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Abstract This paper is concerned with an initial value problem for a stochastic vari-
ational inequality associated with elasto-plastic torsion. Our goal is to establish the
existence and uniqueness of a solution. The stochastic problem is reduced to essen-
tially a deterministic problem, which is not covered by existing results on evolution
variational inequalities. We propose a definition of a solution in the same spirit as for
weak solutions of partial differential equations, and derive some basic consequences
of our definition. Based on these results, we can prove the existence and uniqueness
of a solution to the stochastic problem.
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1 Introduction

The goal of this paper is to study a stochastic evolution variational inequality of the
form

∂u

∂t
−�u + ∂ IK(u) � ∂M

∂t
, (1.1)
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Here ∂ IK(·) denotes the subdifferential of the indicator function IK(·), where K is a
closed convex subset of a certain function space. In this paper, we will only consider
K which is exclusively associated with elasto-plastic torsion. The right-hand side of
(1.1) represents a random noise where M = M(t) is a certain Hilbert space valued
continuous martingale.

The genesis of stochastic variational inequalities is the celebrated Skorohod prob-
lem [15]; see also [10]. For generalization to higher space dimensions, see [5,16].
This subject has evolved in various directions. The above (1.1) is one such version.
When K is the set of nonnegative functions, initial boundary value problems were
discussed in [7–9,12]. In particular, [12] has inspired extensive research on (1.1) and
related problems in general abstract setting; see [1–3,14,17], and references therein.
In general abstract setting, a typical assumption on the convex set K is that its interior
is not empty. This assumption seems necessary to obtain suitable regularity so that
a solution of (1.1) can be defined in an appropriate sense. However, this assumption
excludes some important applications. For example, if K is the set of nonnegative
functions in the basic function class H1

0 (G), then K has empty interior with respect
to H1

0 (G)-norm for every space dimension d = 1, 2, . . . . When K is associated with
elasto-plastic torsion, it is given by

K = {
v ∈ H1

0 (G)
∣
∣|∇v(x)| ≤ 1, for almost all x

}
(1.2)

Obviously, this has also empty interior with respect to H1
0 (G)-norm. At present, there

seems to be no result on the Cauchy problem for (1.1) when K is defined by (1.2). In
this paper, we will address this problem exclusively for K defined by (1.2).

Let the initial condition be given by

u(0) = u0 ∈ K (1.3)

We are seeking for a stochastic process u = u(t) defined on the time interval [0, T ]
such that u(t) ∈ K, for almost all t, and (1.1) and (1.3) are satisfied in an appropriate
sense with probability one. Following the general strategy in [12], we reduce (1.1) to
an essentially deterministic problem, and devote a good portion of this work to the
deterministic problem. More precisely, we will work with the following form of a
deterministic problem:

∂

∂t

(
u − M

) −�u ∈ − ∂ IK(u) (1.4)

If the right-hand side of (1.1) is replaced by f ∈ L2(0, T ; H−1(G)), the existence
and uniqueness of a solution was established in a general setting which covers the case
of (1.2); see [4,11], where a solution is defined in terms of a variational inequality.
In principle, we will adapt such formulation for the definition of a solution. However,
we need substantial modification when the right-hand side of (1.1) is not an ordinary
function with respect to the time variable. We note that M(t) is only Hölder continuous
in time variable, and is not of bounded variation. Also, some key technical devices used
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in [4,11] for the regularity and uniqueness of a solution do not seem to be adaptable
to our case.

On the other hand, our definition of a solution requires substantial regular-
ity of M with respect to space variables. More precisely, we will assume M ∈
C([0, T ]; C1

0(G)). In Sect. 3, we will present the definition of a solution of the deter-
ministic problem, and establish the uniqueness of a solution. At present, the existence
of a solution according to our definition is not known. This is due to lack of basic
estimates under our assumptions on M(t). But, for the stochastic problem discussed
in Sect. 4, this difficulty can be overcome by means of stochastic integrals, and we are
able to establish the existence of a solution with probability one, which leads to the
solution as a stochastic process. We will also show that this stochastic process with
state-space K is a Markov process, and that it has an invariant measure on K.

2 Notation and technical preliminaries

Throughout this paper, G is a bounded open subset of R
d with smooth boundary ∂G,

and

C1
0(G) = {

h
∣
∣ h ∈ C(G), ∇h ∈ C(G)d , h(x) = 0, for x ∈ ∂G

}

which is a Banach space with the norm

∥
∥h

∥
∥ = sup

x∈G

∣
∣∇h(x)

∣
∣.

