
[a,b]d

E

[∣∣∣∣ψ(X x
T) exp

(
−

∫ T

0
k(X x

τ) dτ

)
− v(ξ)

∣∣∣∣
2]

dx .

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1065

Hence also this minimiser is unique and equals U and finally

E

[∣∣∣∣ψ(XT) exp

(
−

∫ T

0
k(Xτ) dτ

)
− U (ξ)

∣∣∣∣
2]

= inf
v∈C([a,b]d ,R)

E

[∣∣∣∣ψ(XT) exp

(
−

∫ T

0
k(Xτ) dτ

)
− v(ξ)

∣∣∣∣
2]

.

This together with the Feynman-Kac formula proves the result. ��

Proposition 2 guarantees that we have a feasible minimisation problem to approx-
imate by the learning algorithm.

In the following section we will describe the machine learning algorithm used to
approximate the PDE using the above optimisation representation. Furthermore, we
derive the Monte-Carlo method used to approximate the normalisation constant in the
correction step. We thus specify our full method.

3 Splittingmethod for the neural network representation of the
posterior

Here, we introduce some of the terminology specific to the field of neural networks.
For an in-depth discussion on deep learning terminology, algorithms and applications,
we refer the reader to the book [16]. Thereafter, we specify explicitly the learning
algorithm employed in our method. Subsequently, we derive the Monte-Carlo method
used in the correction step of the splitting method and the section ends with a full
description of our algorithm in pseudocode.

3.1 Neural networkmodel for prediction step

Definition 2 Given L ∈ N and (l0, . . . , lL) ∈ N
L+1 and a continuous function τ ∈

C0(R) a (feed-forward fully-connected) neural networkNN is a functionRl0 → R
lL

given by

NN (x) =
(
©L

i=1τ � A(li−1,li)
i

)
(x),

where the A(li −1,li)
i are affine maps Rli−1 → R

li of the form x �→ Ai x + bi , Ai ∈
R

li−1×li , bi ∈ R
li .

The number L is called the depth of the network, the function ρ is called the
activation function, and the matrices and vectors Ai and bi are called the weights
and biases of the i-th hidden layer, respectively. In the experimental part of this
work, we consider the activation function τ(x) = tanh(x). Other common choices
include the ReLu activation function ReLu(x) = max{0, x} or the sigmoidal function

123

1066 Stoch PDE: Anal Comp (2022) 10:1050–1081

σ(x) = 1/(1 + exp(−x)), among many others. Collectively, the parameters of the
function represented by the neural network are denoted

θ = {{A jk
i } jk, {b j

i } j : i = 1, . . . , L} ⊂ R
(
∑L

i=2 li−1li +li)

and we sometimes write NN θ to note the dependence explicitly. The symbol ©
denotes function composition and the symbol � denotes componentwise function
composition, i.e. for any A : Rm → R

n and x ∈ R
m we have

(τ � A)(x) = (τ ((Ax)1), . . . , τ ((Ax)n))′ ∈ R
n .

In general, the weights and biases of a neural network are to be chosen freely and
are commonly determined using an optimisation algorithm such as gradient descent,
stochastic gradient descent [7] or variants thereof, such as AdaGrad [12], momentum
methods [23], or the ADAM optimiser [29]. Our method of choice in this work is the
ADAMoptimiser. The optimisation procedure based on supplied training data is in this
context commonly referred to as learning. Notice, however, that there is an important
distinction between learning and optimisation. While optimisation is concerned with
the pure minimisation (or maximisation) of a target function, the goal of learning is
to create a model that generalises well, i.e. performs well on unseen inputs. Thus, in
certain contexts it is undesirable to fit a model too closely to the provided training
data, since this can degrade the out-of-sample performance, a phenomenon known as
overfitting.

Moreover, the initialisation of the parameters is a crucial part of the performance
of the optimisation and defines its own branch of research within machine learning.
Additionally, the neural network model has various free parameters that are neither
given by the original problemnor are they determined by the learning procedure. These
include the architecture of the network, i.e. the depth L , the layer widths li , or certain
parameters in the optimisation algorithm such as the learning rate (i.e. the step size of
the gradient descent method) or training batch size, and are commonly to be chosen
heuristically or from experience. These are commonly called hyperparameters.

Additionally, we employ the technique of batch-normalisation [27] in our computa-
tions, but refrain here from a detailed discussion. The reader is referred to the original
work [27] or the book [16].

In order to use a neural network model for the filtering problem, we employ the
splitting-upmethod to first split the problem into the solution of a deterministic Fokker-
Planck PDE and the subsequent inclusion of the observation using the likelihood and
normalisation procedure.

