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Abstract We consider the numerical solution, by finite differences, of second-order-
in-time stochastic partial differential equations (SPDEs) in one space dimension. New
timestepping methods are introduced by generalising recently-introduced methods for
second-order-in-time stochastic differential equations to multidimensional systems.
These stochastic methods, based on leapfrog and Runge–Kutta methods, are designed
to give good approximations to the stationary variances and the correlations in the
position and velocity variables. In particular, we introduce the reverse leapfrog method
and stochastic Runge–Kutta Leapfrog methods, analyse their performance applied to
linear SPDEs and perform numerical experiments to examine their accuracy applied
to a type of nonlinear SPDE.
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1 Introduction

The dynamics of stochastic systems that are second order in time depends on the
damping parameter, η. As η → 0, the system exhibits properties similar to those
of Hamiltonian systems. As η → ∞, the system behaves similar to one that is first
order in time. With the correct scaling of noise intensity, however, the stationary
density is independent of η. In the case of scalar second order stochastic differential
equations with additive noise and a damping term, it is possible to design numerical
methods [8,37,38,43,45] with some desirable properties, described below, in all ranges
of values of η [7]. While the analysis of these methods was given only in the linear
case, these properties were shown to hold numerically for nonlinear problems as well.
In this paper, we consider how to extend these ideas to second-order-in-time Stochastic
Partial Differential Equations (SPDEs) in one space dimension with additive space-
time white noise.

In one-degree-of-freedom linear systems, it is possible to devise timestepping meth-
ods with one Gaussian random variable per timestep, that have no systematic error in
the position variable, and with a simple expression for the error in the velocity variable
as a function of Δt [8]. New methods obtained from the analysis of linear equations
were observed to perform well when applied to nonlinear systems [6]; whether they
cope better with underdamped or overdamped systems, or equally-well with any value
of damping, can be understood from the dependence of the error in linear systems on η.
We shall follow this methodology here, producing timestepping methods for solution
of systems of stochastic differential equations, using one Gaussian random variable
per degree of freedom per timestep, from analysis of corresponding linear systems.

We shall consider the following second-order-in-time SPDE, known as φ4 or Allen-
Cahn [5,11,15,20,27,29], that exhibits coherent structures called kinks:

∂2

∂t2φt (x)+ η
∂

∂t
φt (x) = ∂2

∂x2 φt (x)+ f (φt (x))+ (2ηΘ)
1
2 ξ t (x), (1)

with periodic boundary conditions on [0, l]. The last term in (1) is space-time white
noise:

IE(ξ t (x)ξ t ′(x
′)) = δ(x − x ′)δ(t − t ′).

A configuration is a continuous function of x , φt (x), obtained by fixing t in one
realization. At most values of x , φt (x) is close to either −1 or +1. A narrow region
where the configuration crosses through 0 from below is called a kink; one where it
crosses from above is called an antikink. In our scaling, the width of a kink is order
1 and the spatial domain is [0, l]; it is also possible to scale the width of a kink to
ε on the spatial domain [0, 1] [20,22,40]. Systematic computational studies of the
SPDE require low temperatures in order to unambiguously identify kinks [15,29];
they are computationally costly because the steady-state density of kinks decreases
exponentially with temperature (so that l must be large) and the equilibration time
increases exponentially with temperature.

After a sufficiently long time, in both the continuum SPDEs and the discrete sys-
tem, a statistically-steady state is attained and maintained by a balance between con-
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tinual nucleation of new domains and the diffusion and annihilation of existing ones
[4,9,10,15,26,30]. Many steady-state quantities, such as the mean number of kinks
per unit length, can be calculated from the invariant density of the SPDE, by evalu-
ating the partition function [3,36,39]. Further insight has recently been obtained by
demonstrating the equivalence between the invariant density of paths of the SPDE, on
the spatial domain, and the density of paths of a suitable bridge process [35,41,46].

2 Numerical solution

Consider the numerical solution of (1) in one space dimension [18,19,21,24,33,34,
44]. We are interested in the correlation functions

cq(x) = lim
t→∞ IE(φt (x0)φt (x0 + x)) and cp(x) = lim

t→∞ E

(
∂φt

∂t
(x0)

∂φt

∂t
(x0 + x)

)
.