The imbedding C1
0(G) → H1

0 (G) is dense.
As above, the set K is defined by

K = {
h ∈ H1

0 (G)
∣
∣ |∇h(x)| ≤ 1, for almost all x

}

When X is a Banach space and J is an interval in R,

Cr (J ;X) = {
f
∣
∣ f = f (t) is X-valued right-continuous with respect to t ∈ J

}

When X is a topological space, B(X) denotes the set of all Borel subsets of X. When
X is a compact metric space, M(X) is the space of Radon measures, and M(X)d is
the set of all ξ = (ξ1, . . . , ξd), ξ j ∈ M(X), j = 1, . . . , d.

Lemma 2.1 Let g ∈ K. Then, for any ε > 0, there is gε = gε(x) such that

gε ∈ C∞
c (G),

∣
∣∇gε(x)

∣
∣ ≤ 1 + ε, ∀x ∈ G (2.1)

and

∥
∥g − gε

∥
∥

H1
0 (G)

< ε (2.2)
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Here C∞
c (G) denotes the set of all functions in C∞(Rd) with compact support in G.

Proof We need a special partition of unity for G. Let

G ⊂
n+m⋃

j=1

Br j (z j ), z j ∈ G

where Br j (z j ) is an open ball in R
d with center z j ∈ G and radius r j > 0 with the

following properties.

(i) for j = 1, . . . , n, Br j (z j ) ∩ ∂G is not empty, and if z ∈ Br j (z j ) ∩ ∂G, then
(1 − λ)z j + λz ∈ G, for all 0 ≤ λ < 1.

(ii) for j = n + 1, . . . , n + m, Br j (z j ) ⊂ G.

Let {α j }n+m
j=1 be a partition of unity subbordinate to {Br j (z j )}n+m

j=1 such that

α j ∈ C∞
c (Br j (z j )), 0 ≤ α j (x) ≤ 1, ∀ j, ∀x

and

n+m∑

j=1

α j (x) = 1, for all x ∈ G

We then define a mapping ψλ : R
d → R

d by

ψλ(x) =
n∑

j=1

α j (x)
(
z j + λ(x − z j )

) +
n+m∑

j=n+1

α j (x)x

Then, for x ∈ G,

ψλ(x) = x +
n∑

j=1

α j (x)(λ− 1)(x − z j )

and thus,

∣
∣ψλ(x)− x

∣
∣ ≤ C |λ− 1|, ∀x ∈ G, ∀λ

∥
∥Dψλ(x)− I

∥
∥ ≤ C |λ− 1|, ∀x ∈ G, ∀λ

for some constant C > 0,where I is the d×d identity matrix and Dψλ is the derivative
matrix of ψλ. Let g ∈ H1

0 (G) be given such that |∇g(x)| ≤ 1, for almost all x ∈ G.
We can extend g by

g̃(x) =
{

g(x), for x ∈ G
0, for x ∈ R

d \ G
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We find that

supp
(
g̃ ◦ ψλ

) ⊂ G

for all λ > 1 with sufficiently small |λ− 1|.
For δ > 0, let ζδ ∈ C∞

c (R
d) be a mollifier such that

ζδ(x) ≥ 0, ∀x,
∥
∥ζδ

∥
∥

L1(Rd )
= 1, supp ζδ ⊂ Bδ(0)

Now let ε > 0 be given. Then, we can choose λ > 1 and δ > 0 such that

gε
def= (

g̃ ◦ ψλ
) ∗ ζδ

satisfies the properties (2.1) and (2.2). ��
Lemma 2.2 Let f ∈ C([0, L]; H1

0 (G)) such that f (t) ∈ K, for all t ∈ [0, L]. Then,
for each γ > 0, there is fγ ∈ C([0, L]; C1

0(G)) such that

∥
∥ f − fγ

∥
∥

C([0,L];H1
0 (G))

< γ (2.3)

and

∣
∣∇ fγ (t, x)

∣
∣ ≤ 1 + γ, ∀(t, x) ∈ [0, L] × G (2.4)

Proof Fix any γ > 0. There is δ > 0 such that

∥
∥ f (t1)− f (t2)

∥
∥

H1
0 (G)

<
γ

2
, for all t1, t2 ∈ [0, L] such that |t1 − t2| < δ

Let
{

Jk
}N

k=1 be a family of open intervals such that the length of Jk is δ, its midpoint
zk belongs to [0, L], and