The PDE step iswherewe incorporate the deep learningmethod to solve the Fokker-
Planck equation over a rectangular domainΩd = [α1, β1]×· · ·×[αd , βd], for the sake
of computational feasibility. Its solution is reformulated into the optimisation problem
over function space given in Proposition 2. This optimisation problem is approximated

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1067

by the optimisation

inf
θ∈R

∑L
i=2 li−1li +li

E

[∣∣∣∣ψ(X̂T) exp

(
−

∫ T

0
k(X̂τ) dτ

)
− NNθ (ξ)

∣∣∣∣
2]

where the solution of the PDE is represented by a neural network and the infinite-
dimensional function space has been parametrised by the neural network parameters
θ . To this problem we will be able to apply a gradient descent method for the deter-
mination of the parameters in the model to minimise the associated loss function

L(θ; {ξ i , {X̂i
τ j

}J
j=0}Nb

i=1)

= 1

Nb

Nb∑
i=1

∣∣∣∣∣∣ψ(X̂i
T) exp(−

J−1∑
j=0

k(X̂i
τ j

)(τ j+1 − τ j)) − NN θ (ξ
i)

∣∣∣∣∣∣
2

,

where Nb is the batch size and {ξ i , {X̂i
τ j

}J
j=0}Nb

i=1 is a training batch of independent

identically distributed realisations ξ i of ξ ∼ U(Ωd) and {X̂i
τ j

}J
j=0 the approximate

i.i.d. realisations of sample paths of the auxiliary diffusion started at ξ i over the time-
grid τ0 = 0 < τ1 < · · · < τJ−1 < τJ = T . The sample paths are, for example,
approximated using the Euler-Maruyama or a similiar SDE simulation method [30].
In practice, since the solution of the Fokker-Planck equation we seek is non-negative,
we usually augment the loss L by an additional term to encourage positivity of the
neural network and use

L̃(θ; {ξ i , {X̂i
τ j

}J
j=0}Nb

i=1) = L(θ; {ξ i , {X̂i
τ j

}J
j=0}Nb

i=1) + λ

Nb∑
i=1

max{0,−NNθ (ξ
i)}

with the hyperparameter λ to be chosen.
Thus, in the notation of Sect. 1.3 we replace the Fokker-Planck solution by a neural

network model, i.e. we postulate a neural network model

p̃n(z) = NN (z),

with support on Ωd . Therefore we require the a priori chosen domain to capture most
of the mass of the probability distribution it is approximating.

3.2 Monte-Carlo correction step

We then realise the correction step via Monte-Carlo sampling over the bounded rect-
angular domain Ωd to approximate the integral

∫
Rd

ξn(z)NN (z) dz =
∫
Rd

exp

(
− tn − tn−1

2
||zn − h(z)||2

)
NN (z) dz,

123

1068 Stoch PDE: Anal Comp (2022) 10:1050–1081

where, as defined earlier, zn = 1
tn−tn−1

(Ytn − Ytn−1). Now, since the neural network
has supp(NN) ⊆ Ωd this is equal to the integral

∫
Ωd

exp

(
− tn − tn−1

2
||zn − h(z)||2

)
NN (z) dz. (15)

In general, to achieve the approximation of the above integral via Monte-Carlo, one
needs to be able to sample from an appropriate density. Moreover, see Remark 2 below
for possible alternatives.

Remark 2 The usage of the Monte-Carlo method to perform the normalisation is
optional in our low-dimensional experimental setup below, where efficient quadrature
methods are a good alternative. However, we chose to design our algorithm around the
sampling based method, as a large part of the literature devoted to machine learning
algorithms for PDEs aims to design grid-free (in space) methods to achieve better
performance in high dimensions. In that regard, we specify our algorithm so that it
can be tested in higher dimensional, grid-free, settings without major alterations in
subsequent studies.

Since, in this work, we are consideringmainly affine-linear sensor functions h(x) =
h1x + h2, we illustrate the Monte-Carlo integration method in this case. Notice that
the likelihood function then reads

ξn(z) = exp

(
− tn − tn−1

2
(zn − h1z − h2)

2
)

= exp

(
− (tn − tn−1)h2

1

2

(
zn − h2

h1
− z

)2
)

= exp

⎛
⎝−1

2

(zn−h2
h1

− z

((tn − tn−1)h2
1)

−1/2

)2
⎞
⎠

=
√
2π√

(tn − tn−1)h2
1

Npdf

(
zn − h2

h1
,

1

(tn − tn−1)h2
1

)
(z),

where Npdf(μ, σ 2) denotes the probability density function of a normal distribution
with mean μ and variance σ 2. Therefore, we can write the integral (15) as

√
2π√

(tn − tn−1)h2
1

EZ [NN (Z)]; Z ∼ N
(

zn − h2

h1
,

1

(tn − tn−1)h2
1

)
.