Note that cq(x) and cp(x) are independent of x0 and symmetric functions of x , taken
modulo [0, l]. In a numerical solution, cq(x) and cp(x) are measured by choosing one
or more x0 and recording numerical means over a long realisation.

The numerical solution of the SPDE (1), using the finite-difference approximation,
gives, via the Method of Lines applied to the spatial operator and the Brownian sheet,
a set of N coupled stochastic differential equations [5,13,14]:

dXt = IN Vt dt

dVt = −ηIN Vt dt + IN f (Xt )dt + kCN Xt dt + εdWt , (2)

where Xt and Vt are IRN -valued random variables, written as N × 1 column vectors,
IN is the N -dimensional identity matrix and W = (W(1), . . . ,W(N ))T, a column
vector of N independent Wiener processes. The parameters k, N , and ε are related to
Δx , l and Θ by

k = Δx−2, N = l

Δx
and ε2 = 2ηΘ

Δx
.

The N × N symmetric matrix CN is the discretised Laplacian

CN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 1
1 −2 1 0 . . .

0 1 −2 1
. . .

0 . . . 1 −2 1
1 0 . . . 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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The limit N → 0 corresponds to the SPDE limitΔx → 0. We typically use values
of N of order 105. At finite Δx , the sets of random variables

Xt =
⎛
⎜⎝

Xt (1)
...

Xt (N )

⎞
⎟⎠ and Vt =

⎛
⎜⎝

Vt (1)
...

Vt (N )

⎞
⎟⎠,

representing “position” and “velocity”, provide an approximation to φt (iΔx) and
∂φt
∂t (iΔx), i = 1, 2 . . . , N . We shall study timestepping methods that produce approx-

imate solutions of (2), seeking accurate correlation functions for all values of η.
This work can be viewed as the extension, to N degrees of freedom, of recent

results for the one-degree-of-freedom case. There, we considered [7,8] second-order
differential equations of the form ẍ = f (x) − ηẋ + εξ(t), representing the motion
of a particle subject to deterministic forces f (x) and random forcing ξ(t),where
IE(ξ(t)ξ(t ′)) = δ(t − t ′). The amplitude of the random forcing, ε, is related to
the temperature Θ and damping coefficient η by the fluctuation-dissipation relation
ε2 = 2ηKΘ , where K is Boltzman’s constant. The deterministic force defines a
potential function U (x) via f (x) = −U ′(x).

Motivating examples Our main example will be the case f (x) = x − x3. The effects
of finite difference approximation are most easily explained in the case of the velocity–
velocity correlations, cp(x). In the exact solution of (2),

cp(x) =
⎧⎨
⎩

0 x �= 0
Θ

Δx
x = 0.

(3)

As long as a stationary density exists, the form (3) does not depend on f (x) and is
exact even when Δx �= 0.

In Fig. 1, numerically-compiled averages of the velocity correlation function are
displayed at three values of x . Each dot is compiled from one numerical realisation,
with N = 4 × 105, by averaging over samples taken once per time interval at times
up to t = 4 × 105. The value of cp(0) obtained at finite Δt differs from the exact
value; the Runge–Kutta Leapfrog method shows the best convergence properties (left
panel). At finiteΔt , similarly, numerical mean values cp(iΔx), i = 1, 2, . . . are not, in
general, zero. One property of the reverse leapfrog method is that cp(iΔx), i = 2, . . .
is zero for linear systems and close to zero for nonlinear systems (right panel). The
method also has the best convergence properties in cq(x), but we postpone discussion
of this to later sections. The goal of the analysis we present in Sect. 3 is to calculate
the convergence properties of timestepping methods.

3 Partitioned Runge–Kutta methods for systems of SDEs

Exact results can be obtained for linear systems, which serve as a testing ground for
general, nonlinear, systems. Accordingly, in this Section we consider N -degree-of-
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Fig. 1 Three numerical velocity–velocity correlations: the mean-square at one point in space, cp(0), the
product at neighbouring sites, cp(Δx), and the product at a separation of two sites, cp(2Δx). The SPDE
is solved using the leapfrog (leap), reverse leapfrog (RL) and three-stage Runge–Kutta leapfrog (RKL3)
methods, with η = 1.0, Θ = 0.2 and Δx = 0.4. The exact results are shown as dotted lines

freedom linear systems described by

dXt = IN Vt dt

dVt = −ηIN Vt dt − gIN Xt dt + kCN Xt dt + εdWt . (4)

