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Abstract
We introduce a new class of stochastic partial differential equations (SPDEs) with seed
bankmodeling the spread of a beneficial allele in a spatial populationwhere individuals
may switch between an active and a dormant state. Incorporating dormancy and the
resulting seed bank leads to a two-type coupled system of equations with migration
between both states. We first discuss existence and uniqueness of seed bank SPDEs
and provide an equivalent delay representation that allows a clear interpretation of
the age structure in the seed bank component. The delay representation will also be
crucial in the proofs. Further, we show that the seed bank SPDEs give rise to an
interesting class of “on/off”-moment duals. In particular, in the special case of the
F-KPP Equation with seed bank, the moment dual is given by an “on/off-branching
Brownian motion”. This system differs from a classical branching Brownian motion
in the sense that independently for all individuals, motion and branching may be
“switched off” for an exponential amount of time after which they get “switched on”
again. On/off branching Brownian motion shows qualitatively different behaviour to
classical branching Brownian motion and is an interesting object for study in itself.
Here, as an application of our duality, we show that the spread of a beneficial allele,
which in the classical F-KPP Equation, started from a Heaviside intial condition,
evolves as a pulled traveling wave with speed

√
2, is slowed down significantly in

the corresponding seed bank F-KPP model. In fact, by computing bounds on the
position of the rightmost particle in the dual on/off branching Brownian motion, we
obtain an upper bound for the speed of propagation of the beneficial allele given

by
√√

5 − 1 ≈ 1.111 under unit switching rates. This shows that seed banks will
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indeed slow down fitness waves and preserve genetic variability, in line with intuitive
reasoning from population genetics and ecology.

Keywords Fisher–Kolmogoroff–Petrovski–Piscounov · Traveling wave · Duality ·
Dormancy · Seed bank · On/off branching Brownian motion · Delay spde

1 Introduction andmain results

1.1 Motivation

One of the most fundamental models in spatial population genetics and ecology,
describing the spread of a beneficial allele subject to directional selection, was intro-
ducedbyFisher in [14].Denotingby p(t, x) ∈ [0, 1] the frequencyof the advantageous
allele at time t ≥ 0 and spatial position x ∈ R, and assuming diffusive migration of
individuals (described by the Laplacian), Fisher considered the partial differential
equation

∂t p(t, x) = �

2
p(t, x) − p(t, x)2 + p(t, x). (1.1)

The same system was independently investigated around the same time by Kol-
mogorov, Petrovsky, and Piscounov in [25], and thus the above PDE is now commonly
known (and abbreviated) as F-KPP Equation, see e.g. [9] for a recent overview. It is
well known that there exists a so called travelling wave solutionwith speed

√
2 mean-

ing that there exists a function w such that

p(t, x) = w(x − √
2t) (1.2)

solves (1.1). Much finer results about the asymptotic behaviour of the wave-speed and
the shape of the function w are known (see e.g. [10, 26, 32]), and the F-KPP Equation
and its extensions with different noise terms are still an active field of research (see
e.g. [24, 30]). A very interesting feature of the F-KPP Equation and a main reason for
the amenability of its analysis is given by the fact that the solution to (1.1) is dual to
branching Brownian motion (BBM), as was shown by McKean [29] (and earlier by
Ikeda, Nagasawa andWatanabe [18]). Indeed, starting in a (reversed) Heaviside initial
condition given by p(0, ·) := 1]−∞,0], we have the probabilistic representation

p(t, x) = 1 − P0(Rt ≤ x), (1.3)

where (Rt )t≥0 is the position of the rightmost particle of a (binary) branchingBrownian
motion with branching rate 1, started with a single particle in 0. Bramson [11] then
also showed that the rightmost particle of this system thus governs the asymptotic
wave-speed of the original equation via the equality

lim
t→∞

Rt

t
= √

2. (1.4)
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Since the days of Fisher, mathematical modeling in population genetics has expanded
rapidly, and many additional “evolutionary forces” have been incorporated into the
above model. For example, one may include mutations between alleles and a “Wright-
Fisher noise” as a result of random reproduction, leading to the system

∂t p(t, x) =�

2
p(t, x) + m1(1 − p(t, x)) − m2 p(t, x) + sp(t, x)(1 − p(t, x))

+√
ν p(t, x)(1 − p(t, x))Ẇ (t, x). (1.5)

Herem1 ≥ 0 andm2 ≥ 0 are the mutation rates to and from the beneficial allele, s ≥ 0
denotes the strength of the selective advantage of the beneficial allele, ν ≥ 0 governs
the variance of the reproductive mechanism and W = (W (t, x))t≥0,x∈R denotes a
Gaussian white noise process. The Wright-Fisher noise term is the standard null-
model of population genetics, in the non-spatial setting corresponding to an ancestry
governed by the Kingman-coalescent [23]. A justification for its use in population
genetics can be found in [30].
From a biological point of view one may think of a one-dimensional habitat modeled
by R on which two types (or species) compete for limited resources. The Heaviside
initial condition (induced perhaps by some initial spatial barrier separating the two
interacting types) admits a detailed analysis of the impact of the selective advantage
of the beneficial type on its propagation in space (see e.g. [35]).
Recently, an additional evolutionary mechanism has drawn considerable attention in
population genetics. Indeed, dormancy, and, as a result, seed banks, are both ubiq-
uitous in microbial species as well as crucial for an understanding of their evolution
and ecology (see e.g. [28, 36]). Corresponding discrete-space population genetic mod-
els have recently been studied in [15] and non-spatial models, where dormancy and
resuscitation are modeled in the form of classical migration between an active and
an inactive state, have been derived and investigated in [6] and [7] (these papers also
provide biological background and motivation). There, the population follows a two-
dimensional “seed bank diffusion”, given by the system of SDEs

dp(t) = c(q(t) − p(t)) +√
p(t)(1 − p(t))dB(t),

dq(t) = c′(p(t) − q(t)) (1.6)

where p describes the frequency of the allele under consideration in the active popula-
tion, and q its frequency in the dormant population. The constants c, c′ > 0 represent
the switching rates between the active and dormant states, respectively, and (B(t))t≥0
is a standard Brownian motion. Though reminiscent of Wright’s two island model
(cf. [5]), the system above exhibits quite unique features. For example, it is dual to
an “on/off”-coalescent (instead of the Kingman coalescent), in which lines may be
turned on and off with independent exponential rates given by c and c′. Lines which
are turned off are prevented from coalescences. Note that this structure also appears
in the context of meta-population models from ecology, see [27]. It can be shown
that this new “seed bank coalescent” does not come down from infinity and exhibits
qualitatively prolonged times to the most recent common ancestor [7]. A further inter-
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esting feature is that the above system exhibits a long-term memory, which can be
well understood in a delay SDE reformulation obtained in ([5, Prop. 1.4]). Assume
starting frequencies p0 = x ∈ [0, 1], q0 = y ∈ [0, 1] and for simplicity c = c′ = 1.
Then, the solution to (1.6) is a.s. equal to the unique strong solution of the stochastic
delay differential equations

∂t p(t) =
(
ye−t +

∫ t

0
e−(t−s) p(s)ds − p(t)

)
dt +√

p(t)(1 − p(t)dBt ,

∂t q(t) =
(

− ye−t −
∫ t

0
e−(t−s) p(s)ds + p(t)

)
dt

with the same initial condition. The result rests on the fact that there is no noise in the
second component and can be proved by a integration-by-parts argument. The second
component is now just a deterministic function of the first.
It appears natural to incorporate the above seed bank components into a F-KPP frame-
work in order to analyse the combined effects of seed banks, space and directional
selection. We will thus investigate systems of type

∂t p(t, x) = c(q(t, x) − p(t, x)) + �

2
p(t, x) + s(p(t, x) − p2(t, x))

+ m1(1 − p(t, x)) − m2 p(t, x) +√
ν p(t, x)(1 − p(t, x))Ẇ (t, x),

∂t q(t, x) = c′(p(t, x) − q(t, x))

where c, c′ ≥ 0 are the switching rates between active and dormant states, s ≥ 0 is
the selection parameter, ν ≥ 0 the reproduction parameter and m1,m2 ≥ 0 are the
mutation parameters. One may view this as a continuous stepping stone model (cf.
[33]) with seed bank. Due to technical reasons, which will become clear in Sect. 3, it
is actually advantageous for us to consider in the following the process

(u, v):=(1 − p, 1 − q)

satisfying the system

∂t u(t, x) = c(v(t, x) − u(t, x)) + �

2
u(t, x) + s(u2(t, x) − u(t, x))

− m1u(t, x) + m2(1 − u(t, x)) +√
νu(t, x)(1 − u(t, x)Ẇ (t, x),

∂tv(t, x) = c′(u(t, x) − v(t, x)) (1.7)

instead. We expect to see the on/off mechanism of (1.6) emerge also in the dual of the
above system. In particular, in the F-KPP Equation with seed bank (setting s = 1 for
simplicity) given by

∂t u(t, x) =c(v(t, x) − u(t, x)) + �

2
u(t, x) − u(t, x)(1 − u(t, x)),

∂tv(t, x) =c′(u(t, x) − v(t, x)) (1.8)
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we expect to obtain an “on/off branching Brownian motion” with switching rates c, c′
and branching rate 1 as amoment dual. Further, we aim to derive a delay representation
for the above SPDE and hope to get at least partial information about the wave speed
of a potential traveling wave solution. Intuition from ecology suggests that the spread
of the beneficial allele should be slowed down due to the presence of a seed bank.
However, we also expect new technical problems, since the second component v(t, x)
comes without the Laplacian, so that all initial roughness of v0 will be retained for all
times, preventing jointly continuous solutions.

1.2 Main results

In this section, we summarize the main results of this paper. We begin by showing that
our Equation (1.7) is well-defined, i.e. we establish weak existence, uniqueness and
boundedness of solutions. This is done via the following theorems:

Theorem 1.1 The SPDE given by Eq. (1.7) for s, c, c′,m1,m2, ν ≥ 0 with initial
conditions (u0, v0) ∈ B(R, [0, 1]) × B(R, [0, 1]) has a weak solution (u, v) (in the
sense of Definition 2.3 below) with paths taking values in C(]0,∞[,C(R, [0, 1])) ×
C([0,∞[, B(R, [0, 1])).
Here, for Banach spaces X and Y we denoted by B(X ,Y ) the space of bounded,
measurable functions on X taking values in Y and byC(X ,Y ) the space of continuous
functions on X taking values in Y . We usually suppress the dependence on the image
space whenever our functions are real-valued and equip both spaces with the topology
of locally uniform convergence.

Theorem 1.2 Under the conditions of Theorem1.1, the SPDE (1.7) exhibits uniqueness
in law on C(]0,∞[,C(R, [0, 1])) × C([0,∞[, B(R, [0, 1])).
Note that it turns out that the absence of a Laplacian in the second equation in (1.7)
gives rise to technical difficulties regarding existence and uniqueness. However, as in
the seed bank diffusion case, a reformulation as a stochastic partial delay differential
equation is possible allowing one to tackle these issues. To our knowledge, this is a
new application of a delay representation in this context, and a detailed explanation
of this approach can be found in Sect. 2.

Proposition 1.3 The Eq. (1.7) is equivalent to the Stochastic Partial Delay Differential
Equation (SPDDE)

∂t u(t, x) = c

(
e−c′tv0(x) + c′

∫ t

0
e−c′(t−s)u(s, x) ds − u(t, x)

)
+ �

2
u(t, x) − m1u(t, x)

+ m2(1 − u(t, x)) − su(t, x)(1 − u(t, x)) +√
ν(1 − u(t, x))u(t, x)Ẇ (t, x),

∂tv(t, x) = c′
(
u(t, x) − e−c′tv0(x) − e−c′t c′

∫ t

0
ec

′su(s, x) ds

)
(1.9)

in the sense that under the same initial conditions solutions of (1.7) are also solutions
of (1.9) and vice versa.
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Remark 1.4 Proposition 1.3 gives rise to an elegant interpretation of the delay term. It
shows that the type of any “infinitesimal” resuscitated individual is determined by the
active population present an exponentially distributed time ago (with a cutoff at time
0), which the individual spent dormant in the seed bank (cf. Proposition 1.4. in [5]).

Another major tool needed for deriving the uniqueness result is the powerful duality
technique, i.e. we prove a moment duality with an “on/off branching coalescing Brow-
nian motion” (with killing) which as in [3] we define slightly informally as follows.
For a rigorous construction, we refer the reader to the killing and repasting procedure
of Ikeda, Nagasawa and Watanabe (cf. [16–18]) or [2]. Note also that the introduction
of the on/off-mechanism will lead, as in the on/off-coalescent case in [7], to an exten-
sion of the state space allowing each particle to carry an active or dormant marker.

Definition 1.5 We denote by M = (Mt )t≥0 an on/off branching coalescing Brow-
nian motion with killing taking values in

⋃
k∈N0

(R × {a, d})k starting at M0 =
((x1, σ1), . . . , (xn, σn)) ∈ (R × {a, d})n for some n ∈ N. Here the marker a (resp. d)
means that the corresponding particle is active (resp. dormant). The process evolves
according to the following rules:

• Active particles, i.e. particles with the marker a, move in R according to indepen-
dent Brownian motions, die at rate m2 and branch into two active particles at rate
s.

• Pairs of active particles coalesce according to the following mechanism:

– We define for each pair of particles labelled (α, β) their intersection local time
Lα,β = (Lα,β

t )t≥0 as the local time of Mα −Mβ at 0 which we assume to only
increase whenever both particles carry the marker a.