As it is straightforward to numerically sample from aGaussian distribution, theMonte-
Carlo approximation derived above is implementable so that we can compute the
normalisation constant Cn numerically. Thus, we can explicitly represent the approx-

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1069

Algorithm 1 Splitting method for neural network representation of posterior
Require: Time-grid 0 = t0, t1, . . . , tN = T
Require: Initial density p0
Require: Observations Y0, . . . , YN
Require: Affine-linear sensor function h(x) = h1x + h2
1: function Posterior0(x)
2: return p0(x)

3: end function
4: for n from 1 to N do
5: Initialize NN n

θini t
6: NN n

θtrained
←TrainNet(NN n

θini t
, Posteriorn−1)

7: Compute zn = 1
tn−tn−1

(Ytn − Ytn−1)

8: Draw Nsamples samples Z j fromN
(

zn−h2
h1

, 1
(tn−tn−1)h

2
1

)

9: Compute Cn = 1
Nsamples

∑Nsamples
j=1 NN n

θtrained
(Z j)

10: function Posteriorn (x)

11: return 1
Cn

exp
(
− tn−tn−1

2 (zn − h(x))2
)
NN n

θtrained
(x)

12: end function
13: end for

imate posterior density

pn(z) = 1

Cn
ξn(z) p̃n(z),

and use it as the initial condition for the next time iteration. Therefore, our scheme is
fully recursive and can be applied sequentially.

Remark 3 Additional techniques to adjust the support of the approximation are needed
when iterating the scheme over a long time duration/many steps as, eventually, inmany
common filtering setups, it will be the case that themass of the posterior moves outside
the initial domain. Theway tomitigate this problemdepends, in general, on the specific
filtering model under consideration and will be subject of further investigation.

3.3 Algorithm summary

We briefly summarise our full approximation method. In Algorithm 1 we present
the pseudocode for the splitting method as we apply it to the filtering equation. The
method is designed to be fully grid-free in space, for the reasons outlined above in
Remark 2. Furthermore, a main feature of our algorithm is the ability to iterate it
over successive time steps so that observations may arrive sequentially, and there
is no strict requirement for them to be available beforehand. This is an especially
important property in real-world filtering scenarios where observations are typically
processed online. Therefore, Algorithm 1 is formulated as an iterative procedure over
the observation time-grid 0 = t0, t1, . . . , tN = T .

Algorithm 1 includes a network training step which we clarify in the pseudocode
presented in Algorithm 2. Note that we give here, in the interest of clarity, a simpli-

123

1070 Stoch PDE: Anal Comp (2022) 10:1050–1081

fied version of the actual gradient-descent method that we employ in the numerical
studies in Sect. 4. However, the general rationale behind both methods is the same
gradient-descent based process. The important parameters of the learning method are
the number of training steps, usually called epochs, Nepochs , the training batch size
Nb as well as the learning rate κ that determines the step size of the gradient descent
step to adjust the parameters of the neural network. In our studies below, we chose
an adaptive learning rate based on a learning rate schedule. That is, we choose a set
of integers 0 = K0 < K1 < · · · < KM < KM+1 = ∞ as cut-off steps, and a set of
learning rates κ0, . . . , κM and adjust the learning rate during the training procedure
according to

κ(n) =
M∑

i=0

κi1[Ki ,Ki+1)(n), n = 1, . . . , Nepochs .

Since the training method is based on Nb samples of the auxiliary diffusion in each
epoch, the full training uses Nb Nepochs independent Monte-Carlo samples in total.

Figure 1 illustrates the neural network architecture thatwe are using in the numerical
experiments exhibited in Sect. 4. This architecture is inspired by the one used in
previous experiments by other authors, for example in [22].

4 Numerical results for the splitting scheme

We implement Algorithm 1 for Examples 1 and 2 using Tensorflow [1]. For a practical
guide on the implementation of deep learning algorithms, the reader may consult [15].