[0, L] ⊂
N⋃

k=1

Jk

We then choose βk ∈ C∞
c (Jk) such that

0 ≤ βk(t) ≤ 1, ∀t,
N∑

k=1

βk(t) = 1, ∀t ∈ [0, L] (2.5)

and define

h(t) =
N∑

k=1

βk(t) f (zk)
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By virtue of (2.5),

∥
∥ f − h

∥
∥

C
([0,L];H1

0 (G)
) <

γ

2

We apply Lemma 2.1 to each f (zk) and obtain fk,γ ∈ C∞
c (G) such that

∥
∥ f (zk)− fk,γ

∥
∥

H1
0 (G)

<
γ

2

and

∣
∣∇ fk,γ (x)

∣
∣ ≤ 1 + γ, ∀x ∈ G

Let

fγ (t) =
N∑

k=1

βk(t) fk,γ

This fγ satisfies (2.3) and (2.4). ��
For convenience of notation, we write

C∗
t

def= C
([0, t]; C1

0(G)
)∗ = the dual of C

([0, t]; C1
0(G)

)

Suppose that ξ ∈ M([0, T ] × G
)d
. For any t ∈ (0, T ],∇ · ξ ∈ C∗

t is defined by

− < ∇ · ξ, h >C∗
t ,Ct =

∫

[0,t]×G

∇h(s, x) · dξ(s, x)

=
d∑

j=1

∫

[0,t]×G

∂h

∂x j
(s, x)dξ j (s, x), ξ = (

ξ1, . . . , ξd
)
,

for all h ∈ C
([0, t]; C1

0(G)
)
, where <, >C∗

t ,Ct denotes the duality pairing between
C

([0, t]; C1
0(G)

)
and its dual C∗

t .
Next let ε > 0 and ρε ∈ C∞

c (R) be a mollifier such that

ρε(t) ≥ 0, ∀t, supp ρε ⊂ (−ε, 0
)
,

∥
∥ρε

∥
∥

L1(R)
= 1 (2.6)

Fix any t ∈ (0, T ), and let ε ∈ (0, T − t). The convolution ∇ · ξ ∗ ρε ∈ C∗
t is defined

by

− < ∇ · ξ ∗ ρε, h >C∗
t ,Ct =

t∫

0

∫

(s,s+ε)×G

∇h(s, x)ρε(s − z) · dξ(z, x) ds,
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for all h ∈ C
([0, t]; C1

0(G)
)
,

Lemma 2.3 Let ξ ∈ M([0, T ] × G
)d
. Suppose that its variation satisfies

∥
∥ξ

∥
∥({0} × G

) = 0.

Fix any t ∈ (0, T ). For ε ∈ (0, T − t), it holds that

∥
∥∇ · ξ ∗ ρε

∥
∥

C∗
t

≤ ∥
∥∇ · ξ∥∥C∗

t
+ θ(ε) (2.7)

where θ(ε) → 0 as ε → 0.

Proof Choose any ψ = ψ(s, x) ∈ C
([0, t]; C1

0(G)
)

such that

∥
∥ψ

∥
∥

C([0,t];C1
0 (G))

= ∥
∥
∣
∣∇ψ∣

∣
∥
∥

C([0,t]×G) ≤ 1

It is convenient to introduce

ψ̂(s, x) =
⎧
⎨

⎩

ψ(s, x), for 0 ≤ s ≤ t
ψ(t, x), for s > t
ψ(0, x), for s < 0

Then,

∥
∥ψ̂

∥
∥

C(R;C1
0 (G))

≤ 1

and

− < ∇ · ξ ∗ ρε, ψ >C∗
t ,Ct =

t∫

0

∫

(s,s+ε)×G

∇ψ(s, x)ρε(s − z) · dξ(z, x) ds

=
∫

[0,t]×G

( z∫

z−ε
∇ψ̂(s, x)ρε(s − z) ds

)
· dξ(z, x)

−
∫

[0,ε]×G

( 0∫

z−ε
∇ψ̂(s, x)ρε(s − z)ds

)
· dξ(z, x)

+
∫

(t,t+ε]×G

( t∫

z−ε
∇ψ̂(s, x)ρε(s − z)ds

)
· dξ(z, x)

(2.8)
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Let

h1(z, x) =
z∫

z−ε
ψ̂(s, x)ρε(s − z) ds

h2(z, x) =
0∫

z−ε
ψ̂(s, x)ρε(s − z) ds

h3(z, x) =
t∫

z−ε
ψ̂(s, x)ρε(s − z) ds

Then, h j ∈ C([0, T ]; C1
0(G)) with

∥
∥h j

∥
∥

C([0,T ];C1
0 (G))

≤ 1, j = 1, 2, 3.