– Whenever the intersection local time exceeds the value of an independent
exponential clock with rate ν/2, the two involved particles coalesce into a
single particle.

• Independently, each active particle switches to a dormant state at rate c by switching
its marker from a to d.

• Dormant particles do not move, branch, die or coalesce.
• Independently, each dormant particle switches to an active state at rate c′ by switch-
ing its marker from d to a.

Moreover, denote by I = (It )t≥0 and J = (Jt )t≥0 the (time dependent) index set of
active and dormant particles of M , respectively, and let Nt be the random number of
particles at time t ≥ 0 so that Mt = (M1

t , . . . , M
Nt
t ). For example, if for t ≥ 0 we

have

Mt = ((M1
t , a), (M

2
t , d), (M3

t , a), (M
4
t , a)),

then

It = {1, 3, 4}, Jt = {2}, Nt = 4.
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Fig. 1 Simulation of an on/off-BBM. Horizontal lines appear whenever motion of a particle is switched off

Remark 1.6 For future use we highlight the following special cases of the process M .
They admit the samemechanisms as described inDefinition 1.5 except for those where
we set the rate to 0:

• m1 = m2 = 0: M is called an on/off branching coalescing Brownian motion
(without killing) or on/off BCBM.

• m1 = m2 = ν = 0: M is called an on/off branching Brownian motion (without
killing) or on/off BBM (Fig. 1).

• m1 = m2 = s = 0: M is called an on/off coalescing Brownian motion (without
killing) or on/off CBM.

• m1 = m2 = ν = s = 0: M is called an on/off Brownian motion (without killing)
or on/off BM.

We have the following moment duality for the process M of Definition 1.5 which
uniquely determines the law of the solution of the system (1.7).

Theorem 1.7 Let (u, v) be a solution to the system (1.7) with initial conditions u0, v0 ∈
B(R, [0, 1]). Then we have for any initial state M0 = ((x1, σ1), . . . , (xn, σn)) ∈
(R × {a, d})n, n ∈ N, and for any t ≥ 0

E

⎡

⎣
∏

β∈I0
u(t, Mβ

0 )
∏

γ∈J0

v(t, Mγ
0 )

⎤

⎦ = E

⎡

⎣
∏

β∈It
u0(M

β
t )

∏

γ∈Jt

v0(M
γ
t )e−m1

∫ t
0 |Is | ds

⎤

⎦ .

Finally, as an application of the preceding results we consider the special case without
mutation and noise. This is the F-KPP Equation with seed bank, i.e. Equation (1.8).
In this scenario the duality relation takes the following form.
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Corollary 1.8 Let (u, v) be the solution to Equation (1.8) with initial condition u0 =
v0 = 1[0,∞[. Then the dual process M is an on/off BBM (see Remark 1.6). Moreover,
if we start M from a single active particle, the duality relation is given by

u(t, x) = P(0,a)

(
max

β∈It∪Jt
Mβ

t ≤ x

)
.

Using this duality and a first moment bound, we can show that the propagation speed

of the beneficial allele is significantly reduced to at least
√√

5 − 1 ≈ 1.11 compared
to the previous speed of

√
2 in the case of the classical F-KPP Eq. (1.1).

Theorem 1.9 For s = c = c′ = 1, u0 = v0 = 1[0,∞[ and any λ ≥
√√

5 − 1 we have
that

lim
t→∞ 1 − u(t, λt) = 0.

A more general statement highlighting the exact dependence of the upper bound on
the switching parameters c and c′ is given later in Proposition 4.3.

1.3 Outline of paper

In Sect. 2, we first state results concerning (weak) existence of solutions of our class
of SPDEs from (1.7) and then prove the equivalent characterization of solutions in
terms of the delay representation (1.9). In Sect. 3, we establish uniqueness (in law) of
the solutions to (1.7) and show duality to on/off BCBM with killing. Then, in Sect. 4,
we investigate the special case of the F-KPP Equation with dormancy and show that
the beneficial allele spreads at reduced speed in comparison with the corresponding
classical F-KPP Equation (when started in Heaviside initial conditions). Finally, in
Sect. 5 we provide outlines for the proofs of the results from Sect. 2.

2 Weak existence for a class of stochastic partial differential
equations

In this section we provide a proof for Theorem 1.1. We begin by establishing strong
existence and uniqueness for general systems of SPDEs with Lipschitz coefficients
and use these results to obtain weak existence for systems with non-Lipschitz diffu-
sion coefficients under some additional regularity assumptions. Finally, we show that
Equation (1.7) fits into the previously established framework. In order to increase the
readability of this section, we postpone the rather technical yet standard proofs of most
theorems to Sect. 5.

We begin with the definition of the white noise process which is crucial to the
introduction of SPDEs.
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Definition 2.1 A (space-time) white noise W on R× [0,∞[ is a zero-mean Gaussian
process indexed by Borel subsets of R × [0,∞[ with finite measure such that

E[W (A)W (B)] = λ(A ∩ B)

where λ denotes the Lebesgue measure on R× [0,∞[. If a set A ∈ B(R× [0,∞[) is
of the form A = C × [0, t] with C ∈ B(R) we write Wt (C) = W (A).

We are now in a position to introduce the general setting of this section.

Definition 2.2 Denote by

b : [0,∞[×R × R
2 → R, b̃ : [0,∞[×R × R

2 → R

and

σ : [0,∞[×R × R
2 → R

measurable maps. Then we consider the system of SPDEs

∂t u(t, x) = �

2
u(t, x) + b(t, x, u(t, x), v(t, x)) + σ(t, x, u(t, x), v(t, x))Ẇ (t, x),

∂tv(t, x) = b̃(t, x, u(t, x), v(t, x)) (2.1)

with bounded initial conditions u0, v0 ∈ B(R), where W is a 1-dimensional white
noise process.

The equation is to be interpreted in the usual analytically weak sense (cf. [34]), as
follows:

Definition 2.3 Let u0, v0 ∈ B(R) and consider a random field (u, v) =
(u(t, x), v(t, x))t≥0,x∈R.

• We say that ((u, v),W ,
,F , (Ft )t≥0,P) is a weak solution (in the stochastic
sense) to Equation (2.1) with initial conditions (u0, v0) if for each φ ∈ C∞

c (R),
almost surely it holds for all t ≥ 0 and y ∈ R that

∫

R

u(t, x)φ(x) dx =
∫

R

u0(x)φ(x) dx +
∫ t

0

∫

R

u(s, x)
�

2
φ(x) dx ds

+
∫ t

0

∫

R

b(s, x, u(s, x), v(s, x))φ(x) dx ds

+
∫ t

0

∫

R

σ(s, x, u(s, x), v(s, x))φ(x)W (ds, dx), (2.2)

v(t, y) = v0(y) +
∫ t

0
b̃(s, y, u(s, y), v(s, y)) ds (2.3)

and both (u, v) andW are adapted to (Ft )t≥0.We usually suppress the dependence
of weak solutions on the underlying probability space and white noise process.
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• We say that (u, v) is a strong solution (in the stochastic sense) to Eq. (2.1) if on
some given probability space (
,F ,P) with some white noise process W , the
process (u, v) is adapted to the canonical filtration (Ft )t≥0 of W and for each
φ ∈ C∞

c (R) satisfies almost surely (2.2)-(2.3) for all t ≥ 0 and y ∈ R.
• For p ≥ 2, we say that a solution (u, v) is L p-bounded if

‖(u, v)‖T ,p:= sup
0≤t≤T

sup
x∈R

E
[
(|u(t, x)| + |v(t, x)|)p]1/p < ∞

for each T > 0.

The solutions (u, v) we construct will have paths in C(]0,∞[,C(R)) ×
C([0,∞[, Bloc(R)). Here, we denote by C(R) resp. Bloc(R) the space of continu-
ous resp. locally bounded measurable functions on R. The spaces are endowed with
the topology of locally uniform convergence. Note that for the random field u, this
means equivalently that u is jointly continuous on ]0,∞[×R. Since we allow for non-
continuous (e.g. Heaviside) initial conditions u0 and v0, we have to restrict the path
space for u by excluding t = 0. For the same reason and due to the absence of the
Laplacian in (2.3), we cannot expect continuity of v in the spatial variable y.
We start by establishing, for solutions with the above path properties, an equivalent
mild representation involving the Gaussian heat kernel

G(t, x, y) = 1√
2π t

e
(x−y)2

2t

which is the fundamental solution of the classical heat equation.

Proposition 2.4 Let u0, v0 ∈ B(R) and assume that for all T > 0, the linear growth
condition

|b̃(t, x, u, v)| + |b(t, x, u, v)| + |σ(t, x, u, v)| ≤ CT (1 + |u| + |v|) (2.4)

holds for every (t, x, u, v) ∈ [0, T ] × R × R × R.
Let (u, v) be an adapted and L2-bounded process with paths taking values in

C(]0,∞[,C(R))×C([0,∞[, Bloc(R)). Then (u, v) is a solution of Equation (2.1) in
the sense of Definition 2.3 iff (u, v) satisfies the following Stochastic Integral Equation
(SIE): For each t > 0 and y ∈ R, almost surely it holds

u(t, y) =
∫

R

u0(x)G(t, x, y) dx +
∫ t

0

∫

R

b(s, x, u(s, x), v(s, x))G(t − s, x, y)dx ds

+
∫ t

0

∫

R

σ(s, x, u(s, x), v(s, x))G(t − s, x, y)W (ds, dx), (2.5)

and almost surely Eq. (2.3) holds for all t ≥ 0 and y ∈ R.

Using the mild formulation of the equation, the next step is to show strong existence
and uniqueness by a standard Picard iteration scheme. For this we need to impose the
usual Lipschitz assumptions.
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Theorem 2.5 Assume that for all T > 0, we have the linear growth condition (2.4)
and the following Lipschitz condition:

|b̃(t, x, u, v) − b̃(t, x, ũ, ṽ)| + |b(t, x, u, v) − b(t, x, ũ, ṽ)|
+ |σ(t, x, u, v) − σ(t, x, ũ, ṽ)|

≤ LT (|u − ũ| + |v − ṽ|) (2.6)

for every (t, x) ∈ [0, T ] × R and (u, v), (ũ, ṽ) ∈ R
2.

Then for u0, v0 ∈ B(R), Eq. (2.1) has a unique strong L2-bounded solution (u, v)

with paths taking values in C(]0,∞[,C(R)) × C([0,∞[, Bloc(R)). Moreover, this
solution is L p-bounded for each p ≥ 2.

Remark 2.6 Although the paths of u are not continuous at t = 0 for non-continuous
initial conditions u0, Step 2 in the proof of Theorem 2.5 will in fact show that the
process

u(t, x) −
∫

R

G(t, x, y)u0(y) dy

has always paths in C([0,∞[,C(R)) and thus, in particular, is locally bounded in
(t, x) ∈ [0,∞[×R.

Our next goal is to establish conditions under which we can ensure that the solutions
to our SPDE stay in [0, 1].
Theorem 2.7 Assume that the conditions of Theorem 2.5 are satisfied. In addition,
suppose that b and b̃ are even Lipschitz continuous jointly1 in (x, u, v) and satisfy the
inequalities

b(t, x, 0, v) ≥ 0 for all (t, x, v) ∈ [0,∞[×R × R,

b(t, x, 1, v) ≤ 0 for all (t, x, v) ∈ [0,∞[×R × R,

b̃(t, x, u, 0) ≥ 0 for all (t, x, u) ∈ [0,∞[×R × R,

b̃(t, x, u, 1) ≤ 0 for all (t, x, u) ∈ [0,∞[×R × R. (2.7)

Finally, assume that σ is a function of (t, x, u) alone, Lipschitz continuous jointly in
(x, u) and satisfies

σ(t, x, 0) = 0 for all (t, x) ∈ [0,∞[×R,

σ (t, x, 1) = 0 for all (t, x) ∈ [0,∞[×R. (2.8)

For initial conditions u0, v0 ∈ B(R, [0, 1]), let (u, v) ∈ C(]0,∞[,C(R)) ×
C([0,∞[, Bloc(R)) be the unique strong L2-bounded solution to Eq. (2.1) from The-
orem 2.5. Then we have

P

(
(u(t, x), v(t, x)) ∈ [0, 1]2 for all t ≥ 0 and x ∈ R

)
= 1.

1 This is stronger than the Lipschitz condition (2.6) which only requires that the bound holds in (u, v).
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In particular, almost surely the solution has paths taking values in C(]0,∞[,
C(R, [0, 1]))×C([0,∞[, B(R, [0, 1])), where the spaces are endowedwith the topol-
ogy of locally uniform convergence.

Remark 2.8 By the same approximation procedure as in the proof of Theorem 2.9
below, it is possible to relax the condition in Theorem 2.7 that b, b̃ resp. σ are Lipschitz
continuous jointly in (x, u, v) resp. (x, u) and to require merely joint continuity and
the Lipschitz condition (2.6).

In order to extend Theorem 2.7 to non-Lipschitz diffusion coefficients σ , we need
to impose an additional assumption on our SPDE in what follows. For given u ∈
C(]0,∞[×R, [0, 1]) and fixed y ∈ R, we consider Eq. (2.3) as an ordinary integral
equation in v(·, y).We then assume in effect that the unique solution v is a deterministic
functional of u and v0, in the sense of (2.9) below. We are then in a position to prove:

Theorem 2.9 Assume that b, b̃ and σ satisfy the following:

(i) We have that b, b̃ : R2 → R are Lipschitz-continuous functions of (u, v) alone
and satisfy the inequalities in (2.7).