Let
BN = gIN − kCN ,

then the set of SDEs (4) can be written as one matrix equation:

d

(
Xt

Vt

)
=

⎛
⎜⎜⎝

ON IN

−BN −ηIN

⎞
⎟⎟⎠

(
Xt

Vt

)
dt + ε

⎛
⎜⎜⎝

ON

IN

⎞
⎟⎟⎠ dWt ,

where ON is the N × N zero matrix.
Our task is to examine how faithfully the stationary density is reproduced by stan-

dard and new timestepping methods for SPDEs. These methods produce approximate
values for the positions and velocities at discrete times tn, n = 0, 1, 2, . . .. We denote
these values by Xn(i) and Vn( j), i, j = 1, . . . , N . Usually tn+1 − tn is a fixed number
Δt . We consider the evolution of Xn and Vn and their statistical properties as tn → ∞,
and compare with the exact results

lim
t→∞ IE(Xt

T Xt ) = ε2

2η
L N , lim

t→∞ IE(Xt
T Vt ) = ON and lim

t→∞ IE(VT
t Vt ) = ε2

2η
IN ,
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where [17]
L N = B−1

N .

3.1 Partitioned Runge–Kutta methods

Let

qn =
⎛
⎜⎝

Xn(1)
...

Xn(N )

⎞
⎟⎠ and pn =

⎛
⎜⎝

Vn(1)
...

Vn(N )

⎞
⎟⎠.

When solving (2) under a partitioned Runge–Kutta (PRK) method [25] with s
stages, qn+1 and pn+1 are obtained from qn and pn via s intermediate vectors Yi and
Zi :

pn+1 = pn +
s∑

j=1

b j (−ηZ j + f (Y j )+ kCN Y j )Δt + εΔWn,

qn+1 = qn +
s∑

j=1

b̂ j Z jΔt,

where ΔWn = (ΔWn(1), . . . , ΔWn(N ))T, and each ΔWn(i) is drawn independently
from a Gaussian distribution with mean zero and varianceΔt . The intermediate vectors
satisfy

Zi = pn +
s∑

j=1

ai j (−ηZ j + f (Y j )+ kCN Y j )Δt + εciΔWn

Yi = qn +
s∑

j=1

âi j Z jΔt. (5)

Note that N Gaussian random variables are required per timestep. We use the
notation e = (1, 1, . . . , 1)T, b = (b1, b2, . . . , bs)

T, b̂ = (b̂1, b̂2, . . . , b̂s)
T, c =

(c1, c2, . . . , cs)
T and let A and Â be the s × s matrices whose entries are the ai j and

âi j in (5). We assume c = Ae and bTe = 1, and represent PRK methods by pairs of
Butcher tableaux [16]:

A

b�
Â

b̂� .

Let Z = (Z1, Z2, . . . , Zs)
T, Y = (Y1,Y2, . . . ,Ys)

T and f (Y ) = ( f (Y1), f (Y2),

. . . , f (Ys))
T. Then we can write (5) as
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(IS ⊗ IN + ηA ⊗ INΔt)Z = e ⊗ pn + (A ⊗ IN ) f (Y )Δt + (A ⊗ CN )Y kΔt

+ εc ⊗ΔWn (6)

Y = e ⊗ qn + ( Â ⊗ IN )ZΔt.

If a PRK method is applied to the linear system, f (Y ) = −gY , then (6) simplifies
to

P Z = e ⊗ pn − (c ⊗ BN )qnΔt + εc ⊗ΔWn

Y = e ⊗ qn + ÂZΔt,

where
P = IS ⊗ IN + ηA ⊗ INΔt + (AÂ)⊗ BNΔt2. (7)

Thus

pn+1 =pn − ηbT ⊗ IN ZΔt − bT ⊗ BN YΔt + εΔWn

qn+1 =qn + b̂T ⊗ IN ZΔt (8)

and we can write (
qn+1
pn+1

)
= R ⊗

(
qn

pn

)
+ εr ⊗ΔWn, (9)

where

R =
(

R11 R12
R21 R22

)
and r =

(
R1
R2

)
.