Thus,

∣
∣
∣
∣

∫

[0,t]×G

( z∫

z−ε
∇ψ̂(s, x)ρε(s − z)ds

)
· dξ(z, x)

∣
∣
∣
∣ =

∣
∣
∣
∣< ∇ · ξ, h1 >C∗

t ,Ct

∣
∣
∣
∣ ≤ ∥

∥∇ · ξ∥∥C∗
t

∣
∣
∣
∣

∫

[0,ε]×G

( 0∫

z−ε
∇ψ̂(s, x)ρε(s − z)ds

)
· dξ(z, x)

∣
∣
∣
∣ ≤ ∥

∥ξ
∥
∥([0, ε] × G

)

∣
∣
∣
∣

∫

(t,t+ε]×G

( t∫

z−ε
∇ψ̂(s, x)ρε(s − z)ds

)
· dξ(z, x)

∣
∣
∣
∣ ≤ ∥

∥ξ
∥
∥(
(t, t + ε] × G

)

where
∥
∥ξ

∥
∥ denotes the variation of ξ . It follows from (2.8) that

∥
∥∇ · ξ ∗ ρε

∥
∥

C∗
t

≤ ∥
∥∇ · ξ∥∥C∗

t
+ ∥

∥ξ
∥
∥([0, ε] × G

) + ∥
∥ξ

∥
∥(
(t, t + ε] × G

)

Since
∥
∥ξ

∥
∥({0} × G

) = 0, we have

∥
∥ξ

∥
∥([0, ε] × G

) + ∥
∥ξ

∥
∥(
(t, t + ε] × G

) → 0, as ε → 0

which yields (2.7). ��
Lemma 2.4 If v ∈ Cr ([0, T ); L2(G)) and v(t) ∈ K, for almost all t ∈ [0, T ), then
v(t) ∈ K, for each t ∈ [0, T ).

Proof This follows from the fact that K is a closed subset of L2(G). ��
Lemma 2.5 K is is a convex compact metric space with the metric induced by the
L2(G)-norm.
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3 Deterministic problem

Throughout this section, we assume

{
M = M(t, x) ∈ C([0, T ]; C1

0(G)),
M(0, x) = 0, ∀x ∈ G

(3.1)

0 < T < ∞ and u0 ∈ K are given. (3.2)

We rewrite (1.1) as

∂

∂t

(
u − M

) −�u ∈ −∂ IK(u) (3.3)

and the initial condition is given by

u(0) = u0 ∈ K (3.4)

For our definition of a solution, we need some preliminary observation. Suppose that
we have the following ideal situation.

u ∈ L∞(0, T ; H1
0 (G)), u(t) ∈ K, for almost all t (3.5)

and

∂

∂t

(
u − M

) ∈ L2(0, T ; H−1(G)) (3.6)

We then set

F = ∂

∂t

(
u − M

) −�u

so that F ∈ L2(0, T ; H−1(G)) and (3.3) is satisfied if

< F, v − u >L2(0,T ;H−1(G)),L2(0,T ;H1
0 (G))

≥ 0 (3.7)

holds for all v ∈ L2(0, T ; H1
0 (G)) such that v(t) ∈ K, for almost all t.We can simply

take the condition (3.7) as a part of the definition of a solution. Without (3.6), the
condition (3.7) does not make sense. So we adopt the basic spirit in the definition of
weak solutions of partial differential equations. Assuming conditions (3.5) and (3.6),
we derive a necessary consequence of (3.7). If this necessary consequence can be
expressed under the conditions weaker than (3.6), we replace (3.7) by this consequence
of (3.7) as a part of definition of a solution. This is the motivation behind the following
definition.