(ii) We have that σ : R → R is a continuous (not necessarily Lipschitz) function of
u alone which satisfies the conditions in (2.8) and a linear growth bound

|σ(u)| ≤ K (1 + |u|)

for all u ∈ R and some K > 0.
(iii) We assume that there exist continuous functionals

F : C(]0,∞[×R, [0, 1]) → C([0,∞[×R, [0, 1]),
H : [0,∞[×B(R, [0, 1]) → B(R, [0, 1])

such that for each given u ∈ C(]0,∞[×R, [0, 1]), v0 ∈ B(R, [0, 1]) and y ∈ R,
the unique solution v(·, y) to Eq. (2.3) has the following representation:

v(t, y) = F(u)(t, y) + H(t, v0)(y), t ≥ 0. (2.9)

Then for given initial conditions u0, v0 ∈ B(R, [0, 1]) there exists a white noise
process W and a corresponding filtered probability space such that Eq. (2.1) has a
weak solution (u, v) with paths in C(]0,∞[,C(R, [0, 1]))×C([0,∞[, B(R, [0, 1]))
almost surely.

Remark 2.10 Note that we have to impose the condition (2.9) that v is a deterministic
functional of u (and v0) in order to reduce our coupled system of equations (2.1) to
an equation in u only. This is due to the fact that the methods we employ for tightness
require Polish spaces and B(R, [0, 1]) (the state space of v) is not separable.

Our next goal is to show that our specific model, i.e. the SPDE (1.7) fits into the
framework of the preceding theorems. To this end, we first prove Proposition 1.3,
which allows us to represent our system of SPDEs as a single Stochastic Partial Delay
Differential Equation (SPDDE).
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Proof of Proposition 1.3 For given u ∈ C(]0,∞[×R, [0, 1]) and v0 ∈ B(R, [0, 1]),
we consider for each fixed x ∈ R the second component of the system (1.7) as an
integral equation in v(·, x), i.e.

v(t, x) = v0(x) + c′
∫ t

0
(u(s, x) − v(s, x)) ds.

Then by an application of the variation of constants formula we get for all x ∈ R that

v(t, x) = e−c′t
(
c′
∫ t

0
u(s, x)ec

′s ds + v0(x)

)
, t ≥ 0. (2.10)

One may verify this through a simple application of the integration by parts formula.
To see this we calculate as follows for each x ∈ R:

ec
′tv(t, x) = v0(x) + c′

∫ t

0
v(s, x)ec

′s ds +
∫ t

0
ec

′sdv(s, x)

= v0(x) + c′
∫ t

0
v(s, x)ec

′s ds + c′
∫ t

0
ec

′s(u(s, x) − v(s, x))ds

= v0(x) + c′
∫ t

0
ec

′su(s, x) ds.

Rearranging we obtain (2.10), which we note is just the integral form of the sec-
ond equation in (1.9). Now it is easy to see that (u, v) ∈ C(]0,∞[,C(R, [0, 1])) ×
C([0,∞[, B(R, [0, 1])) is a solution of (1.7) in the sense of Definition 2.3 iff it is a
solution of the SPDDE (1.9). 
�
We are finally in a position to provide the following:

Proof of Theorem 1.1 Consider the SPDE given by

∂t u(t, x) = �

2
u(t, x) + s(u2(t, x) − u(t, x))1[0,1](u(t, x)) + c(v(t, x) − u(t, x))

− m1u(t, x) + m2(1 − u(t, x))

+ 1[0,1](u(t, x))
√

νu(t, x)(1 − u(t, x))Ẇ (t, x),

∂tv(t, x) = c′(u(t, x) − v(t, x)).

Then we note that

b(u, v) := (u2 − u)1[0,1](u) − m1u + m2(1 − u) + c(v1[0,1](v) + 1]1,∞[(v) − u),

b̃(u, v) := c′(u1[0,1](u) + 1]1,∞[(u) − v) and σ(u) := 1[0,1](u)
√

νu(1 − u)

satisfy all assumptions of Theorem 2.9. Moreover, (2.10) shows that (2.9) holds with

F(u)(t, y) := e−c′t c′
∫ t

0
ec

′su(s, y) ds,
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H(t, v0)(y) := e−c′tv0(y).

Thus, all conditions of Theorem 2.9 are fulfilled and we have existence of
a [0, 1]2-valued weak solution (u, v) with paths in C(]0,∞[,C(R, [0, 1])) ×
C([0,∞[, B(R, [0, 1])) almost surely. This means in turn that we may get rid of
the indicator functions and hence (u, v) solves Eq. (1.7). 
�
Remark 2.11 Note that the preceding results become only notationally harder to prove
if we consider larger systems of equations of the following form:
Let d, d̃, r ∈ N and denote by

b : [0,∞[×R × R
d+d̃ → R

d , b̃ : [0,∞[×R × R
d+d̃ → R

d̃

and

σ : [0,∞[×R × R
d+d̃ → R

d×r

measurable maps. Then we may consider the system of SPDEs

∂t u(t, x) = �

2
u(t, x) + b(t, x, u(t, x), v(t, x)) + σ(t, x, u(t, x), v(t, x))Ẇ (t, x),

∂tv(t, x) = b̃(t, x, u(t, x), v(t, x)) (2.11)

where W = (Wk)k=1,...,r is a collection of independent 1-dimensional space-time
white noise processes.

Written component-wise, (2.11) means

∂t ui (t, x) = �

2
ui (t, x) + bi (t, x, u(t, x), v(t, x))

+
r∑

k=1

σik(t, x, u(t, x), v(t, x))Ẇk(t, x),

∂tv j (t, x) = b̃ j (t, x, u(t, x), v(t, x)) (2.12)

for i ∈ {1, . . . , d} and j ∈ {1, . . . , d̃}.

3 Uniqueness in law and duality

In this section we aim to establish a moment duality which in particular will yield
uniqueness in law for Equation (1.7). We follow the approach of Athreya and Tribe in
[3]. Now recall that on the one hand it is a well-known result by Shiga (cf. [33]) that
the SPDE without seedbank given by

∂t u(t, x) = �

2
u(t, x) + s((u2(t, x) − u(t, x))
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− m1u(t, x) + m2(1 − u(t, x)) +√
νu(t, x)(1 − u(t, x)Ẇ (t, x) (3.1)

satisfies a moment duality with a branching coalescing Brownian motion with killing
M̃ and mutation compensator given by

E

⎡

⎣
∏

β∈ Ĩ0
u(t, M̃β

0 )

⎤

⎦ = E

⎡

⎣
∏

β∈ Ĩt
u(0, M̃β

t )e−m1
∫ t
0 | Ĩs | ds

⎤

⎦

where Ĩt is the index set of particles that are alive at time t ≥ 0. On the other hand,
in the seed bank diffusion case given by Eq. (1.6) it has been established that the dual
process is an “on/off” version of a (Kingman-)coalescent (cf. [6]).
In lieu of this we have defined a combination of all the previous mechanisms by
allowing the movement of the particles of Shiga’s dual process to also be subject to
an additional “on/off” mechanism as in the on/off coalescent case in Definition 1.5.
Recall that we denote by M = (Mt )t≥0 an on/off BCBM with killing and that It and
Jt are the index sets of active and dormant particles, respectively, at time t ≥ 0.

Remark 3.1 In the discrete setting the proof of duality can usually be reduced to a
simple generator calculation using the arguments in [13, pages 188–190]. However,
due to the involvement of the collision local time stemming from the coalescence
mechanism in the dual process, the generator of the dual process can only be defined
formally. Hence, we use a regularization procedure to still be able to use the main
ideas from [13].

Proof of Theorem 1.7 Consider for ε > 0 the Gaussian heat kernel ρε(x) = G(ε, x, 0)

= 1√
2πε

exp
(
− x2

2ε

)
and set

uε(t, y) =
∫

R

u(t, x)ρε(x − y) dx

and note that uε(t, ·) is smooth for each t ≥ 0. Then by Definition 2.3 uε satisfies the
integral equation

uε(t, x) = uε(0, x) +
∫ t

0

∫

R

1

2
u(s, y)�ρε(x − y) dy ds + m2

∫ t

0

∫

R

(1 − u(s, y))ρε(x − y) dy ds − m1

∫ t

0∫

R

u(s, y)ρε(x − y) dy ds − s
∫ t

0

∫

R

(1 − u(s, y))u(s, y)ρε(x − y) dy ds

+ c
∫ t

0

∫

R

(v(s, y) − u(s, y))ρε(x − y) dy ds

+ √
ν

∫ t

0

∫

R

ρε(x − y)
√
u(s, y)(1 − u(s, y))W (ds, dy)
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= uε(0, x) +
∫ t

0

1

2
�uε(s, x) + m2(1 − uε(s, x)) − m1uε(s, x) ds

− s
∫ t

0

∫

R

(1 − u(s, y))u(s, y)ρε(x − y) dy ds

+ c
∫ t

0
vε(t, x) − uε(t, x) ds + √

ν

∫ t

0

∫

R

ρε(x − y)

√
u(s, y)(1 − u(s, y))W (ds, dy)

= uε(0, x) +
∫ t

0

1

2
�uε(s, x) + m2(1 − uε(s, x)) − m1uε(s, x) ds

− s
∫ t

0
bε(u, s, x) ds

+ c
∫ t

0
(vε(s, x) − uε(s, x)) ds

+ √
ν

∫ t

0

∫

R

ρε(x − y)
√
u(s, y)(1 − u(s, y))W (ds, dy),

vε(t, x) = vε(0, x) + c′
∫ t

0

∫

R

(u(s, y) − v(s, y))ρε(x − y) dy ds

= vε(0, x) + c′
∫ t

0
uε(t, x) − vε(t, x) ds

where bε(u, s, x):= ∫
R
(1 − u(s, y))u(s, y)ρε(x − y) dy. Note that the above two

quantitiesuε and vε are semimartingales. Thus, takingn,m ∈ N and choosing arbitrary
points x1, . . . , xn ∈ R and y1, . . . , ym ∈ R we see by an application of Itô’s formula
to the C2 map

(x1, . . . , xn, y1, . . . , ym) �→
n∏

i=1

xi

m∏

j=1

y j

that after taking expectations

E

⎡

⎣
n∏

i=1

uε(t, xi )
m∏

j=1

vε(t, y j )

⎤

⎦− E

⎡

⎣
n∏

i=1

uε(0, xi )
m∏

j=1

vε(0, y j )

⎤

⎦

= E

⎡

⎣
∫ t

0

n∑

i=1

n∏

k=1,k �=i

uε(s, xk)
m∏

j=1

vε(s, y j )

×
(
1

2
�uε(s, xi ) + m2(1 − uε(s, xi )) − m1uε(s, xi )

)
ds

]

+ cE

⎡

⎣
∫ t

0

n∑

i=1

n∏

k=1,k �=i

uε(s, xk)
m∏

j=1

vε(s, y j ) (vε(s, xi ) − uε(s, xi )) ds

⎤

⎦
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− sE

⎡

⎣
∫ t

0

n∑

i=1

n∏

k=1,k �=i

uε(s, xk)
m∏

j=1

vε(s, y j )bε(u, s, xi ) ds

⎤

⎦

+ c′
E

⎡

⎣
∫ t

0

m∑

j=1

n∏

i=1

uε(s, xi )
m∏

k=1,k �= j

vε(s, yk)
(
uε(s, y j ) − vε(s, y j )

)
ds

⎤

⎦

+ 1

2
νE

⎡

⎣
∫ t

0

n∑

i=1,l=1,i �=l

m∏

k∈{1,...,n}\{i,l}
uε(s, xk)

m∏

j=1

vε(s, y j )

×
∫

R

ρε(z − xi )ρε(z − xl)σ
2(u(s, z)) dz ds

]

where σ(x) = √
x(1 − x). Now, we replace the xi and y j by an independent version

of our dual process taken at a time r ≥ 0 and multiply by the independent quantity
K (r) := e−m1

∫ r
0 |Is | ds . This gives

E

⎡

⎣K (r)
∏

β∈Ir
uε(t, M

β
r )

∏

γ∈Jr

vε(t, M
γ
r )

⎤

⎦− E

⎡

⎣K (r)
∏

β∈Ir
uε(0, M

β
r )

∏

γ∈Jr

vε(0, M
γ
r )

⎤

⎦

= E

⎡

⎣K (r)
∫ t

0

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )

×
(
1

2
�uε(s, M

β
r ) + m2(1 − uε(s, M

β
r )) − m1uε(s, M

β
r )

)
ds

⎤

⎦

+ cE

⎡

⎣K (r)
∫ t

0

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )

× (
vε(s, M

β
r ) − uε(s, M

β
r )
)
ds

⎤

⎦

− sE

⎡

⎣K (r)
∫ t

0

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )

× bε(u, s, Mβ
r ) ds

⎤

⎦

+ c′
E

⎡

⎣K (r)
∫ t

0

∑

γ∈Jr

∏

β∈Ir
uε(s, M

β
r )

∏

δ∈Jr \{γ }
vε(s, M

δ
r )
(
uε(s, M

γ
r )) − vε(s, M

γ
r )
)
ds

⎤

⎦

+ 1

2
νE

⎡

⎣K (r)
∫ t

0

∑

β,δ∈Ir ,β �=δ

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )

×
∫

R

ρε(z − Mβ
r )ρε(z − Mδ

r )σ
2(u(s, z)) dz ds

⎤

⎦ . (3.2)
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Further, since we have the following integrable upper bound

K (r)
∫ t

0

∑

β,δ∈Ir ,β �=δ

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )

∫

R

ρε(z − Mβ
r )

ρε(z − Mδ
r )σ

2(u(s, z)) dz ds ≤ C(t, ε)Ir

we may use Fubini’s theorem and similar bounds (which are possibly independent of
ε) for the remaining quantities to justify that the terms in (3.2) are finite. Note that this
also allows for applications of the dominated convergence theorem later on.
On the other hand, for any C2-functions h, g we see by adding and substracting the
compensators of the jumps

E

⎡

⎣
∏

β∈It
h(Mβ

t )
∏

γ∈Jt

g(Mγ
t )

⎤

⎦− E

⎡

⎣
n∏

i=1

h(xi )
m∏

j=1

g(yi )

⎤

⎦

= E

⎡

⎣
∫ t

0

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )

1

2
�h(Mβ

s ) ds

⎤

⎦

+ sE

⎡

⎣
∫ t

0

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )(h2(Mβ

s ) − h(Mβ
s )) ds

⎤

⎦

+ cE

⎡

⎣
∫ t

0

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )(g(Mβ

s ) − h(Mβ
s )) ds

⎤

⎦

+ c′E

⎡

⎣
∫ t

0

∑

γ∈Js

∏

β∈Is
h(Mβ

s )
∏

δ∈Js ,δ �=γ

g(Mδ
s )(h(Mγ

s ) − g(Mγ
s )) ds

⎤

⎦

+ m2E

⎡

⎣
∫ t

0

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )(1 − h(Mβ

s )) ds

⎤

⎦

+ 1

4
νE

⎡

⎣
∫ t

0

∑

β,δ∈Is ,β �=δ

∏

φ∈Is\{β,δ}
h(Mφ

s )
∏

γ∈Js

g(Mγ
s )(h(Mδ

s ) − h(Mβ
s )h(Mδ

s )) dLβ,δ
s

⎤

⎦

where we recall from Definition 1.5 that Lβ,δ is the local time of Mβ − Mδ at 0
whenever both particles are active. By the integration by parts formula we then see
including the factor K (t)

E

⎡

⎣K (t)
∏

β∈It
h(Mβ

t )
∏

γ∈Jt

g(Mγ
t )

⎤

⎦− E

⎡

⎣K (0)
n∏

i=1

h(xi )
m∏

j=1

g(yi )

⎤

⎦

= E

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )

1

2
�h(Mβ

s ) ds

⎤

⎦

+ sE

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )(h2(Mβ

s ) − h(Mβ
s )) ds

⎤

⎦
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+ cE

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )(g(Mβ

s ) − h(Mβ
s )) ds

⎤

⎦

+ c′
E

⎡

⎣
∫ t

0
K (s)

∑

γ∈Js

∏

β∈Is
h(Mβ

s )
∏

δ∈Js ,δ �=γ

g(Mδ
s )(h(Mγ

s ) − g(Mγ
s )) ds

⎤

⎦

+ m2E

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

h(Mδ
s )

∏

γ∈Js

g(Mγ
s )(1 − h(Mβ

s )) ds

⎤

⎦

+ 1

4
νE

⎡

⎣
∫ t

0
K (s)

∑

β,δ∈Is ,β �=δ

∏

φ∈Is\{β,δ}
h(Mφ

s )
∏

γ∈Js

g(Mγ
s )(h(Mδ

s ) − h(Mβ
s )h(Mδ

s )) dL
β,δ
s

⎤

⎦

+ E

⎡

⎣
∫ t

0
K (s)

∏

β∈Is
h(Mβ

s )
∏

γ∈Js

g(Mγ
s )(−m1|Is |) ds

⎤

⎦ .

Further, note that that for each ε > 0 and r ≥ 0 the maps uε(r , ·), vε(r , ·) are
bounded and smooth as they originate from mollifying with the heat kernel. Thus,
replacing h and g with the independent quantities uε(r , ·) and vε(r , ·) we have

E

⎡

⎣K (t)
∏

β∈It
uε(r , M

β
t )

∏

γ∈Jt

vε(r , M
γ
t )

⎤

⎦− E

⎡

⎣K (0)
n∏

i=1

uε(r , xi )
m∏

j=1

vε(r , y j )

⎤

⎦

= E

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )

1

2
�uε(r , M

β
s ) ds

⎤

⎦

+ sE

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(u2ε (r , M

β
s ) − uε(r , M

β
s )) ds

⎤

⎦

+ cE

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(vε(r , M

β
s ) − uε(r , M

β
s )) ds

⎤

⎦

+ c′E

⎡

⎣
∫ t

0
K (s)

∑

γ∈Js

∏

β∈Is
uε(r , M

β
s )

∏

δ∈Js ,δ �=γ

vε(r , M
δ
s )(uε(r , M

γ
s ) − vε(r , M

γ
s )) ds

⎤

⎦

+ m2E

⎡

⎣
∫ t

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(1 − uε(r , M

β
s )) ds

⎤

⎦

+ 1

4
νE

⎡

⎣
∫ t

0
K (s)

∑

β,δ∈Is ,β �=δ

∏

φ∈Is\{β,δ}
uε(r , M

φ
s )

∏

γ∈Js

vε(r , M
γ
s )

× (uε(r , M
δ
s ) − uε(r , M

β
s )uε(r , M

δ
s )) dLβ,δ

s

]

+ E

⎡

⎣
∫ t

0
K (s)

∏

β∈Is
uε(r , M

β
s )

∏

γ∈Js

vε(r , M
γ
s )(−m1|Is |) ds

⎤

⎦ .
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Finally, define

k(t, s, ε) = E

⎡

⎣
∏

β∈Is
uε(t, M

β
s )

∏

γ∈Js

vε(t, M
γ
s )

⎤

⎦ .

Then we may follow the idea from [13] and calculate for t ≥ 0 by substituting with
our previously calculated quantities

∫ t

0
k(r , 0, ε) − k(0, r , ε) dr

=
∫ t

0
k(t − r , r , ε) − k(0, r , ε) dr −

∫ t

0
k(r , t − r , ε) − k(r , 0, ε) dr

= E

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )

1

2
�uε(s, M

β
r ) ds dr

⎤

⎦

− E

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )

1

2
�uε(r , M

β
s ) ds dr

⎤

⎦

− sE

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∫ t−r

0

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )bε(u, s, Mβ

r ) ds dr

⎤

⎦

− sE

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(u2ε (r , Mβ

s ) − uε(r , M
β
s )) ds dr

⎤

⎦

+ cE

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )

(
vε(s, M

β
r ) − uε(s, M

β
r )
)
ds dr

⎤

⎦

− cE

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(vε(r , M

β
s ) − uε(r , M

β
s )) ds dr

⎤

⎦

+ c′E

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

γ∈Jr

∏

β∈Ir
uε(s, M

β
r )

∏

δ∈Jr \{γ }
vε(s, M

δ
r )
(
uε(s, M

γ
r ) − vε(s, M

γ
r )
)
ds dr

⎤

⎦

− c′E

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

γ∈Js

∏

β∈Is
uε(r , M

β
s )

∏

δ∈Js ,δ �=γ

vε(r , M
δ
s )(uε(r , M

γ
s ) − vε(r , M

γ
s )) ds dr

⎤

⎦

+ m2E

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )(1 − uε(s, M

β
r )) ds dr

⎤

⎦

− m2E

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(1 − uε(r , M

β
s )) ds dr

⎤

⎦ (3.3)

+ 1

2
νE

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β,δ∈Ir ,β �=δ

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )

×
∫

R

ρε(z − Mβ
r )ρε(z − Mδ

r )σ 2(u(s, z)) dz ds dr

]
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− 1

4
νE

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β,δ∈Is ,β �=δ

∏

φ∈Is\{β,δ}
uε(r , M

φ
s )

∏

γ∈Js

vε(r , M
γ
s )

× (uε(r , M
δ
s ) − uε(r , M

β
s )uε(r , M

δ
s )) dLβ,δ

s dr
]

+ E

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )

(
−m1uε(s, M

β
r )
)
ds dr

⎤

⎦

− E

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∏

β∈Is
uε(r , M

β
s )

∏

γ∈Js

vε(r , M
γ
s )(−m1|Is |) ds dr

⎤

⎦

= −sE

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∫ t−r

0

∑

β∈Ir

∏

δ∈Ir \{β}
uε(s, M

δ
r )

∏

γ∈Jr

vε(s, M
γ
r )bε(u, s, Mβ

r ) ds dr

⎤

⎦ (3.4)

− sE

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β∈Is

∏

δ∈Is ,δ �=β

uε(r , M
δ
s )

∏

γ∈Js

vε(r , M
γ
s )(u2ε (r , Mβ

s ) − uε(r , M
β
s )) ds dr

⎤

⎦

(3.5)

+ 1

2
νE

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β,δ∈Ir ,β �=δ

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )

×
∫

R

ρε(z − Mβ
r )ρε(z − Mδ

r )σ 2(u(s, z)) dz ds dr

]
(3.6)

− 1

4
νE

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β,δ∈Is ,β �=δ

∏

φ∈Is\{β,δ}
uε(r , M

φ
s )

∏

γ∈Js

vε(r , M
γ
s )

× (uε(r , M
δ
s ) − uε(r , M

β
s )uε(r , M

δ
s )) dLβ,δ

s dr
]
. (3.7)

Now, again by Fubini’s theorem, taking the limit as ε → 0 we see that all the
quantities except (3.6) and (3.7) vanish. Note that we used properties of mollifications
(since u is continuous we have convergence everywhere) and the dominated conver-
gence theorem to justify this. Moreover, the use of Lemma 3.2 allows us to argue
that the same is true for the remaining two terms. By the (left-)continuity of the the
processes u, v, M in r we finally see that after differentiation

k(t, 0, 0) = k(0, t, 0)

as desired. 
�

Lemma 3.2 In the setting of Theorem 1.7 we have

1

2
νE

⎡

⎣
∫ t

0

∫ t−r

0
K (r)

∑

β,δ∈Ir ,β �=δ

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )

×
∫

R

ρε(z − Mβ
r )ρε(z − Mδ

r )σ
2(u(s, z)) dz ds dr

]
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→ 1

4
νE

⎡

⎣
∫ t

0

∫ t−r

0
K (s)

∑

β,δ∈Is ,β �=δ

∏

φ∈Is\{β,δ}
u(r , Mφ

s )
∏

γ∈Js

v(r , Mγ
s )

× (u(r , Mδ
s ) − u(r , Mβ

s )u(r , Mδ
s )) dL

β,δ
s dr

]

as ε → 0.

Proof of Lemma 3.2 We adapt and elaborate the proof of [3]. Consider for eachm ∈ N

the time of them-th birth τm . Assume for now that wemay restrict ourselves to [0, τm].
Now, we argue pathwise in ω. Set for β, δ ∈ {1, . . . ,m} after a change of variables

1

2

∫ t

0

∫ t−r

0
1{β,δ∈Ir }K (r)

∏

φ∈Ir\{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )

×
∫

R

ρε(z − Mβ
r )ρε(z − Mδ

r )σ
2(u(s, z)) dz ds dr

=: 1

2

∫ t

0

∫

R

ρε(z)ρε(z + Mδ
r − Mβ

r )Zβ,δ,ε
r (z) dz dr .

Here, we set

Zβ,δ,ε
r (z):=

∫ t−r

0
1{β,δ∈Ir }K (r)

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )σ 2(u(s, z + Mδ

r )) ds,

Zβ,δ
r (z):=

∫ t−r

0
1{β,δ∈Ir }K (r)

∏

φ∈Ir \{β,δ}
u(s, Mφ

r )
∏

γ∈Jr

v(s, Mγ
r )σ 2(u(s, z + Mδ

r )) ds.

Now, by a modification of Tanaka’s occupation time formula (cf. [3]) we see that2

1

2

∫ t

0

∫

R

ρε(z)ρε(z + Mδ
r − Mβ

r )Zβ,δ,ε
r (z) dz dr =

1

4

∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)Zβ,δ,ε

r (z) dLβ,δ
r ,x dx dz.

Thegoal for now is to replace Lβ,δ
r ,x by the local time at 0 andget rid of the dependence

of Z on z and ε. To do so we first use the triangle inequality to see that

∣∣∣∣

∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)Zβ,δ,ε

r (z) dLβ,δ
r ,x dx dz −

∫ t

0
Zβ,δ
r (0) dLβ,δ

r

∣∣∣∣

≤
∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)

∣∣Zβ,δ,ε
r (z) − Zβ,δ,ε

r (0)
∣∣ dLβ,δ

r ,x dx dz (3.8)

2 Here we split the integral into the random time intervals on which both Mδ and Mβ are active and then
apply Tanaka’s formula. Moreover, note that the intersection local time of two on/off Brownian motions
can always be dominated by the local time of two corresponding standard Brownian motions. This will also
allow for applications of the local time inequalities by Barlow and Yor later in the proof.
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+
∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)

∣∣Zβ,δ,ε
r (0) − Zβ,δ

r (0)
∣∣ dLβ,δ

r ,x dx dz (3.9)

+
∣∣∣∣

∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)Zβ,δ

r (0) dLβ,δ
r ,x dx dz −

∫ t

0
Zβ,δ
r (0) dLβ,δ

r

∣∣∣∣ . (3.10)

First, note that r �→ Zβ,δ,ε
r (z) is piece-wise continuous and uniformly bounded for

each z ∈ R and that z �→ Zβ,δ
r (z) is continuous at 0 uniformly in r ≤ t and ε > 0.