Comparing (8) with (9), we find

R11 = IN − (b̂T ⊗ IN )P
−1(c ⊗ BN )Δt2

R12 = (b̂T ⊗ IN )P
−1(e ⊗ IN )Δt

R21= −
(

IN − η(bT ⊗ IN )P
−1(c ⊗ IN )Δt+(bT Â ⊗ BN )P

−1(c ⊗ IN )Δt2
)

BNΔt

R22 = IN − η(bT ⊗ IN )P
−1(e ⊗ IN )Δt − (bT Â ⊗ BN )P

−1(e ⊗ IN )Δt2

R1 = (b̂T ⊗ IN )P
−1(c ⊗ IN )Δt

R2 = IN − η(bT ⊗ IN )P
−1(c ⊗ IN )Δt − (bT Â ⊗ BN )P

−1(c ⊗ IN )Δt2.

The Ri j , as well as R1 and R2, are N × N symmetric matrices and functions of Δt .
Let

Σn = E

((
qT

n

pT
n

) (
qT

n pT
n

))
.

The stationary density of the numerical method is characterised by Σ = lim
n→∞Σn .

We shall search for methods such that

Σ = ε2

2η

(
L N ON
ON JN

)
. (10)
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Thus, while requiring exact statistics in the discretised positions, we describe the
numerical error in the velocities in terms of the difference between JN and the N × N
identity as a function of Δt and η.

With a numerical update of the form (9), Σn+1 is related to Σn by

Σn+1 = RΣn RT + ε2

(
RT

1

RT
2

) (
RT

1 RT
2

)
Δt, where RT =

(
RT

11 RT
21

RT
12 RT

22

)
.

The required form (10) of the stationary correlation matrix will be found if S = 0
where

S = R

(
L N ON

ON JN

)
RT −

(
L N ON

ON JN

)
+ 2η

(
R1 RT

1 R1 RT
2

R2 RT
1 R2 RT

2

)
.

The condition S = 0 is equivalent to the following three equations:

R11L N R11 − L N + R12 JN R12 + 2ηR1 R1Δt = 0

R11L N R21 + R12 JN R22 + 2ηR1 R2Δt = 0

R21L N R21 + R22 JN R22 − JN + 2ηR2 R2Δt = 0.

Notice that

R1 BNΔt = IN − R11

R2 BNΔt =−R21.

3.2 Basic result on systems

It is convenient to define

TN = (b̂T ⊗ IN )P
−1(c ⊗ IN )

UN = (b̂T ⊗ IN )P
−1(e ⊗ IN )

Z N = (ηbT ⊗ IN +Δtb Â ⊗ BN )P
−1(c ⊗ IN )

WN = (ηbT ⊗ IN +Δtb Â ⊗ BN )P
−1(e ⊗ IN ), (11)

with P given by (7). Then

R11 = IN − TN BNΔt2 R12 = UNΔt
R21 = −(IN − Z NΔt)BNΔt R22 = IN − WNΔt
R1 = TNΔt R2 = IN − Z NΔt,

and

−(TN BN L N + LT
N BN T T

N )+ T T
N BN BT

N TNΔt2 + UN JN U T
N + 2ηΔt2T T T

N = 0.
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Since BN = BT
N , TN = T T

N , UN = U T
N and Bn L N = IN , we find

JN = 2U−2
N TN

(
IN − (ηΔt + 1

2
BNΔt2)TN

)
. (12)

That is, JN = α(ηINΔt, BNΔt2), whereα(ηΔt, gΔt2) is the scalar function (1.19)
in [8].

4 Timestepping methods for systems of SDEs

We now consider specific examples of timestepping methods, beginning with two-
stage methods.

4.1 The implicit midpoint method

For reference, we give the Butcher tableaux and corresponding matrix P for the implicit
midpoint method. The tableaux are

0
1
2

0 0
0 1

2

0 1

0 0
0 1

2

0 1

,

and

P =
(

IN ON

ON IN (1 + 1
2ηΔt)+ 1

4 BNΔt2

)
.

Thus

R11 =
(

IN + 1

2
ηΔt IN + 1

4
BNΔt2

)−1 (
IN + 1

2
ηΔt IN − 1

4
BNΔt2

)

R12 =
(

IN + 1

2
ηΔt IN + 1

4
BNΔt2

)−1

Δt

R21 =
(

IN + 1

2
ηΔt IN + 1

4
BNΔt2

)−1

BNΔt

R22 =
(

IN + 1

2
ηΔt IN + 1

4
BNΔt2

)−1 (
IN − 1

2
ηΔt IN − 1

4
BNΔt2

)
.

and there is no error in the velocity–velocity correlations [7,37,38]:

JN = IN .