In all examples below, the neural network architecture is a feed-forward fully con-
nected neural network with a one-dimensional input layer, two hidden layers with a
layer width of 51 neurons each, and an output layer of dimension one. For the optimi-
sation algorithm we chose the ADAM optimiser and performed the training over 6002
epochs with a batch size of 600 samples. Note that during our testing we found that
the batch size had a crucial effect on the performance of our algorithm. If chosen too
small, the training procedurewe used failed to discover an acceptable set of parameters

Algorithm 2 Network training (simplified)
Require: Nepochs , Nb , κ
1: function TrainNet(NN θini t , Posterior0)
2: θ ← θini t
3: for n from 1 to Nepochs do

4: Draw Nb samples {ξ i , {X̂i
τ j

}J
j=0}

5: Compute ∇θ L̃(θ; {ξ i , {X̂i
τ j

}J
j=0}

Nb
i=1)

6: θ ← θ − κ∇θ L̃(θ; {ξ i , {X̂i
τ j

}J
j=0}

Nb
i=1) � Gradient descent

7: end for
8: θtrained ← θ

9: return NN θtrained
10: end function

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1071

Fig. 1 Neural network architecture used in our experiments. We use the architecture similar to the one
employed in [22]. The input is initially transformed by a batch-normalisation layer [27] and then a sequence
of a triple (dashed box) consisting of an affine linear (Dense) transformation, a batch normalisation, and
a subsequent application of the tanh-nonlinearity (Activation) is applied L − 1 times, where L is the
depth of the neural network. Before returning, another affine transformation (Dense) and then a final batch-
normalisation are applied

Table 1 Parameters used in the
numerical experiment for the
one-dimensional linear filter,
case 1

x0 y0 M η Σ H γ Δt

0.0 0.0 −1.0 0.0 0.1 90.0 0.0 0.01

for the neural network. If chosen too large, we observed that the training was slowed
down on our hardware.

4.1 One-dimensional linear filter

Here we present the numerical results for the one-dimensional linear filtering setting
outlined in Example 1. We first present in Sect. 4.1.1 a filter that does not move
outside the domain, based on an Ornstein-Uhlenbeck signal process. Next, we show
the results obtained for the linear filter with a signal process that moves toward the
domain boundary in Sect. 4.1.2.

4.1.1 Linear filter, case 1:M = -1, � = 0

We are considering a linear filter with an Ornstein-Uhlenbeck signal process using
the set of parameters, corresponding to the notation in Example 1, given in Table 1.
Moreover, as the initial condition we chose a Gaussian density with mean 0.0 and
standard deviation 0.01. We iterate our method over 60 timesteps up to a final time of
0.6.

The results of our approximation method applied to the linear filter with Ornstein-
Uhlenbeck signal are visualised in Fig. 2. The full evolution of the estimated posterior
is shown in Fig. 2 (a). In particular, we see that the approximated solution stays within
the considered spatial domain [−0.5, 0.5]. This feature will be important when we
discuss the linear filter with drift below. Moreover, note that in correspondence with
the theoretical expectations, the variance of the approximated posterior distribution
initially increases and then stays constant, with an oscillating mean which is affected
by the sequentially arriving observations. In Fig. 2 (b)-(d) we present three snapshots
of the numerical solution obtained with our modified splitting scheme. In each of the

123

1072 Stoch PDE: Anal Comp (2022) 10:1050–1081

Fig. 2 Results of the combined splitting-up/machine-learning approximation applied iteratively to the linear
filtering problem, case 1. (a) The full evolution of the estimated posterior distribution produced by our
method, plotted at all intermediate timesteps, from top to bottom. (b)-(d) Snapshots of the approximation at
an early time, t = 0.03, an intermediate time, t = 0.25, and a late time, t = 0.59, obtained after 3, 25 and
59 iterations of our method, respectively. The black dotted line in each graph shows the estimated posterior,
the yellow line the prior estimate represented by the neural network, and the light-blue shaded line shows
the Monte-Carlo reference solution for the Fokker-Planck equation

three graphs, the yellow line shows the plot of the neural network over the observed
domain, approximating the solution of the Fokker-Planck PDE with initial condition
given by the posterior density obtained from the previous step. The blue-shaded line
is a pointwise Monte-Carlo reference solution based on the Sobol sequence over the
spatial domain. This is used as a visual guide to judge the quality of the shape the
neural network represents. Note that this is not the theoretical solution for the filtering

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1073

Fig. 3 Error and diagnostics for linear filter, case 1. a Absolute error in means between the approximated
distribution and the exact solution.b L2 error of the neural network during trainingwith respect to theMonte-
Carlo reference solution. (c) Probability mass of the neural network prior. (d) Monte-Carlo acceptance rate

problem, but a reference solution for the Fokker-Planck equation for the prior, based
on the initial condition given by the previous estimate. The black dashed line shows
the plot of the normalised posterior using the method outlined above. Additionally, we
plotted themean and standard deviation of the exact solution to the considered filtering
problem as three blue vertical lines, the higher one representing the theoretical mean
and the lower ones the standard deviation. The position of the signal is plotted as a
red inverted triangle and the position of the observation as a green triangle. Note that
the observation may lie outside the domain and thus may not be present in the graph.