Definition 3.1 u is a said to be a solution of (3.3) and (3.4) on the interval [0, T ] if

(i) u ∈ L∞(0, T ; H1
0 (G)) and u(t) ∈ K for almost all t ∈ [0, T ].
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(ii) There is ξ ∈ M([0, T ] × G
)d such that

∥
∥ξ

∥
∥({0} × G

) = 0, and

∂

∂t

(
u − M

) −�u − ∇ · ξ = 0 (3.8)

in the sense of distributions over (0, T )× G, and

s∫

0

<
∂v

∂t
, v − u + M > dt −

s∫

0

< �u, v − u + M > dt

+
∫

[0,s]×G

∇M · dξ ≥ 1

2
‖v(s)− u(s)+ M(s)‖2

L2(G) − 1

2
‖v(0)− u0‖2

L2(G)

(3.9)

for almost all s ∈ [0, T ), for each v such that

∂v

∂t
∈ L2(0, T ; H−1(G)), v(t) ∈ K, for almost all t ∈ [0, T ]

Here < ·, · > denotes the duality pairing between H1
0 (G) and H−1(G).

We note that ∇ · ξ plays the role of −∂ IK(u).

Lemma 3.2 The conditions (i), (3.8) and (3.9) imply the initial condition (3.4) and
the regularity:

u ∈ Cr ([0, T ); W s,p(G)), for all 0 ≤ s < 1, 1 ≤ p < ∞

and u(t) ∈ K, for each t ∈ [0, T ).

Proof For each t ∈ (0, T ], define ξt ∈ M(
G

)d by

ξt (F) = ξ
([0, t] × F

)
, for each F ∈ B(G)

where ξ is the measure in (3.8) and (3.9). Then, it follows from (3.8) that

∂

∂t

(
u − M − ∇ · ξt

) = �u

holds in the sense of distributions over (0, T )× G. Thus, for each φ ∈ C∞
c (G),

∂

∂t

(
< u, φ > − < M, φ > +

∫

G

∇φ · dξt

)
=< u,�φ >

in the sense of distributions over (0, T ), where <, > stands for the inner product in
L2(G). It follows that < u, φ >∈ Cr ([0, T )). Choose any t∗ ∈ [0, T ). There is a

123



Stoch PDE: Anal Comp (2014) 2:27–53 37

sequence {tn} ↓ t∗ such that u(tn) ∈ H1
0 (G) and

∥
∥
∣
∣∇u(tn)

∣
∣
∥
∥

L∞(G) ≤ 1, for all n.

Since u(tn) → u(t∗) in the sense of distributions over G,we find that u(t∗) ∈ H1
0 (G)

and
∥
∥
∣
∣∇u(t∗)

∣
∣
∥
∥

L∞(G) ≤ 1.Thus, u(t) ∈ K, for all t ∈ [0, T ).Next choose an arbitrary

sequence {tn} ↓ t∗ ∈ [0, T ). Since W 1,∞(G) is compactly embedded into W s,p(G)
for each 0 ≤ s < 1 and 1 ≤ p < ∞, there is a subsequence still denoted by {tn} such
that

u(tn) → u(t∗) strongly in W s,p(G)

Hence, u ∈ Cr ([0, T ); W s,p(G)), for all 0 ≤ s < 1 and 1 ≤ p < ∞.
Next choose v in (3.9) such that v(t) = u0, for all t ∈ [0, T ]. It follows that

‖u0 − u(s)+ M(s)‖L2(G) → 0, as s ↓ 0.

which yields (3.4). ��
Lemma 3.3 Let ρε be a mollifier satisfying (2.6). Suppose that u is a solution with
corresponding ξ ∈ M([0, T ] × G

)d
. Then, for each t ∈ (0, T ), and 0 < ε < T − t,

there is h = h(t, ε, ξ) ∈ L2(0, t; L2(G)d) such that

< ∇ · ξ ∗ ρε, φ >C∗
t ,Ct = < ∇ · h, φ >L2(0,t;H−1(G)),L2(0,t;H1

0 (G))
,

∀φ ∈ C([0, t]; C1
0(G))

Proof It follows from (3.8) that

∂

∂t

(
u − M

) ∗ ρε −�u ∗ ρε − ∇ · ξ ∗ ρε = 0 (3.10)

in the sense of distributions over (0, T − ε)× G, and hence,

∇ · ξ ∗ ρε ∈ C([0, t]; H−1(G))

Let

X = {∇φ∣
∣φ ∈ C([0, t]; C1

0(G))
}

Then, X is a subspace of L2(0, t; L2(G)d). For each x = ∇φ ∈ X, define

�(x) =< ∇ · ξ ∗ ρε, φ >C∗
t ,Ct =< ∇ · ξ ∗ ρε, φ >L2(0,t;H−1(G)),L2(0,t;H1

0 (G))