However, this method is implicit and therefore not convenient for use on nonlinear
systems.
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4.2 The leapfrog method

The leapfrog method is represented in Butcher tableaux as:

0
1

0 0
1 0

1 0

1/2 0
1/2 0

1/2 1/2

,

which gives, after some simplification, JN = (IN (1 − 1
2ηΔt) − 1

4 BNΔt2)−1, thus
generalising the result of [7].

4.3 Mannella’s method

Mannella’s modification of the leapfrog method [31,32] is represented as:

0
1

0 0
1/2 1/2

1/2 1/2

1/2 0
1/2 0

1/2 1/2

;

it has JN = (IN − 1
4 BNΔt2)−1. This is an improvement on the standard leapfrog

method because JN − IN , the error in the velocity–velocity correlation function, is
proportional to Δt2 and independent of η.

4.4 The reverse leapfrog method

This is represented as

1
2
1
2

1
2 0
1
2 0

1
2

1
2

0 0
1
2

1
2

1
2

1
2

.

As AÂ = 0, we can show

P =
(
(1 + 1

2ηΔt)IN ON
1
2ηΔt IN IN

)

and

R11 = IN − 1

2

1

1 + 1
2ηΔt

BNΔt2

R12 =
(

1 + 1

1 + 1
2ηΔt

)
INΔt
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R21 =
(

IN − 1

2

ηΔt

1 + 1
2ηΔt

IN + 1

2

Δt2

1 − 1
2ηΔt

BN

)
BNΔt2

R22 = 1 − 1
2ηΔt

1 + 1
2ηΔt

IN + 1

2
BN

Δt2

1 + 1
2ηΔt

.

This yields

JN = IN − 1

4
BNΔt2.

As with the Mannella method, the reverse leapfrog method is efficient and easily
implemented and has the virtues of giving the exact correlation function in the positions
variable, and an error in the velocity variables independent of η. In addition, the form
of JN − IN means that the correlations introduced in the velocity variable are only
one Δx step on either side, since BN = gIN − kCN .

The correlation introduced in the velocity variable is independent of η and only
occurs between neighbouring grid points:

cp(0) = 1 − 1

4
(2k + g)Δt2, cp(Δx) = 1

4
kΔt2 and cp(iΔx) = 0, for i > 1,

consistent with the results shown in Fig. 1.

4.5 Runge–Kutta leapfrog methods

In this section we give a more detailed analysis of the class of Runge–Kutta leapfrog
methods introduced in [8]. We first introduce the simplifying assumptions that were
made in that paper.

Theorem 1 If the following conditions, known as property A, hold [8]:

bT = b̂T bT A = 1

2
bT AÂe = 1

2
c bTe = 1.

Then

UN = IN − (ηΔt IN + 1

2
Δt2 BN )TN

and

JN = 2TN U−1
N .

Proof The formula for JN is given by (11) and (12) with

JN = 2U−2
N TN

(
IN − (ηΔt + 1

2
BNΔt2)TN

)
,
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where

TN = (b̂T ⊗ IN )P
−1(c ⊗ IN )

UN = (b̂T ⊗ IN )P
−1(e ⊗ IN )

P = IS ⊗ IN + A ⊗ INηΔt + (AÂ)⊗ BNΔt2.

Expanding P−1 and repeatedly using Property A and Ae = c gives

UN = IN +
∞∑
j=1

(−1) j (bT ⊗ IN )(A ⊗ INηΔt + AÂ ⊗ BNΔt2) j−1(c ⊗ INηΔt

+ 1

2
c ⊗ BNΔt2) = IN − (ηΔt IN + 1

2
Δt2 BN )TN .

Hence JN = 2TN U−1
N . �	

This is the generalisation, to N -degree-of-freedom systems, of Lemma 3.2 in [8].
There, the strategy was to construct classes of PRK methods with high order.