The errors and diagnostics for the linear filter, case 1, are shown in Fig. 3. Here,
Fig. 3 (a) is a graph of the absolute value of the difference between the mean of
the approximate posterior and the theoretical posterior mean. We see that the error
fluctuates about a constant value, which is the desired result. In particular, we do not
expect a decreasing error but rather a stable one. This shows that the method is stable
when iterated overmany time steps. The two peaks at times 0.44 and 0.46 are explained
below and due to a statistical outlier in the observation/likelihood. Fig. 3 (b) shows the

123

1074 Stoch PDE: Anal Comp (2022) 10:1050–1081

Table 2 Parameters used in the
numerical experiment for the
one-dimensional linear filter,
case 2

x0 y0 M η Σ H γ Δt

0.0 0.0 1.0 −1.0 0.1 90.0 0.0 0.01

training performance of the neural network approximation measured by the L2-error
over the domain between the Monte-Carlo reference solution of the Fokker-Planck
PDE and the neural network representation across the training epochs. Each line in
the graph represents a separate neural network, one for each timestep. Here we can see
that the neural network training consistently converges to the Monte-Carlo solution
across all time steps. The probability mass of the neural net andMonte-Carlo reference
solutions of the Fokker-Planck equation is plotted against time in Fig. 3 (c), where we
conclude that the machine learning approximation tends to slightly overestimate the
mass of the solution. Lastly, in Fig. 3 (d)we plot the acceptance rate of theMonte-Carlo
integration of the neural network prior with respect to the likelihood as specified in
our algorithm. A sample from the density in the likelihood is accepted if it lies within
the considered domain, and rejected if it falls outside the domain. This is so because
of the assumption that the neural network has support strictly within the domain. Here
we can see that the quality of the likelihood is a major factor in the success of the
method. The dip in the acceptance rate can be found to negatively affect themass of the
neural network prior (Fig. 3 (c)) and finally results in a spike in the error (Fig. 3 (a)).
Furthermore, it is noteworthy that the method seems to recover from this event after
the next two time steps which is a further hint at the stability of our method.

4.1.2 Linear filter, case 2:M = 1, � = -1

The second numerical study of this work is based on the Kalman filtering setting with
the set of parameters given in Table 2.

As the initial density we chose a Gaussian density with mean 0.0 and standard
deviation 0.01. The domain over which we resolve the solution was chosen as the
interval [−0.8, 0.4], in anticipation of the drift of the signal. We again iterated our
method over 60 time steps up to a final time of 0.6. The results of the simulation are
shown in Fig. 4.

As expected, the mean of the posterior moves to the left by approximately 0.01
units of the domain at each time step. Furthermore, the standard deviation also initially
increases as time progresses.

In Fig. 5 (a) we show the error between the means of the approximate posterior
and the mean of the exact solution of the linear filter. Up to the time of about 0.44,
we observe a steady oscillation within a range of 0.00-0.05, except for a few spikes
which are classified as outliers. Thereafter, the error increases systematically. This
phenomenon coincides with the observation in Fig. 5 (c) where, after the time of
about 0.44 the total mass of the network prior becomes unstable. Before this time,
the neural network model has slightly overestimated the mass of the solution of the
Fokker-Planck equation. Fig. 5 (d) provides the interpretation for the cause of this
phenomenon. It shows the Monte-Carlo acceptance rates for the integration method
of the neural network prior with respect to the density given by the likelihood. The

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1075

Fig. 4 Results of the combined splitting-up/machine-learning approximation applied iteratively to the linear
filtering problem, case 2. (a) The full evolution of the estimated posterior distribution produced by our
method, plotted at all intermediate timesteps. (b)-(d) Snapshots of the approximation at an early time,
t = 0.05, an intermediate time, t = 0.26, and a late time, t = 0.52, obtained after 5, 26 and 52 iterations of
our method, respectively. The black dotted line in each graph shows the estimated posterior, the yellow line
the prior estimate represented by the neural network, and the light-blue shaded line shows the Monte-Carlo
reference solution for the Fokker-Planck equation

drop in acceptance rate shows that the samples from the likelihood increasingly lie
outside the domain of the neural network prior, which depletes the quality of the
approximation. Therefore, a strong likelihood within the domain we are considering
is an important factor in the performance of our algorithm. This observations is also
connected to the so-called signal-to-noise ratio which we need to be high in order to
perform an accurate normalisation using the sampling method. Finally, Fig. 5 (b) is an