Hence, for any η > 0 there exists some ζ > 0 such that

∣∣Zβ,δ,ε
r (z) − Zβ,δ,ε

r (0)
∣∣ < η

whenever |z| < ζ uniformly in r and ε. Using that Lr ,x is uniformly bounded in
r ∈ [0, t], x ∈ R by Barlow and Yor’s local time inequalities from [4] we obtain for
all ε > 0

∫

R

∫

R

∫ t

0
1{|z|<ζ }(z)ρε(z)ρε(z + x)

∣∣Zβ,δ,ε
r (z) − Zβ,δ,ε

r (0)
∣∣ dLβ,δ

r ,x dx dz < Cη

for some constant C > 0. Moreover, noting in addition that Zβ,δ,ε is bounded uni-
formly in r , ε and z we have for the remaining part of the integral

∫

R

∫

R

∫ t

0
1{|z|>ζ }(z)ρε(z)ρε(z + x)

∣∣Zβ,δ,ε
r (z) − Zβ,δ,ε

r (0)
∣∣ dLβ,δ

r ,x dx dz

≤ C
∫

R

1{|z|>ζ }(z)ρε(z) dz → 0

as ε → 0. Hence, we obtain that the entire term in Equation (3.8) vanishes as ε → 0.
For the term (3.9) we set for ϕ ∈ {1, . . . ,m} and ϕ �= β, δ

Zβ,δ,ε
r (0) =

∫ t−r

0
1{β,δ∈Ir }K (r)

∏

φ∈Ir \{β,δ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )σ 2(u(s, Mδ

r )) ds

=
∫ t−r

0
1{β,δ,φ∈Ir }K (r)

∫

R

u(s, Mϕ
r − y)ρε(y) dy

×
∏

φ∈Ir \{β,δ,ϕ}
uε(s, M

φ
r )

∏

γ∈Jr

vε(s, M
γ
r )σ 2(u(s, Mδ

r )) ds

=:
∫

R

ρε(y)Z̄
β,δ,ϕ
r (y) dy.

By the same argument as for the term (3.8) we see that as ε → 0 that

∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)

∣∣∣∣Z
β,δ,ε
r (0) −

∫

R

ρε(y)Z̄
β,δ,ϕ
r (0) dy

∣∣∣∣ dL
β,δ
r ,x dx dz

≤
∫

R

∫

R

∫ t

0
ρε(z)ρε(z + x)

∫

R

ρε(y)
∣∣Z̄β,δ,ϕ

r (y) − Z̄β,δ,ϕ
r (0)

∣∣ dy dLβ,δ
r ,x dx dz
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→ 0.

Iterating through the finitely many uε and vε terms we indeed obtain that the entire
term (3.9) vanishes as ε → 0.

For the last term we take a Riemann sum approximation of Zβ,δ
r , i.e. taking a

sequence of partitions of [0, t] given by 0 = t0 ≤ · · · ≤ tn = t with mesh size
�n → 0 as n → ∞ we consider

n∑

i=1

Zβ,δ
ti (0)(Lβ,δ

ti − Lβ,δ
ti−1

).

Recall that we may choose the partition in a way such that

n∑

i=1

Zβ,δ
ti (0)1[ti−1,ti ](r) → Zβ,δ

r (0)

uniformly in r ∈ [0, t] as n → ∞. Thus, since on a set with probability one we have
supx∈R Lβ,δ

s,x < ∞ for each s ∈ [0, t] we may deduce that uniformly in x ∈ R using
the piece-wise continuity of r �→ Zβ,δ

r we have

∣∣∣∣∣

n∑

i=1

Zβ,δ
ti (0)(Lβ,δ

ti ,x − Lβ,δ
ti−1,x ) −

∫ t

0
Zβ,δ
r (0) dLβ,δ

r ,x

∣∣∣∣∣
→ 0.

Next, we see by the triangle inequality again that

∣∣∣∣

∫ t

0

∫

R

∫

R

ρε(z)ρε(z + x)Zβ,δ
r (0) dLβ,δ

r ,x dx dz −
∫ t

0
Zβ,δ
r (0) dLβ,δ

r

∣∣∣∣

=
∣∣∣∣

∫ t

0

∫

R

ρ2ε(x)Z
β,δ
r (0) dLβ,δ

r ,x dx −
∫ t

0
Zβ,δ
r (0) dLβ,δ

r

∣∣∣∣

≤
∣∣∣∣∣

∫ t

0

∫

R

ρ2ε(x)Z
β,δ
r (0) dLβ,δ

r ,x dx −
n∑

i=1

∫

R

ρ2ε(x)Z
β,δ
ti (0)(Lβ,δ

ti ,x − Lβ,δ
ti−1,x

) dx

∣∣∣∣∣

+
∣∣∣∣∣

n∑

i=1

∫

R

ρ2ε(x)Z
β,δ
ti (0)(Lβ,δ

ti ,x − Lβ,δ
ti−1,x

) dx −
n∑

i=1

Zβ,δ
ti (0)(Lβ,δ

ti − Lβ,δ
ti−1

)

∣∣∣∣∣

+
∣∣∣∣∣

n∑

i=1

Zβ,δ
ti (0)(Lβ,δ

ti − Lβ,δ
ti−1

) −
∫ t

0
Zβ,δ
r (0) dLβ,δ

r

∣∣∣∣∣

holds true. Now for any η > 0 choose n large enough such that

∣∣∣∣∣

n∑

i=1

Zβ,δ
ti (0)(Lβ,δ

ti ,x − Lβ,δ
ti−1,x ) −

∫ t

0
Zβ,δ
r (0) dLβ,δ

r ,x

∣∣∣∣∣
< η
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for all x ∈ R. Then choose ε > 0 small enough to get

∣∣∣∣∣

n∑

i=1

∫

R

ρ2ε(x)Z
β,δ,ε
ti (0)(Lβ,δ

ti ,x − Lβ,δ
ti−1,x

) dx −
n∑

i=1

Zβ,δ,ε
ti (0)(Lβ,δ

ti − Lβ,δ
ti−1

)

∣∣∣∣∣
< η

using the mollifying property of the heat kernel. This finally yields that indeed as
ε → 0 we have that the term (3.10) also vanishes. Combining the above we obtain
path-wise in ω that as ε → 0

∫ t

0

∫

R

ρε(z)ρε(z + Mγ
r − Mβ

r )Zβ,δ,ε
r (z) dz dr →

∫ t

0
Zβ,δ
r (0) dLβ,δ

r .

It now suffices to justify the exchange of limit and expectation. For this we invoke the
dominated convergence theorem. In order to find a dominating function we calculate
as follows:

∫ t

0

∑

β,δ∈Is ,β �=δ

∫

R

ρε(z)ρε(z + Mδ
r − Mβ

r )Zβ,δ,ε
r (z) dz dr

≤ Ct
m∑

β=1

m∑

δ=1

∫ t

0

∫

R

∫ t−r

0
ρ2ε(x) dL

β,δ
s,x dx dr

≤ Ct2
m∑

β=1

m∑

δ=1

sup
x∈R

Lβ,δ
t,x

for some constant C > 0. Then again using the fact that supx∈R Lβ,δ
t,x is integrable the

proof is concluded.
It remains to justify the restriction to the interval [0, τm] in the preceding argument.

To do so wemodify our dual process such that it stops branching, coalescing and dying
at time τm but may perform independent on/off Brownian motions up until time t , i.e.
we set for all particles α whenever they exist at time τm

M̄α
t =

{
Mα

t , if t < τm

Mα
τm

+ Bα
t−τm

, otherwise

where (Bα
t )t≥0 is an independent on/off Brownian motion started from the state of

Mα
τm

(which is also independent of the on/off Brownian motions needed for the other
particles). We denote by L̄ t , Īt , J̄t , K̄t the quantities corresponding to the modified
dual process (M̄t )t≥0. We may then repeat the proof of Theorem 1.7. Moreover, the
preceding calculations from this Lemma then show that

1

2
νE

⎡

⎣
∫ t

0

∫ t−r

0
K̄ (r)

∑

β,δ∈ Īr ,β �=δ

∏

φ∈ Īr \{β,δ}
uε(s, M̄

φ
r )

∏

γ∈ J̄r

vε(s, M̄
γ
r )
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×
∫

R

ρε(z − M̄β
r )ρε(z − M̄δ

r )σ
2(u(s, z)) dz ds dr

]

(3.11)

→ 1

4
νE

⎡

⎣
∫ t

0

∫ t−r

0
K̄ (s)

∑

β,δ∈ Īs ,β �=δ

∏

φ∈ Īs\{β,δ}
u(r , M̄φ

s )
∏

γ∈ J̄s

v(r , M̄γ
s )

× (u(r , M̄δ
s ) − u(r , M̄β

s )u(r , M̄δ
s )) dL̄

β,δ
s dr

]
(3.12)

as ε → 0. Note however that since the modified dual process neither branches, dies
nor coalesces after time τm we must add the indicator 1{s≤τm } to the quantities (3.3),
(3.5) and (3.7) so that the duality relation for the modified process becomes

k̄(t, 0, 0) − k̄(0, t, 0)

= 1

4
νE

⎡

⎣
∫ t

0
1{s≥τm } K̄ (s)

∑

β,δ∈ Īs ,β �=δ

∏

φ∈ Īs\{β,δ}
u(r , M̄φ

s )
∏

γ∈ J̄s

v(r , M̄γ
s )

× (u(r , M̄δ
s ) − u(r , M̄β

s )u(r , M̄δ
s )) dL̄

β,δ
s

]

+ sE

⎡

⎣
∫ t

0
1{s≥τm } K̄ (s)

∑

β∈ Īs

∏

δ∈ Īs ,δ �=β

u(r , M̄δ
s )

×
∏

γ∈ J̄s

v(r , M̄γ
s )(u2(r , M̄β

s ) − u(r , M̄β
s )) ds

⎤

⎦

+ m2E

⎡

⎣
∫ t

0
1{s≥τm } K̄ (s)

∑

β∈ Īs

∏

δ∈ Īs ,δ �=β

u(r , M̄δ
s )

×
∏

γ∈ J̄s

v(r , M̄γ
s )(1 − u(r , M̄β

s )) ds

⎤

⎦ . (3.13)

The second term may be bounded for some C > 0 by

CE

[∫ t

0
| Īs |1{s≥τm } ds

]

which vanishes since1{s≥τm } → 0 asm → ∞ almost surely and | Īs | can be dominated
by a Yule process with rate s uniformly in m. A similar calculation yields the same
conclusion for the third term. For the first term we have the bound

CE

⎡

⎣
∫ t

0
1{s≥τm }

∑

β,δ∈ Īs ,β �=δ

dLβ,δ
s

⎤

⎦ ≤ CE

⎡

⎣
∑

β,δ∈ Īt ,β �=δ

(Lβ,δ
t − Lβ,δ

τm
)+
⎤

⎦ .
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Now, since there is no more branching, coalescence and death after time τm the
expected intersection local time per pair of particles after time τm is dominated by
the expected local time of a single standard Brownian motion at 0 up until time

√
2t

which we denote by L . Hence, denoting by (Gt )t≥0 the natural filtration of the dual
process we even have that the first term is bounded by

CE

⎡

⎣
∑

β,δ∈ Īt ,β �=δ

1{τm≤t}E[Lβ,δ
t − Lβ,δ

τm
|Gτm ]

⎤

⎦ ≤ CE

[
| Īt |21{τm≤t}E[L√

2t ]
]
.

This quantity also vanishes as m → ∞. Thus, we obtain that the right hand side of
Eq. (3.13) converges to 0 as m → ∞. For the left hand side note that the modified
dual converges to the original dual process as m → ∞ and invoke the dominated
convergence theorem. 
�

As a corollary, the moment duality of Theorem 1.7 allows us to infer uniqueness in
law for the SPDE (1.7). Note that the underlying arguments are standard but some
care is needed due to the fact that we allow for non-continuous initial conditions.