Runge–Kutta leapfrog methods with s ≥ 3 stages and increasingly high order [8]
are constructed as follows. In addition to property A, let

Â = 1

2
I − esv

T, (13)

where v is chosen so that vTe = 0 and vT = (v1, v2, · · · , 1
2 ) and with a value k = s−2

such that
vT A j−1c = 0, j = 1, . . . , k. (14)

Let

X N = ηΔt IN + 1

2
Δt2 BN

then (13) and (14) give

(bT ⊗ IN )(A ⊗ INηΔt + AÂ ⊗ BNΔt2) j (c ⊗ IN ) = bT A j cX j
N j = 1, . . . , k,

and

(bT ⊗ IN )(A ⊗ INηΔt + AÂ ⊗ BNΔt2)k+1(c ⊗ IN )

= bT Ak+1cXk+1
N − (bT Aes)(v

T Akc)Δt2 BN Xk
N

so that

TN = bTcIN +
k+1∑
j=1

(−1) j (bT A j c)X j
N + MN + O(Δtk+3),
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where

MN = (−1)k+2(bT Aes)(v
T Akc)Δt2 BN Xk

N .

Now, with property A,

bT A j c =
(

1

2

) j+1

, ∀ j,

so

2TN = IN +
k+1∑
j=1

(−1) j (
1

2
X N )

j + 2MN + O(Δtk+3).

Thus from Theorem 4.1

2TN = UN + 2MN + O(Δtk+3).

Hence

JN = 2TN U−1
N

= IN + 2MN U−1
N + O(Δtk+3),

and so the error in JN is

JN − IN = 2(−1)k+2(bT Aes)(v
T Akc)Δtk+2ηk BN .

and this is consistent with the scalar result first given in [8] where k + 2 = s. Thus the
lowest-order correlations introduced into the velocity variable, proportional to BN ,
are only one spatial step on either side.

4.6 s = 3

Example: The three-step Runge–Kutta leapfrog method, satisfying Property A, was
first given in [6] and takes the form

Y1 = qn + 1

2
Δtpn

Z2 = (1 − 1

2
ηΔt)pn + 1

2
(( f (Y1)+ CN Y1)Δt + εΔW )

Y2 = qn + 1

2
Δt Z2

Y3 = 2Y2 − Y1
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pn+1 = 1

1 + 1
2ηΔt(

(1 − 1

2
ηΔt)pn − 1

4
( f (Y1)+ 2 f (Y2)+ f (Y3)+ CN Y2)Δt + εΔW

)

qn+1 = qn + 1

2
(pn + pn+1).

We find

P =
⎛
⎝ IN ON ON

1
2ηΔt IN + 1

4Δt2 BN IN ON

− 1
2ηΔt IN − 1

2 BNΔt2 ηΔt IN + BNΔt2 (1 + 1
2η)IN

⎞
⎠,

TN = 1

2
IN − 1

4

(
ηΔt IN + 1

2
BNΔt2

)
+ 1

8

(
ηΔt IN + 1

2
BNΔt2

)
ηΔt IN + · · ·

UN = IN − 1

2

(
ηΔt IN + 1

2
BNΔt2

)
+ 1

4

(
ηΔt IN + 1

2
BNΔt2

)2

+ · · ·

JN = IN − 1

8

(
ηΔt IN + 1

2
BNΔt2

)2

+ 1

4

(
ηΔt IN + 1

2
BNΔt2

)
ηΔt IN + · · ·

= IN − 1

8
ηΔt3 BN + · · · .

The error is proportional to ηΔt3, consistent with the one-degree-of-freedom
case [8].

5 Timestepping methods for the φ4 SPDE

We now return to our nonlinear example, the kink-bearing SPDE with f (x) = −U ′(x)
where U (x) = − 1

2 x2 + 1
4 x4. Let us consider the functions cq(x) and cp(x) in the limit

Δx → 0. The nonlinearity of the SPDE does not affect the exact velocity correlation
function, cp(x), which is still zero if x �= 0. The steady state density of the field at
a point is non-Gaussian with mean-square, cq(0), calculated as Δx → 0 as follows.
Let εn and ψn(u) be the eigenvalues, and corresponding normalised eigenfunctions,
of the equation [5,12,28]

(
− 1

2β2

∂2

∂u2 + U (u)