123

1076 Stoch PDE: Anal Comp (2022) 10:1050–1081

Fig. 5 Error and diagnostics for linear filter, case 2. a Absolute error in means between the approximated
distribution and the exact solution. b L2 error of the neural network during training with respect to the
Monte-Carlo reference solution. c Probability mass of the neural network prior. dMonte-Carlo acceptance
rate

Table 3 Parameters used in the
numerical experiment for the
one-dimensional Benes filter

x0 y0 α β σ h1 h2 Δt

0.0 0.0 3.0 0.0 0.5 3.0 0.0 0.1

illustration of the neural network training progress. Each line in the plot corresponds
to a timestep, and shows the L2 error against the training epoch with respect to the
Monte-Carlo reference solution of the Fokker-Planck equation.

4.2 One-dimensional Benes filter

The third numerical study of this work is based on the nonlinear Benes filtering setting
outlined in Example 2. Here, we are considering the set of parameters, corresponding
to the notation in Example 2, given in Table 3.

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1077

The initial condition was again chosen to be the Gaussian density with mean 0.0
and standard deviation 0.01. This time, however, we chose a different, larger, time step
in order to observe the characteristic bimodality appearing in the solution of the Benes
filter. This also necessitated the choice of a larger domain for the neural net, which
here was chosen to be the interval [−4.0, 4.0]. The results were calculated by iterating
our scheme over 12 timesteps for the approximation of the Benes filter and are plotted
in Fig. 6. The feature we like to stress in this nonlinear example is the development of
the bimodal density that is resolved by our method, in particular in Fig. 6 (c) and (d).

The error and diagnostic plots are shown in Fig. 7. The absolute error in Fig. 7 (a)
shows a steady oscillation, and Fig. 7 (b) indicates that the neural network training
converges to the Monte-Carlo reference solution across all time steps. Moreover, the
probability mass plotted in Fig. 7 (c) oscillates around the correct value 1.0 with a
slight tendency to underestimate, also for theMonte-Carlo reference. The initially low
mass is explained by the sharp drop of the peak of the initial Gaussian during the first
timestep, which is difficult to capture. As observed in the linear cause though, the
method seems to be able to recover from occasional inaccuracies. Fig. 7 (d) shows the
Monte-Carlo acceptance rate for the correction step. The final drop is still acceptable,
as the value of ∼ 93% acceptance rate is still reasonable. These results demonstrate
an ability of our algorithm to also track nonlinear problems over several timesteps.

5 Conclusion and outlook

As observed, an important factor in the success of our method lies in accurately deter-
mining the domain of resolution before beginning the iterative procedure. As the mass
of the density begins to move outside our observed window, the results will degrade
quickly. A possible solution is to shift the observed window in a suitable manner at
regular time intervals to obtain an adaptive method. Moreover, due to theMonte-Carlo
sampling based correction step, which relies on samples from the likelihood, we need
a high signal-to-noise ratio to maintain an accurate evaluation of the integral in the
domain. If the acceptance rate of Monte-Carlo samples from the likelihood drops sig-
nificantly, the results in our method deteriorate. This can be counteracted by sampling
more points from the distribution. However, if the likelihood spread is too large, this
will significantly slow down the algorithm.

We do not think that dealing with the domain boundaries is an unsurmountable
problem.Future researchwill focus on investigating approaches to dealwith themotion
of the posterior outside of the domain.

Note further that, because the density of the optimal filter changes continuously
in time, our algorithm is a natural candidate for transfer learning the parameters of
the neural net instead of retraining them from a random initialisation at every time
step. Further details on the area of transfer learning can be found, for example, in
[16, Chapter 15.2].

Although we found a similar performance of our method across a range of different
hyperparameters such as the batch size, the network architecture, etc. the optimal
choice of these for our given problem of filtering remains open.