Proof of Theorem 1.2 Recall that if (u, v) is a solution of the system (1.7) with initial
conditions v0, u0 ∈ B(R, [0, 1]), then

ũ(t, x) := u(t, x) − û0(t, x) := u(t, x) −
∫

R

G(t, x, y)u0(y) dy,

ṽ(t, x) := v(t, x) − v̂0(t, x) := v(t, x) − e−c′tv0(x)

have paths taking values in C([0,∞[,C(R)), see Remark 2.6 and (2.10). Now, by
Theorem 1.7 the law of the dual process uniquely determines the mixed moments of

((ũ(t, x1), ṽ(t, y1)), . . . , (ũ(t, xn), ṽ(t, yn)))

and hence, by uniqueness in the Hausdorff moment problem, also the joint distribution
of the above quantity for each fixed t ≥ 0 and arbitrarily chosen x1, y1, . . . , xn, yn ∈
R, n ∈ N. Since the cylindrical σ -algebra onC(R) coincides with the Borel-σ -algebra
w.r.t. the topology of locally uniform convergence, this shows that the distribu-
tion of (ũ(t, ·), ṽ(t, ·)) on C(R)2 is uniquely determined for each fixed t ≥ 0. In
order to extend this to the finite-dimensional distributions, one can use the mar-
tingale problem corresponding to the weak formulation of the equation. Using the
well-known fact that uniqueness of the one-dimensional time marginals in a mar-
tingale problem implies uniqueness of the finite-dimensional time marginals, we
then obtain that the distribution of (ũ, ṽ) on C([0,∞[,C(R))2 is uniquely deter-
mined. Finally, this implies that also the distribution of (u, v) = (ũ + û0, ṽ + v̂0) on
C (]0,∞[,C(R, [0, 1])) × C ([0,∞[, B(R, [0, 1])) is uniquely determined. 
�
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4 An application to the F-KPP Equation with seed bank

We are interested in applying the previously established results to the F-KPP Equation
with seed bank, i.e. the system:

∂t p(t, x) = 1

2
�p(t, x) + (1 − p(t, x))p(t, x) + c(q(t, x) − p(t, x)),

∂t q(t, x) = c′(p(t, x) − q(t, x)) (4.1)

with p0 = q0 = 1]−∞,0]. This means that in our original equation we set m1 = m2 =
ν = 0, s = 1 and return to the setting p = 1 − u. We do this to make the results of
this section more easily comparable with the literature concerning the original F-KPP
Equation and avoid confusion (see e.g. [14, 29]). This also implies that the dual process
is now “merely” an on/off branching Brownian motion. Note that here the selection
term is always positive for p, implying that it corresponds to the beneficial type.
Recall for the case of the classical F-KPP Equation that, since we start off with a
Heaviside initial condition concentrated on the negative half axis, the wave speed

√
2

also becomes the asymptotic speed at which the beneficial allele “invades” the positive
half axis.

In this section, we consider the question to what extent the introduction of the seed
bank influences the invasion speed of the beneficial allele.
We begin by proposing a formal definition of the invasion speed.

Definition 4.1 In the setting of Eq. (4.1), with Heaviside initial conditions, we call
ξ ≥ 0 the asymptotic invasion speed of the beneficial allele if

ξ = inf
{
λ ≥ 0

∣∣ lim
t→∞ p(t, λt) = 0

}
.

In the case of the classical F-KPP Equation, we have ξ = √
2. Intuitively, one would

expect this speed to be reduced in the presence of a seed bank. In order to investigate
this, we aim to employ the duality technique established in the preceding section.
Recall, that in the setting of Corollary 1.8 the duality is given by

p(t, x) = 1 − P(0,a)

(
max

β∈It∪Jt
Mβ

t ≤ x

)

where (Mt )t≥0 is an on/off branching Brownian motion, It , Jt are the corresponding
index sets of active and dormant particles at time t ≥ 0, respectively, and P(x,a) is
the probability measure under which the on/off BBM is started from a single active
particle at x ∈ R. This clearly resembles the duality from the classical FKPP Equation
given by

p(t, x) = 1 − P0
(
max
β∈It

B̃β
t ≤ x

)

where (B̃t )t≥0 is a simple branching Brownian motion.
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Proof of Corollary 1.8 For initial values (x1, . . . , xn) ∈ R
n and (y1, . . . , ym) ∈ R

m ,
we have by Theorem 1.7 that

E

[
n∏

i=1

(1 − p(t, xi ))
m∏

i=1

(1 − q(t, yi ))

]

=E

⎡

⎣
∏

β∈It
(1 − p0(B

β
t ))

∏

γ∈Jt

(1 − q0(B
γ
t ))

⎤

⎦ .

Plugging in our specific initial conditions and using that the solution (p, q) is deter-
ministic, we see

1 − p(t, x) = P(x,a)

(
min

β∈It∪Jt
Mβ

t ≥ 0

)

= P(0,a)

(
min

β∈It∪Jt
Mβ

t + x ≥ 0

)

= P(0,a)

(
max

β∈It∪Jt
−Mβ

t ≤ x

)
= P(0,a)

(
max

β∈It∪Jt
Mβ

t ≤ x

)
.


�
Next, we turn to establishing an upper bound on the invasion speed of the beneficial
allele. Writing Kt :=It ∪ Jt for t ≥ 0 and denoting by B = (Bt )t≥0 an on/off BM
without branching, we have

P(∃β ∈ Kt : Mβ
t > λt) ≤ E

⎡

⎣
∑

β∈Kt

1{Mβ
t >λt}

⎤

⎦

= E [ |Kt |]P(Bt > λt)

where we have used the following simple many-to-one lemma:

Lemma 4.2 For any t ≥ 0 and any non-negative measurable function F : R → R we
have

E(x,σ )

⎡

⎣
∑

β∈Kt

F(Mβ
t )

⎤

⎦ = E(x,σ ) [ |Kt |]E(x,σ ) [F(Bt )] ,

where B is an on/off Brownian motion under P(x,σ ) starting in a single particle with
initial state σ ∈ {a, d} and initial position x ∈ R.

Proof Using that the number of particles is independent of the movement of the active
particles, we get

E(x,σ )

⎡

⎣
∑

β∈Kt

F(Mβ
t )

⎤

⎦ =
∞∑

n=1

E(x,σ )

⎡

⎣
n∑

β=1

F(Mβ
t )1{|Kt |=n}

⎤

⎦
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=
∞∑

n=1

E(x,σ )

⎡

⎣
n∑

β=1

F(Mβ
t )

⎤

⎦P(x,σ )( |Kt | = n)

=
∞∑

n=1

nE(x,σ )[F(Bt )]P(x,σ )( |Kt | = n)

= E(x,σ )[ |Kt |]E(x,σ )[F(Bt )].

This proves the result. 
�

Now, we first compute E(0,a) [ |Kt |]. Note, that (|It |, |Jt |)t≥0 is a continuous time
discrete state space Markov chain on N0 × N0 with the following transition rates:

birth : i → i + 1, with rate i

active to dormant :
{
i → i − 1,

j → j + 1
with rate ci

dormant to active :
{
i → i + 1,

j → j − 1.
with rate c′ j

For the expectations we then get the following system of ODE’s for x = x(t) =
E(0,a) [ |It |] and y = y(t) = E(0,a) [ |Jt |] (cf. [1, V.7] )

x ′ = x − cx + c′y,
y′ = cx − c′y.

With the initial condition (x(0), y(0)) = (1, 0)we obtain the following closed form
solution:

x(t) = 1√
a

(
c′ − c + √

a + 1

2

)
exp

((−c − c′ + 1 + √
a

2

)
t

)

− 1√
a

(
c′ − c − √

a + 1

2

)
exp

(
−
(
c + c′ − 1 + √

a

2

)
t

)
,

y(t) = 1√
a
c exp

((−c − c′ + 1 + √
a

2

)
t

)
− 1√

a
c exp

(
−
(
c + c′ − 1 + √

a

2

)
t

)

abbreviating a := (c−1)2+2cc′ + (c′)2+2c′. Finally, we aim to control P(0,a)(Bt >

λt). To this end, we recall the well known tail bound for the normal distribution given
by

1√
2π

∫ ∞

x
e−y2/2 dy ≤ e−x2/2

x
√
2π

(4.2)
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for x ≥ 0. To employ this, note first that P(0,a)(Bt > λt) is equivalent to

P(0,a)(B̃t−Xt > λt)

where Xt is the amount of time the on/off Brownian path (Bt )t≥0 is switched off
until time t ≥ 0 and B̃ = (B̃t )t≥0 is a standard Brownian motion started at 0. By
independence, we then have

P(0,a)(∃β ∈ Kt : Mβ
t > λt) ≤ E(0,a) [ |Kt |]P(0,a)(B̃t−Xt > λt)

= E(0,a) [ |Kt |]E(0,a)

[
E

[
1{B̃t−Xt >λt}

∣∣Xt

]]

= E(0,a) [ |Kt |]E(0,a)

[
P(B̃t−s > λt)

∣∣
s=Xt

]
.

Then, using Eq. (4.2), we get for s < t

P(B̃t−s > λt) = P(
√
t − s B̃1 > λt) = P(B̃1 > λt/

√
t − s)

≤ 1√
2π λt√

t−s

e− λ2 t2
2(t−s) =

√
t − s√
2πλt

e− λ2 t2
2(t−s)

≤ 1√
2πλ

√
t
e− λ2 t

2 .

Thus, we may complete our calculation in the following manner:

P(0,a)(∃β ∈ Kt : Mβ
t > λt)

≤
(

1√
a

(
c′ − c + √

a + 1

2

)
exp

((−c − c′ + 1 + √
a

2

)
t

)

− 1√
a

(
c′ − c − √

a + 1

2

)
exp

(
−
(
c + c′ − 1 + √

a

2

)
t

)

+ 1√
a
c exp

((−c − c′ + 1 + √
a

2

)
t

)

− 1√
a
c exp

(
−
(
c + c′ − 1 + √

a

2

)
t

))
e−λ2t/2

λ
√
t
√
2π

→ 0

as t → ∞ for λ2 ≥ −c′ − c + √
a + 1. Now, an application of the duality from

Corollary 1.8 shows that we have proved the following result:

Proposition 4.3 In the case of the F-KPP Equation with seed bank (4.1), we have for
the asymptotic invasion speed from Definition 4.1 that

ξ ≤
√

−c′ − c + √
a + 1,
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where a = (c − 1)2 + 2cc′ + (c′)2 + 2c′.

Proof This follows directly from the above calculations together with the fact that

p(t, λt) = P(0,a)(∃β ∈ Kt : Mβ
t > λt)

by the duality from Corollary 1.8. 
�
This shows that indeed the invasion speed for c = c′ = 1 is slowed down from

√
2 to

(at least)
√√

5 − 1 ≈ 1.111.

Remark 4.4 The calculations leading to Prop. 4.3 suggest that in the case c = c′ =
s = 1 we have, almost surely, the upper bound

lim sup
t→∞

Rt

t
≤ λ̃

where λ̃ =
√√

5 − 1 and Rt denotes the position of the rightmost particle of the on/off
BBM at time t ≥ 0. At first glance, judging from simulations (cf. Fig. 2), this upper
bound does not seem unreasonable. However, note that the value of our bound for λ̃

is entirely specified by the expected number of particles, as we may use the same tail
bounds for P(Bt > λt) and P(Mt > λt). This indicates that the bound is not tight –
in contrast to the case of the classical BBM. Indeed, using martingale methods which
are beyond the scope of this paper, it has subsequently been established in [8] that one
actually has

lim
t→∞

Rt

t
= λ∗, a.s.

where λ∗ ≈ 0.99 < λ̃.

Remark 4.5 Note that for the boundary case c = c′ → 0 we recover the upper bound√
2 from the classical F-KPP Equation. For c, c′ → ∞, the upper bound becomes

√
1

showing that instantaneous mixing with the dormant population leads to a slow down
from the classical F-KPP Equation corresponding to a doubled effective population
size. On the level of the dual process this could be interpreted as essentially halving
diffusivity and branching rate.

5 Proofs for section 2

Proof of Proposition 2.4 The proof is standard and follows along the lines of [34, Thm.
2.1] which is why we only provide a rough outline.
Suppose that for each fixed (t, y) ∈ ]0,∞[×R, Equation (2.5) is satisfied almost
surely. Then using the linear growth bound and L2-boundedness, a simple Fubini argu-
ment shows that almost surely Eq. (2.5) is satisfied for almost all (t, y) ∈ ]0,∞[×R.
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Fig. 2 Independent realizations of the trajectories of the rightmost particle of (M̃t )t≥0 plotted against the
asymptotic speed (red) (Color figure online)

Thus givenφ ∈ C∞
c (R), we can plug (2.5) (with s in place of t) into

∫ t
0 〈u(s, ·),�φ〉 ds.

Then a straightforward but tedious calculation using Fubini’s theorem for Walsh’s
stochastic integral (cf. Theorem 5.30 in [22]) shows that Eq. (2.2) holds almost surely
for each fixed t ≥ 0. Since both sides are continuous in t ≥ 0, (2.2) holds for all t ≥ 0,
almost surely. Thus (u, v) is also a solution to (2.1) in the sense of Definition 2.3.
Conversely, suppose that for each φ ∈ C∞

c (R), Eq. (2.2) holds for all t ≥ 0, almost
surely.
Step 1: Defining

Crap(R) :=
{
f ∈ C(R)

∣∣∣∣ ‖ f ‖λ:= sup
x∈R

eλ|x || f (x)| < ∞ for all λ > 0

}

and

C2
rap(R) := {

f ∈ Crap(R)
∣∣ f ′, f ′′ ∈ Crap(R)

}
,

one can show that Eq. (2.2) also holds for each ψ ∈ C2
rap(R). Step 2: For T > 0,

define C (1,2)
T ,rap as the space of all functions f : [0, T [×R → R such that t �→ f (t, ·)

is a continuous C2
rap-valued function and t �→ ∂t f (t, ·) is a continuous Crap-valued

function of t ∈ [0, T [. Then one can show that for each φ ∈ C (1,2)
T ,rap, we have that an

integration-by-parts like equation holds, i.e. for all fixed t ∈ [0, T [ we have almost
surely

〈u(t, ·), φ(t, ·)〉 − 〈u(0, ·), φ(0, ·)〉
=
∫ t

0
〈u(s, ·), ∂sφ(s, ·)〉 + 〈u(s, ·), �

2
φ(s, ·)〉 + 〈b(s, ·, u(s, ·), v(s, ·)), φ(s, ·)〉 ds
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+
∫ t

0

∫

R

σ(s, x, u(s, x), v(s, x))φ(s, x)W (dx, ds). (5.1)

Step 3: Fix T > 0, y ∈ R and define the time-reversed heat kernel φ
y
T (t, x) :=

G(T − t, x, y) for t ∈ [0, T [ and x ∈ R. Then we have φ
y
T ∈ C (1,2)

T ,rap, and plugging
it into (5.1) in place of φ and using that the heat kernel solves the heat equation, we
obtain the required result upon taking the limit as t ↑ T . 
�
Proof of Theorem 2.5 The proof follows along the lines of [34, Thm. 2.2] and only has
to be adapted to the two component case.