Then,

∣
∣�(x)

∣
∣ ≤ ∥

∥∇ · ξ ∗ ρε
∥
∥

L2(0,t;H−1(G))

∥
∥∇φ∥

∥
L2(0,t;L2(G)d )
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and hence,� is a continuous linear functional on X. It can be extended to a continuous
linear functional on L2(0, t; L2(R)d) by the Hahn-Banach theorem. Thus, there is
h = h(t, ε, ξ) ∈ L2(0, t; L2(G)d) such that

< ∇ · ξ ∗ ρε, φ >C∗
t ,Ct = − < h,∇φ >L2(0,t;L2(G)d )

= < ∇ · h, φ >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

for all φ ∈ C([0, t]; C1
0(G)). ��

Lemma 3.4 Suppose that u is a solution with corresponding ξ ∈ M([0, T ] × G
)d
.

Then, for each t ∈ (0, T ),

∥
∥∇ · ξ‖C∗

t
≤ lim
ε→0

< −∇ · ξ ∗ ρε, u ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

(3.11)

where ρε is the same as above.

Proof It follows from (3.10) that for each 0 < ε < T − t,

s∫

0

<
∂

∂t
v, v − (

u − M
) ∗ ρε > dt −

s∫

0

< �u ∗ ρε, v − (
u − M

) ∗ ρε > dt

−
s∫

0

< ∇ · ξ ∗ ρε, v − u ∗ ρε > dt −
s∫

0

< ∇ · ξ ∗ ρε,M ∗ ρε > dt

= 1

2

∥
∥v(s)− (

u ∗ ρε
)
(s)+ (

M ∗ ρε
)
(s)‖2

L2(G) − 1

2

∥
∥v(0)− (

u ∗ ρε
)
(0)

+ (
M ∗ ρε

)
(0)‖2

L2(G) (3.12)

for all s ∈ [0, t], and all v ∈ C1([0, t]; C1
0(G)). Here <, > is the duality pairing

between H1
0 (G) and H−1(G).

By passing ε → 0 in (2.8) with ψ replaced by v and M, respectively,

lim
ε→0

< ∇ · ξ ∗ ρε, v >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

= < ∇ · ξ, v >C∗
t ,Ct

and

lim
ε→0

< ∇ · ξ ∗ ρε,M >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

= < ∇ · ξ,M >C∗
t ,Ct .

By means of (2.7), we see that

∣
∣< ∇ · ξ ∗ ρε,M − M ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1

0 (G))

∣
∣

≤ ∥
∥∇ · ξ ∗ ρε

∥
∥

C∗
t

∥
∥M − M ∗ ρε

∥
∥

C([0,t];C1
0 (G))

→ 0, as ε → 0
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It follows that

lim
ε→0

< ∇ · ξ ∗ ρε,M ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

= < ∇ · ξ,M >C∗
t ,Ct .

Now it is easy to see that

lim
ε→0

< ∇ · ξ ∗ ρε, u ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

must exist

because the limits of all other terms of (3.12) exist as ε → 0. Next by choosing
v ∈ C1([0, t]; C1

0(G)) such that
∣
∣∇v(s, x)

∣
∣ ≤ 1, for all (s, x) ∈ [0, t] × G, and by

comparing with the inequality (3.9), we conclude that

< −∇ · ξ, v >C∗
t ,Ct ≤ lim

ε→0
< −∇ · ξ ∗ ρε, u ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1

0 (G))

For each v ∈ C([0, t]; C1
0(G)) such that

∣
∣∇v(s, x)

∣
∣ ≤ 1, for all (s, x) ∈ [0, t] × G,

there is a sequence
{
vn

}
in C1([0, T ]; C1

0(G)) such that
∣
∣∇vn(s, x)

∣
∣ ≤ 1, for all

(s, x) ∈ [0, t] × G, and vn → v in C([0, t]; C1
0(G)). Thus, (3.11) follows. ��

Lemma 3.5 Let u be a solution with corresponding ξ ∈ M([0, T ] × G
)d
. Let v be

another function such that

v ∈ L∞(0, T ; H1
0 (G)), v(t) ∈ K, for almost all t ∈ (0, T )

It holds that

lim
ε→0

< −∇ξ ∗ ρε, u ∗ ρε − v ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

≥ 0 (3.13)

for each t ∈ (0, T ).