123

1078 Stoch PDE: Anal Comp (2022) 10:1050–1081

Fig. 6 Results of the combined splitting-up/machine-learning approximation applied iteratively to theBenes
filtering problem. (a) The full evolution of the estimated posterior distribution produced by our method,
plotted at all intermediate timesteps. (b)–(d) Snapshots of the approximation at an early time, t = 0.2, an
intermediate time, t = 0.5, and a late time, t = 0.9, obtained after 2, 5 and 9 iterations of our method,
respectively. The black dotted line in each graph shows the estimated posterior, the yellow line the prior
estimate represented by the neural network, and the light-blue shaded line shows theMonte-Carlo reference
solution for the Fokker-Planck equation

A further direction of future study will be a detailed error analysis of the presented
algorithm. This is a complex problem because the approximation performed here
introduces inaccuracies at various stages. The first ones are the usual simulations
of the signal and observation processes, as well as now also the auxiliary diffusion.
Moreover, themachine learning algorithm introduces an error in estimating theFokker-

123

Stoch PDE: Anal Comp (2022) 10:1050–1081 1079

Fig. 7 Error and diagnostics for the Benes filter. a Absolute error in means between the approximated
distribution and the exact solution. b L2 error of the neural network during training with respect to the
Monte-Carlo reference solution. c Probability mass of the neural network prior. dMonte-Carlo acceptance
rate

Planck PDE solution. Finally, the error due to the Monte-Carlo normalisation in the
correction step must be analysed.

Acknowledgements Dan Crisan and Salvador Ortiz-Latorre acknowledge the support of the project
STORM: Stochastics for Time-Space Risk Models, from the Research Council of Norway (RCN). Project
number: 274410. Dan Crisan and Alexander Lobbe were partially supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (ERC,
Grant Agreement No 856408, Project Title: Stochastic Transport in the Upper Ocean Dynamics). Alexander
Lobbe is grateful for the financial support from Department of Mathematics, University of Oslo, Norway.

Data Availability The document contains no data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123

1080 Stoch PDE: Anal Comp (2022) 10:1050–1081

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale
machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available
from tensorflow.org

2. Al-Aradi, A., Correia, A., Naiff, D., Jardim, G., Saporito, Y.: Solving nonlinear and high-dimensional
partial differential equations via deep learning (2018)

3. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York (2008)
4. Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep splitting method for parabolic pdes

(2019)
5. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and

Kolmogorov equations by means of deep learning. arXiv e-prints arXiv:1806.00421 (2018)
6. Bensoussan, A.: Stochastic control of partially observable systems. Cambridge University Press, Cam-

bridge (1992). https://doi.org/10.1017/CBO9780511526503
7. Bottou, L.: Stochastic learning. In: O. Bousquet, U. von Luxburg (eds.) Advanced Lectures onMachine

Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pp. 146–168. Springer Verlag, Berlin
(2004). http://leon.bottou.org/papers/bottou-mlss-2004

8. Brigo, D., Hanzon, B.: On some filtering problems arising in mathematical finance. Insurance
Math. Econom. 22(1), 53–64 (1998). https://doi.org/10.1016/S0167-6687(98)00008-0. The interplay
between insurance, finance and control (Aarhus, 1997)

9. Cai, Z., Le Gland, F., Zhang, H.: An adaptive local grid refinement method for nonlinear filtering.
Ph.D. thesis, INRIA (1995)

10. Crisan, D., Rozovskii, B. (eds.): The Oxford handbook of nonlinear filtering. Oxford University Press,
Oxford (2011)

11. Date, P., Ponomareva, K.: Linear and non-linear filtering in mathematical finance: a review. IMA J.
Manag. Math. 22(3), 195–211 (2011). https://doi.org/10.1093/imaman/dpq008

12. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12(null), 2121–2159 (2011)

13. E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. arXiv e-prints
arXiv:1706.04702 (2017)

14. Galanis, G., Louka, P., Katsafados, P., Pytharoulis, I., Kallos, G.: Applications of kalman filters based
on non-linear functions to numerical weather predictions. Annales Geophysicae 24(10), 2451–2460
(2006). https://doi.org/10.5194/angeo-24-2451-2006. Cited By 78

15. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol (2019)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press, Cambridge (2016)
17. Gyöngy, I.:Approximations of stochastic partial differential equations. In: Stochastic partial differential

equations and applications (Trento, 2002), Lecture Notes in Pure and Appl. Math., vol. 227, pp. 287–
307. Dekker, New York (2002)

18. Gyöngy, I., Krylov, N.: On the rate of convergence of splitting-up approximations for SPDEs. In:
Stochastic inequalities and applications,Progr. Probab., vol. 56, pp. 301–321. Birkhäuser, Basel (2003)

19. Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann.
Probab. 31(2), 564–591 (2003). https://doi.org/10.1214/aop/1048516528

123

http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
http://arxiv.org/abs/1806.00421
https://doi.org/10.1017/CBO9780511526503
http://leon.bottou.org/papers/bottou-mlss-2004
https://doi.org/10.1016/S0167-6687(98)00008-0
https://doi.org/10.1093/imaman/dpq008
http://arxiv.org/abs/1706.04702
https://doi.org/10.5194/angeo-24-2451-2006
https://doi.org/10.1214/aop/1048516528