)
ψn(u) = εnψn(u),

where β = Θ−1 and n = 0 corresponds to the eigenfunction with the smallest
eigenvalue. Then

cq(x) =
∑

n

s2
n exp(−βx(εn − ε0)),
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Fig. 2 The correlation function cq (x) and the corresponding b(x) constructed from a numerical solution
with β = 5, k = 4, η = 1

where sn = ∫ ∞
−∞ uψn(u)ψ0(u)du. The most important feature of the correlation func-

tion is the exponential term with exponent β(ε1 − ε0), where ε1 is the next-to-smallest
eigenvalue: as x → ∞, cq(x) ∝ exp(−x/λ), where λ−1 = β(ε1 − ε0). To estimate λ
from a numerical solution we plot the following function of x :

b(x) = Δx

(
log

(
cq(x)

cq(x +Δx)

))−1

,

so that lim
x→∞ b(x) = λ. The numerical b(x) plateaus at the value λ (Figure 2). In our

numerical runs, we used N = 105 grid points and averaged over samples taken every
10 time units up to time t = 106.

In Fig. 3, we compare the accuracy of cq(x), cp(x) and λ, measured numerically.
In the quantity that is the most challenging to measure numerically, λ, the reverse
leapfrog method performs remarkably well. The Runge–Kutta leapfrog method, how-
ever, is most accurate in cp(Δx). Timestepping methods included in Fig. 3 are the
standard leapfrog and Mannella’s modification [31,32], the Heun method, and the
reverse leapfrog method, all of which are two-stage methods using one Gaussian ran-
dom variable per timestep. Also shown is the the three-stage Runge–Kutta leapfrog
method [8]. The code used to produce these results is given as supplementary mate-
rial, along with a code that produces an animated illustration of the dynamics and
measurement of the density.

In Fig. 4, we compare the accuracy of cq(0) (the mean-square of φ, where there
is still error associated with finite Δx even as Δt → 0) and of cp(x) at three values
of x and two values of η. The reverse leapfrog method performs best in the position
variable (upper panel) and the velocity correlation function at a separation of two grid
points (lower panel). However, the three-stage and four-stage Runge–Kutta leapfrog
methods [8] are most accurate in the velocity correlation function at zero and one grid
point separation. Methods with five or more stages can be implemented similarly.
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Fig. 3 Performance of different algorithms as a function of Δt . The values of β = 5, η = 1.0 and
Δx = 0.25 are fixed. In the upper graph, the correlation length λ is shown as a function of Δt ; the reverse
leapfrog method is most accurate. In the lower left panel, |cp(Δx)| is plotted; the most accurate algorithm
is the third-order Runge–Kutta leapfrog method. In the lower right panel, |cp(2Δx)| is plotted; the error
in this quantity with the reverse leapfrog method is smaller than the statistical error

6 Discussion

In this paper we have constructed classes of Runge–Kutta methods for solving second-
order-in-time SPDEs in one space dimension based on the finite difference approxima-
tion. Two-stage methods are available that improve on the standard leapfrog method
in important ways. A series of multistage methods, with increasing accuracy in the
stationary density, have also been devised and implemented. These methods are essen-
tially those described in [8]; here we show how they behave in multidimensional
systems, yielding good accuracy in the stationary variances and the correlations in
the position and velocity variables while using only one Wiener increment per step
irrespective of the number of stages.

Numerical methods satisfying weak convergence criteria have been constructed
recently [1,23,42]. The focus, usually on constructing higher order methods and meth-
ods with good linear stability properties, is also shifting towards consideration of
methods that preserve the stationary density function [2]. However, our approach is
still novel in its focus on second-order-in-time, or Langevin, dynamics.
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Fig. 4 Numerical means, as a function of Δt , with Δx = 0.2. Left column cq (0). Central column cp(0).
Right column cp(Δx). Top row η = 0.5. Bottom row η = 2.0. The timestepping methods used are the
standard leapfrog (leap), reverse leapfrog (RL), three-stage and four-stage Runge–Kutta leapfrog (RKL3
and RKL4). Exact continuum results are shown as dotted lines
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A recent paper [6] considered the behaviour of Runge–Kutta methods applied to
nonlinear Hamiltonian problems with additive noise, with an independent Wiener
increment added per stage rather than per step. This approach is more expensive but it
can be shown that it allows for better dynamic properties associated with the method
and, in particular, for the midpoint rule this preserves the mean of the problem exactly
at each step - this is not the case if just one Wiener process is used per step. We will
consider the extension of this idea to examples considered in this paper in future work.
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