Step 1: Fix p ≥ 2. Define u1(t, y):=〈u0,G(t, ·, y)〉 and v1(t, y):=v0(y) for all
(t, y) ∈ [0,∞[ ×R and inductively

un+1(t, y):=〈u0,G(t, ·, y)〉 +
∫ t

0
〈b(s, ·, un(s, ·), vn(s, ·)),G(t − s, ·, y)〉 ds

+
∫

R

∫ t

0
σ(s, x, un(s, x), vn(s, x))G(t − s, x, y)W (ds, dx),

vn+1(t, y):=v0(y) +
∫ t

0
b̃(s, y, un(s, y), vn(s, y)) ds

for all n ∈ N. Then one can use the linear growth bound (2.4) to obtain that this defines
a sequence such that for every n ∈ N and T > 0

‖(un, vn)‖T ,p = sup
0≤t≤T

sup
x∈R

E
[
(|un(t, x)| + |vn(t, x)|)p

]1/p
< ∞.

Similarly, using the Lipschitz condition (2.6) instead of the linear growth bound one
can obtain that for all n ∈ N and t ∈ [0, T ]

‖(un+1, vn+1) − (un, vn)‖p
t,p ≤ CT

∫ t

0
(t − s)−

1
2 ‖(un, vn) − (un−1, vn−1)‖p

s,p ds.

Applying Hölders inequality for some q > 1 with conjugate q
q−1 ∈ ]1, 2[, we get

‖(un+1, vn+1) − (un, vn)‖pq
t,p ≤ CT ,p,q

∫ t

0
‖(un, vn) − (un−1, vn−1)‖pq

s,p ds

for all n ∈ N, t ∈ [0, T ], T > 0. By a version of Gronwall’s lemma (see e.g. [22,
Lemma 6.5]), this implies

∞∑

n=0

‖(un+1, vn+1) − (un, vn)‖t,p < ∞.

Thus (un(t, y), vn(t, y))n∈N is a Cauchy sequence in L p for each fixed t ≥ 0 and
y ∈ R, and we can define a predictable random field (u(t, y), v(t, y))t≥0,y∈R as the
corresponding limit in L p. Clearly we have
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‖(un, vn) − (u, v)‖T ,p → 0

as n → ∞ for all T > 0, and (u, v) satisfies Equation (2.5) and (2.3) almost surely
for each fixed t ≥ 0 and y ∈ R. Up to now, p ≥ 2 was fixed, but since convergence
in L p′

implies convergence in L p for p′ > p, (u, v) is actually L p-bounded for all
p ≥ 2 in the sense of Definition 2.3.
Step 2: We argue that u constructed in Step 1 has a modification ũ with paths in
C(]0,∞[,C(R)), which is equivalent to the random field ũ being jointly continuous
in (t, x) ∈ ]0,∞[ ×R.

Consider first the stochastic integral part

X(t, y):=
∫

R

∫ t

0
σ(s, x, u(s, x), v(s, x))G(t − s, x, y)W (ds, dx).

Then for each p ≥ 1 and t, r ∈ [0, T ], using the Burkholder-Davis-Gundy and Jensen
inequalities as well as the linear growth bound and L2p-boundedness of (u, v) from
Step 1, we obtain that

E

[
|X(t, y) − X(r , z)|2p

]

= E

[∣∣∣∣

∫ t∨r

0

∫

R

(G(t − s, x, y) − G(r − s, x, z))

× σ(s, x, u(s, x), v(s, x))W (ds, dx)

∣∣∣∣

2p]

≤ C(p)E

[(∫ t∨r

0

∫

R

(G(t − s, x, y) − G(r − s, x, z))2

× |σ(s, x, u(s, x), v(s, x))|2 dx ds
)p]

≤ Cp,T

(∫ t∨r

0

∫

R

(G(t − s, x, y) − G(r − s, x, z))2 dx ds

)p

×
(

1 + sup
x∈R

sup
0≤t≤T

E

[
(|u(t, x)| + |v(t, x)|)2p

])

≤ Cp,T

(
|t − r |p/2 + |y − z|p

)
.

Here, for the last inequality we have also used that by the calculation in the proof of
[22, Theorem 6.7] we have

∫ t∨r

0

∫

R

(G(t − s, x, y) − G(r − s, x, z))2 dx ds ≤ C( |t − r |1/2 + |y − z|).

Next, consider the term

Y (t, y):=
∫ t

0

∫

R

G(t − s, x, y)b(s, x, u(s, x), v(s, x)) dxds

123



808 Stoch PDE: Anal Comp (2023) 11:773–818

for t ≥ 0, y ∈ R. Let 0 ≤ r < t ≤ T . To obtain similar estimates as for X we first
split the difference into two terms:

E

[
|Y (t, y) − Y (r , z)|2p

]

≤ C(p)E

[(∫ t

r

∫

R

|G(t − s, x, y)b(s, x, u(s, x), v(s, x))| dx ds
)2p ]

+ C(p)E

[(∫ r

0

∫

R

|G(t − s, x, y)−G(r − s, x, z)| |b(s, x, u(s, x), v(s, x))| dx ds
)2p ]

.

By Jensen’s inequality, the linear growth bound and L2p-boundedness of (u, v), we
have for the first term on the right hand side that

E

[(∫ t

r

∫

R

G(t − s, x, y)|b(s, x, u(s, x), v(s, x))| dxds
)2p ]

≤ Cp,T

(∫ t

r

∫

R

G(t − s, x, y) dxds

)2p (

1 + sup
x∈R

sup
0≤t≤T

E

[
(|u(t, x)| + |v(t, x)|)2p

])

≤ Cp,T |t − r |2p.

For the second term we proceed analogously, using in addition [31, Lemma 5.2]
(choose β = 1

2 and λ′ = 0 there), to obtain

E

[(∫ r

0

∫

R

|G(t − s, x, y) − G(r − s, x, z)| |b(s, x, u(s, x), v(s, x))| dxds
)2p ]

≤ Cp,T

(∫ r

0

∫

R

|G(t − s, x, y) − G(r − s, x, z)| dxds
)2p

×
(

1 + sup
x∈R

sup
0≤t≤T

E

[
(|u(t, x)| + |v(t, x)|)2p

])

≤ Cp,T

(∫ r

0
(r − s)−1/2|t − r |1/2 + (r − s)−1/4|y − z|1/2 ds

)2p

≤ Cp,T
(|t − r |p + |y − z|p)

for all 0 ≤ r < t ≤ T . Combining the above, we have shown for Z := X + Y that

E

[
|Z(t, y) − Z(r , z)|2p

]
≤ Cp,T

(
|t − r |p/2 + |y − z|p

)
(5.2)

for all t, r ∈ [0, T ], y, z ∈ R and p ≥ 1. Choosing p > 4, we see that indeed the
conditions of Kolmogorov’s continuity theorem (see e.g. [20, Thm. 3.23]) are satisfied.
Hence, Z has a modification jointly continuous in (t, x) ∈ [0,∞[×R.
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Now observing that

(t, y) �→ u(t, y) − Z(t, y) =
∫

R

G(t, x, y)u0(x) dx

is continuous on ]0,∞[×R, we are done. Note however that we cannot extend this to
t = 0 if the initial condition u0 is non-continuous.
Step 3: Let us write ũ for the continuous modification of u from Step 2. Given this ũ
we consider path-wise in ω for each y ∈ R the integral equation

ṽ(t, y) = v0(y) +
∫ t

0
b̃(s, y, ũ(s, y), ṽ(s, y)) ds, t ≥ 0. (5.3)

Since (s, ṽ) �→ b̃(s, y, ũ(s, y), ṽ) is locally bounded, the Lipschitz condition (2.6)
implies that (5.3) has a unique solution ṽ(·, y). Note that since ṽ is defined path-wise,
almost surely it satisfies (5.3) for all t ≥ 0 and y ∈ R. In order to see that ṽ has paths
taking values in C([0,∞[, Bloc(R)), it suffices to show that it is locally bounded in
(t, y) ∈ [0,∞[×R, which follows from the linear growth bound by a simple Gronwall
argument.

Now using the Lipschitz condition again, it is easy to see that ṽ is a modification
of v constructed in Step 1 and that for each fixed t > 0 and y ∈ R, (ũ, ṽ) satisfies Eq.
(2.5) almost surely. By Proposition 2.4 we conclude that (ũ, ṽ) is a solution of Eq.
(2.1) in the sense of Definition 2.3.
Step 4: It remains to show uniqueness: Let (u, v), (h, k) ∈ C(]0,∞[,C(R)) ×
C([0,∞[, Bloc(R)) be two L2-bounded (strong) solutions to Eq. (2.1) in the sense
of Definition 2.3 with the same initial conditions u0, v0 ∈ B(R). Then using Proposi-
tion 2.4 we notice that for each fixed t > 0 and y ∈ R we have almost surely

u(t, y) − h(t, y) =
∫

R

∫ t

0

(b(s, x, u(s, x), v(s, x)) − b(s, x, h(s, x), k(s, x)))G(t − s, x, y) ds dx

+
∫

R

∫ t

0
(σ (s, x, u(s, x), v(s, x)) − σ(s, x, h(s, x), k(s, x)))

× G(t − s, x, y)W (ds, dx),

v(t, x) − k(t, x) =
∫ t

0

(
b̃(s, x, u(s, x), v(s, x)) − b̃(s, x, h(s, x), k(s, x))

)
ds.

By the same argument as in Step 1, we obtain using the Lipschitz condition (2.6) that
for each T > 0 and some constant CT

‖(u, v) − (h, k)‖2t,2 ≤ CT

∫ t

0
(t − s)−

1
2 ‖(u, v) − (h, k)‖2s,2 ds
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for all t ∈ [0, T ]. Thus, by Gronwall’s Lemma we get

‖(u, v) − (h, k)‖2t,2 = 0

and hence

P ((u(t, x), v(t, x)) − (h(t, x), k(t, x)) = 0) = 1

for each fixed (t, x) ∈ [0,∞[×R. By continuity of u and h we then obtain that

P(u(t, x) = h(t, x) for all t ≥ 0, x ∈ R) = 1. (5.4)

By assumption, v and k satisfy

v(t, x) = v0(x) +
∫ t

0
b̃(s, x, u(s, x), v(s, x)) ds

and

k(t, x) = v0(x) +
∫ t

0
b̃(s, x, h(s, x), k(s, x)) ds

for all t ≥ 0 and x ∈ R, almost surely. Then due to Equation (5.4) we have on a set
with probability one that for every x ∈ R the maps v(·, x) and k(·, x) solve the same
integral equation (with given u = h) and hence coincide by uniqueness of solutions
on [0,∞[. Thus, we actually obtain

P((u(t, x), v(t, x)) = (h(t, x), k(t, x)) for all t ≥ 0, x ∈ R) = 1.


�
Proof of Theorem 2.7 The proof is inspired by the proof of [34, Thm. 2.3] and [12,
Thm. 1.1]. Step 1: We consider a regularized noise given by

Wx
ε (t) =

∫ t

0

∫

R

ρε(x − y)W (ds, dy)

where we set ρε(x) = G(ε, x, 0) for all x ∈ R. Note that Wx
ε (t) is a local martingale

with quadratic variation 1√
4ε
t and is hence a constant multiple of a standard Brownian

motion. This allows us to consider the following SDE

duε(t, x) = �εuε(t, x) + b(t, x, uε(t, x), vε(t, x)) dt + σ(t, x, uε(t, x)) dW
x
ε (t),

dvε(t, x) = b̃(t, x, uε(t, x), vε(t, x)) dt (5.5)

123



Stoch PDE: Anal Comp (2023) 11:773–818 811

where we set

�εuε(t, x) = 1

ε

(∫

R

G(ε, x, y)uε(t, y) dy − uε(t, x)

)
= G(ε) − I

ε
uε(t, x).

For this equation we use the following facts which can also be proven by the usual
Picard iteration schemes:

Proposition 5.1 Equation (5.5) has a unique (not necessarily continuous in the space
variable due to the initial conditions) solution under the assumption that b, b̃ and σ

are Lipschitz in (x, u, v). Moreover, this solution also satisfies the following SIE:

uε(t, y) =
∫

R

u0(x)Gε(t, x, y) dx

+
∫

R

∫ t

0
b(s, x, uε(s, x), vε(s, x))Gε(t − s, x, y)ds dx

+
∫

R

∫ t

0
σ(s, x, uε(s, x))Gε(t − s, x, y) dWx

ε (s) dx,

vε(t, y) = v0(y) +
∫ t

0
b̃(s, x, uε(s, x), vε(s, x)) ds (5.6)

where we set Gε(t, x, y) = e−t/ε ∑∞
n=0

(t/ε)n

n! G(nε, x, y) = e−t/εδx + Rε(t, x, y).