Stoch PDE: Anal Comp (2022) 10:1050–1081 1081

20. Gyöngy, I., Krylov, N.: An accelerated splitting-up method for parabolic equations. SIAM J. Math.
Anal. 37(4), 1070–1097 (2005). https://doi.org/10.1137/S0036141003437903

21. Han, J., E, W.: Deep Learning Approximation for Stochastic Control Problems. arXiv e-prints
arXiv:1611.07422 (2016)

22. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep
learning. Proc.Natl. Acad. Sci. 115(34), 8505–8510 (2018). https://doi.org/10.1073/pnas.1718942115.
(https://www.pnas.org/content/115/34/8505)

23. Hinton, G.E., Rumelhart, D., Williams, R.J.: Learning internal representations by error propagation.
MIT Press 8 (1986)

24. Huré, C., Pham, H., Bachouch, A., Langrené, N.: Deep neural networks algorithms for stochastic
control problems on finite horizon, part i: convergence analysis (2018)

25. Huré, C., Pham, H., Warin, X.: Some machine learning schemes for high-dimensional nonlinear pdes
(2019)

26. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland
Publishing Company, Amsterdam (1981)

27. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal
covariate shift (2015)

28. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)
29. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014)
30. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin

(1992)
31. Le Gland, F.: Time discretization of nonlinear filtering equations. In: Proceedings of the 28th IEEE

Conference on Decision and Control, pp. 2601–2606. IEEE (1989)
32. Le Gland, F.: Splitting-up approximation for SPDEs and SDEs with application to nonlinear filtering.

In: Stochastic partial differential equations and their applications (Charlotte, NC, 1991), Lect. Notes
Control Inf. Sci., vol. 176, pp. 177–187. Springer, Berlin (1992). https://doi.org/10.1007/BFb0007332

33. LeGland, F.: Splitting-up approximation for spde’s and sde’s with application to nonlinear filtering.
In: Stochastic partial differential equations and their applications, pp. 177–187. Springer (1992)

34. Llopis, F.P., Kantas, N., Beskos, A., Jasra, A.: Particle filtering for stochastic Navier-Stokes signal
observed with linear additive noise. SIAM J. Sci. Comput. 40(3), A1544–A1565 (2018). https://doi.
org/10.1137/17M1151900

35. Myötyri, E., Pulkkinen, U., Simola, K.: Application of stochastic filtering for lifetime prediction.
Reliability Engineering and System Safety 91(2), 200–208 (2005). https://doi.org/10.1016/j.ress.2005.
01.002. Project code: G2SU00039

36. Pham, H., Warin, X.: Neural networks-based backward scheme for fully nonlinear pdes (2019)
37. Pham, H., Warin, X., Germain, M.: Neural networks-based backward scheme for fully nonlinear pdes

(2021)
38. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part i): Data-driven

solutions of nonlinear partial differential equations (2017)
39. Sirignano, J., Spiliopoulos, K.: Dgm: A deep learning algorithm for solving partial differential equa-

tions. Journal of Computational Physics 375, 1339–1364 (2018). https://doi.org/10.1016/j.jcp.2018.
08.029

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/S0036141003437903
http://arxiv.org/abs/1611.07422
https://doi.org/10.1073/pnas.1718942115
https://www.pnas.org/content/115/34/8505
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BFb0007332
https://doi.org/10.1137/17M1151900
https://doi.org/10.1137/17M1151900
https://doi.org/10.1016/j.ress.2005.01.002
https://doi.org/10.1016/j.ress.2005.01.002
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029

	An application of the splitting-up method for the computation of a neural network representation for the solution for the filtering equations
	Abstract
	1 Introduction
	1.1 Notation
	1.2 Stochastic filtering problem
	1.3 Filtering equation and general splitting method

	2 Feynman-Kac representation and auxiliary diffusion
	2.1 Fokker-Planck equation
	2.2 Two simple examples of filtering models
	2.3 Optimisation problem for the prior

	3 Splitting method for the neural network representation of the posterior
	3.1 Neural network model for prediction step
	3.2 Monte-Carlo correction step
	3.3 Algorithm summary

	4 Numerical results for the splitting scheme
	4.1 One-dimensional linear filter
	4.1.1 Linear filter, case 1: M = -1, η = 0
	4.1.2 Linear filter, case 2: M = 1, η = -1

	4.2 One-dimensional Benes filter

	5 Conclusion and outlook
	Acknowledgements
	References