Then we may proceed as in the standard proof of comparison results (cf. [19]). Note
that by our assumptions and the Lipschitz condition we have that

b(t, x, u, v) ≥ −L|u|,
b̃(t, x, u, v) ≥ −L|v|, (5.7)

−b(t, x, u, v) ≥ −L|1 − u|,
−b̃(t, x, u, v) ≥ −L|1 − v|. (5.8)

Thus, approximating and localizing as in the one dimensional case [19, Chapter VI
Theorem 1.1]3 we see that using (5.7)

E[(uε(t, x))
− + (vε(t, x))

−]
= −

∫ t

0
E
[
1{uε (s,x)≤0} (�εuε(s, x) + b(s, x, uε(s, x), vε(s, x)))

]
ds

−
∫ t

0
E

[
1{vε(s,x)≤0}b̃(s, x, uε(s, x), vε(s, x))

]
ds

≤ (L + 1/ε)
∫ t

0
E[(uε(s, x))

− + (vε(s, x))
−] ds

3 This is where we need the additional condition (2.8) on σ .
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+ 1

ε

∫ t

0

∫

R

G(ε, x, y)E[(uε(s, y)
−] dy ds

+ L
∫ t

0
E[(uε(s, x))

− + (vε(s, x))
−] ds

where (x)− = 1{x≤0}|x | for x ∈ R. Hence, we have

sup
x∈R

E[(uε(t, x))
− + (vε(t, x))

−] ≤ (2L + 2/ε)
∫ t

0
sup
x∈R

E[(uε(s, x))
− + (vε(s, x))

−] ds.

An application of Gronwall’s Lemma4 will now yield that for all (t, x) ∈ [0,∞[×R

P

(
(uε(t, x), vε(t, x)) ∈ [0,∞[2

)
= 1.

By an application of Itô’s formula to (1−uε(t, x), 1−vε(t, x)) and using (5.8) instead
of (5.7) we can proceed analogously to see that indeed for all (t, x) ∈ [0,∞[×R

P

(
(uε(t, x), vε(t, x)) ∈ [0, 1]2

)
= 1.

Step 2: We approximate (u, v) by (uε, vε). Note first that we have

sup
0<ε≤1

sup
0≤t≤T

sup
x∈R

E

[
|uε(t, x)|2

]
< ∞,

sup
0<ε≤1

sup
0≤t≤T

sup
x∈R

E

[
|vε(t, x)|2

]
< ∞,

sup
0≤t≤T

sup
x∈R

E

[
|u(t, x)|2

]
< ∞,

sup
0≤t≤T

sup
x∈R

E

[
|v(t, x)|2

]
< ∞ (5.9)

where the first two statements can be shown using the boundedeness of the inital condi-
tion, Lemma 5.2 (1) below and Gronwall’s Lemma. Then using the SIE representation
of our solutions given by

u(t, y) =
∫

R

u0(x)G(t, x, y) dx +
∫ t

0

∫

R

b(s, x, u(s, x), v(s, x))G(t − s, x, y)dx ds

+
∫ t

0

∫

R

σ(s, x, u(s, x))G(t − s, x, y)W (ds, dx),

v(t, y) = v0(y) +
∫ t

0
b̃(s, y, u(s, y), v(s, y)) ds

4 Note that the bounded initial condition ensures via Picard iteration that E[(uε(t, x))− + (vε(t, x))−] is
bounded.
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and Eq. (5.6) we get by subtracting the corresponding terms

E[|(uε(t, x), vε(t, x)) − (u(t, x), v(t, x))|2]
≤ C

(
|
∫

R

Gε(t, x, y)u0(y) dy −
∫

R

G(t, x, y)u0(y) dy|2

+ E

[
|
∫ t

0
e−(t−s)/εb(s, x, uε(s, x), vε(s, x)) ds|2

]

+ E

[
|
∫ t

0

∫

R

Rε(t − s, x, y)(b(s, y, uε (s, y), vε(s, y)) − b(s, y, u(s, y), v(s, y)) ds dy|2
]

+ E

[
|
∫ t

0

∫

R

(Rε(t − s, x, y) − G(t − s, x, y))b(s, y, u(s, y), v(s, y)) ds dy|2
]

+ E

[∫ t

0
e−2(t−s)/εσ (s, x, uε(s, x))

2 ds

]

+ E

[∫ t

0

∫

R

|
∫

R

Rε(t − s, x, z)(σ (s, z, uε(s, z)) − σ(s, z, u(s, z)))ρε(y − z) dz|2 ds dy
]

+ E

[∫ t

0

∫

R

|
∫

R

Rε(t − s, x, z)(σ (s, z, u(s, z)) − σ(s, y, u(s, y)))ρε(y − z) dz|2 ds dy
]

+
∫ t

0

∫

R

(∫

R

Rε(t − s, x, z)ρε(y − z) dz − G(t − s, x, y)

)2

E
[
σ(s, y, u(s, y))2

]
ds dy

+2c
∫ t

0
E

[∣∣∣b̃(s, x, uε(s, x), vε(s, x)) − b̃(s, x, u(s, x), v(s, x))
∣∣∣
2
]
ds

)

=: C
9∑

i=1

hε
i (t, x) (5.10)

where we also used Fubini’s theorem for Walsh’s integral (cf. Theorem 5.30 in [22]).
In order to proceed we recall the following elementary bounds from [34, Lemma 6.6]
and [12, Appendix].

Lemma 5.2 For Rε as in Proposition 5.1 we have the following:

(1) It holds for all t > 0 and x ∈ R that

∫

R

Rε(t, x, y)
2 dy ≤

√
3

8π

1√
t
.

(2) There exist constants δ, D > 0 such that

∫

R

|Rε(t, x, y) − G(t, x, y)| dy ≤ e−t/ε + D(ε/t)1/3

for all ε > 0 such that 0 < ε/t ≤ δ and t ≥ 0, x ∈ R.
(3) For all t ≥ 0 and x ∈ R we have

lim
ε→0

∫ t

0

∫

R

(Rε(s, x, y) − G(s, x, y))2 ds dy = 0.
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(4) We have for all x, y ∈ R and t ∈ [0, T ], T > 0 that

E

[
|u(t, x) − u(t, y)|2

]
≤ CT ,u0(t

−1/2|x − y| + |x − y|).

Proof The proof of statements (1), (2) and (3) can be found in the Appendix of [12].
For (4), we write

u(t, y) = Z(t, y) +
∫

R

G(t, y, z)u0(z) dz

with Z as in Step 2 of the proof of Theorem 2.5. Then we note that by (5.2) (with
p = 1) and by [31, Lemma 5.2] (using β = 1/2 and λ′ = 0 there) we get

E

[
|u(t, x) − u(t, y)|2

]
≤ 2

(
E

[
|Z(t, x) − Z(t, y)|2

]

+
(∫

R

|G(t, x, z) − G(t, y, z)| u0(z) dz
)2
)

≤ CT |x − y| + Cu0 t
−1/2|x − y|

for all 0 ≤ t ≤ T and x, y ∈ R, which gives the desired result. 
�
Using Lemma 5.2 it is now possible to show in the spirit of [12, Theorem 1.1], by
considering each of the terms in Eq. (5.10) individually, that

lim
ε→0

sup
0≤t≤T

sup
x∈R

E

[
|(uε(t, x), vε(t, x)) − (u(t, x), v(t, x))|2

]
= 0

for each T > 0. Hence, we obtain that for all (t, x) ∈ [0,∞[×R

P

(
(u(t, x), v(t, x)) ∈ [0, 1]2

)
= 1.

Since u is jointly continuous on ]0,∞[×R, this of course implies

P (u(t, x) ∈ [0, 1] for all t ≥ 0, x ∈ R) = 1.

To obtain the same result for v note that by assumption and Eq. (5.7), almost surely it
holds for all t ≥ 0 and x ∈ R that

v(t, x) = v0(x) +
∫ t

0
b̃(s, x, u(s, x), v(s, x)) ds ≥ v0(x) − L

∫ t

0
|v(s, x)| ds.

Since v0(·) ≥ 0, by comparing path-wise to the solution of the ODE

∂t f (t, x) = −L| f (t, x)|,
f (0, ·) ≡ 0,
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which is the constant zero function, we obtain path-wise for every x ∈ R that v(·, x) ≥
0 on [0,∞[. Hence,

P (v(t, x) ≥ 0 for all t ≥ 0, x ∈ R) = 1.

Repeating the argument for 1 − v and using (5.8) gives then finally

P (v(t, x) ∈ [0, 1] for all t ≥ 0, x ∈ R) = 1,

as desired. 
�
Proof of Theorem 2.9 Take a sequence of Lipschitz continuous functions (σn)n∈N each
satisfying (2.8) such that σn → σ uniformly on compacts as n → ∞ and

|σn(u)| ≤ K (1 + |u|) (5.11)

for all u ∈ R and n ∈ N. Then the maps b, b̃ and σn satisfy the conditions of Theorems
2.5 and 2.75 for all n ∈ N, thus Eq. (2.1) with coefficients (b, b̃, σn) and initial
conditions u0, v0 ∈ B(R, [0, 1]) has a unique strong solution (un, vn) with paths in
C (]0,∞[,C(R, [0, 1])) ×C ([0,∞[, B(R, [0, 1])). Now, making use of assumption
(2.9) to replace vn in Eq. (2.2) by the corresponding quantity, we have that for each
φ ∈ C∞

c (R), almost surely it holds for all t ≥ 0

〈un(t, ·), φ〉 = 〈u0, φ〉 +
∫ t

0

〈
un(s, ·), �

2 φ
〉
ds

+
∫ t

0

〈
b (un(s, ·), F(un)(s, ·) + H(s, v0)(·)) , φ

〉
ds

+
∫ t

0

∫

R

σ 2
n (un(s, x)) φ(x)W (ds, dx).

Note that this is now an equation of un ∈ C(]0,∞[×R, [0, 1]) alone! In order to
proceed, we reformulate this as the corresponding martingale problem: For each φ ∈
C∞
c (R), the process

M (n)
t (φ) := 〈un(t, ·), φ〉 − 〈u0, φ〉 −

∫ t

0

〈
un(s, ·), �

2 φ
〉
ds

−
∫ t

0

〈
b (un(s, ·), F(un)(s, ·) + H(s, v0)(·)) , φ

〉
ds

is a continuous martingale with quadratic variation

∫ t

0

〈
σ 2
n (un(s, ·)), φ2〉 ds.

5 Note that in this context, the assumed Lipschitz continuity implies the linear growth bound (2.4) for b, b̃.
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We say that un solves MP(σ 2
n , b).

Now recall from Step 2 of the proof of Theorem 2.5 that

Zn(t, y):=un(t, y) − û0(t, y)

:=un(t, y) −
∫

R

u0(x)G(t, x, y) dx

is jointly continuous on [0,∞[×R, thus Zn takes values in C([0,∞[×R, [−1, 1]).
Moreover, by the same calculation as there we see that (5.2) holds for Zn in place
of Z (this is where we need Equation (5.11)). Hence, it follows from the Kol-
mogorov Chentsov Theorem [20, Corollary 16.9] that the sequence (Zn)n∈N is tight
in C([0,∞[×R, [−1, 1]) with the topology of locally uniform convergence. Extract-
ing a convergent subsequence, which we continue to denote (Zn)n∈N, we obtain the
existence of a weak limit point Z ∈ C([0,∞[×R, [−1, 1]). Note that in order to
apply the Kolmogorov Chentsov Theorem, we had to subtract the problematic quan-
tity û0 which is not continuous at t = 0. But since û0 is deterministic, it follows
that also un = Zn + û0 → Z + û0=:u weakly in B([0,∞[×R) as n → ∞.
Then clearly u is almost surely [0, 1]-valued and continuous on ]0,∞[×R, thus
u ∈ C(]0,∞[×R, [0, 1]).

Now, using the continuous mapping theorem as in the proof of [20, Thm. 21.9] we
see that u actually solves themartingale problemMP(σ 2, b), i.e. for each φ ∈ C∞

c (R)

the process

Mt (φ) := 〈u(t, ·), φ〉 − 〈u0, φ〉 −
∫ t

0

〈
u(s, ·), �

2 φ
〉
ds

−
∫ t

0

〈
b (u(s, ·), F(u)(s, ·) + H(s, v0, )(·)) , φ

〉
ds

is a continuous martingale with quadratic variation

∫ t

0

〈
σ 2(u(s, ·)), φ2〉 ds.

Then [21, Thm. III-7] gives us the existence of a white noise process W on some
filtered probability space such that

Mt (φ) =
∫ t

0

∫

R

σ(u(s, x))φ(x)W (ds, dx),

hence u solves the SPDE

〈u(t, ·), φ〉 = 〈u0, φ〉 +
∫ t

0

∫

R

b (u(s, x), F(u)(s, x) + H(s, v0)(x)) φ(x) dx ds

+
∫ t

0

〈
u(s, ·), �

2 φ
〉
ds +

∫ t

0

∫

R

σ(u(s, x))φ(x)W (ds, dx).
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But again note that by (2.9)

v(t, x) := F(u)(t, x) + H(t, v0)(x)

is the unique solution to the integral equation (given u)

v(t, x) = v0(x) +
∫ t

0
b̃(u(s, x), v(s, x)) ds.

Thus, (u, v) is a weak solution to Eq. (2.1). 
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