Proof Fix any γ > 0, and 0 < t < T . By Lemma 2.3, there is 0 < ε0 < γ such that
ε0 < T − t, and

∥
∥∇ · ξ ∗ ρε

∥
∥

C∗
t

≤ ∥
∥∇ · ξ∥∥C∗

t
+ γ, for all 0 < ε ≤ ε0.

By virtue of Lemmas 2.2 and 3.3, there is wε,γ such that

wε,γ ∈ C([0, t]; C1
0(G))∣

∣< ∇ · ξ ∗ ρε, v ∗ ρε − wε,γ >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

∣
∣ < γ

∥
∥wε,γ

∥
∥

C([0,t];C1
0 (G))

≤ 1 + γ
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Hence, for each 0 < ε ≤ ε0,

< ∇ · ξ ∗ ρε, v ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

=< ∇ · ξ ∗ ρε, v ∗ ρε − wε,γ >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

+ < ∇ · ξ ∗ ρε,wε,γ >C∗
t ,Ct

≥ −γ − (1 + γ )
∥
∥∇ · ξ ∗ ρε

∥
∥

C∗
t

≥ −γ − (1 + γ )
(∥∥∇ · ξ∥∥C∗

t
+ γ

)

Thus, we have

lim
ε→0

< −∇ξ ∗ ρε, u ∗ ρε − v ∗ ρε >L2(0,t;H−1(G),L2(0,t;H1
0 (G))

≥ lim
ε→0

< ∇ · ξ ∗ ρε, v ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

+ lim
ε→0

< −∇ · ξ ∗ ρε, u ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

≥ lim
ε→0

< ∇ · ξ ∗ ρε, v ∗ ρε >L2(0,t;H−1(G)),L2(0,t;H1
0 (G))

+∥
∥∇ · ξ∥∥C∗

t

≥ −γ − γ
∥
∥∇ · ξ∥∥C∗

t
− γ (1 + γ )

This yields (3.13). ��
Theorem 3.6 According to Definition 3.1, there is at most one solution of (3.3) and
(3.4).

Proof Let u1 and u2 be solutions with corresponding measures ξ1 and ξ2, respectively.
Let us set

w = u1 − u2

Then, it holds that

∂w

∂t
−�w − ∇ · ξ1 + ∇ · ξ2 = 0

in the sense of distributions over (0, T )× G. Let ρε be a mollifier satisfying (2.6). For
0 < ε < T, it holds that

∂

∂t
w ∗ ρε −�w ∗ ρε − ∇ · ξ1 ∗ ρε + ∇ · ξ2 ∗ ρε = 0

on the interval [0, T − ε). Choose any t∗ ∈ (0, T ). By virtue of Lemma 3.5,

lim
ε→0

< −∇ξ1 ∗ ρε, u1 ∗ ρε − u2 ∗ ρε >L2(0,t∗;H−1(G)),L2(0,t∗;H1
0 (G))

≥ 0 (3.14)

123



Stoch PDE: Anal Comp (2014) 2:27–53 41

and

lim
ε→0

< ∇ξ2 ∗ ρε, u1 ∗ ρε − u2 ∗ ρε >L2(0,t∗;H−1(G)),L2(0,t∗;H1
0 (G))

≥ 0 (3.15)

Since w ∈ Cr ([0, T ); L2(G))∩ L∞(0, T ; H1
0 (G)), it follows from (3.14) and (3.15)

that

∥
∥w(t∗)

∥
∥2

L2(G) + 2

t∗∫

0

∥
∥w(t)

∥
∥2

H1
0 (G)

dt ≤ 0 (3.16)

which yields w ≡ 0. ��
Theorem 3.7 Let u be a solution with corresponding ξ ∈ M([0, T ] × G

)d
. Suppose

that O is an open subset of (0, T )× G such that

∣
∣∇u(t, x)

∣
∣ ≤ 1 − ν, for almost all (t, x) ∈ O

for some 0 < ν < 1. Then, ∇ · ξ = 0 in O in the sense of distributions.

Proof Let V be a nonempty open set such that

V ⊂ O ∩ {(0, s)× G}, for some 0 < s < T

Choose any φ ∈ C∞
c (V). Then, there is λ �= 0 such that

∣
∣λ∇φ(t, x)

∣
∣ < ν, ∀(t, x)

Let us define

v = u − λφ

Then, v(t) ∈ K, for almost all t ∈ (0, T ), and we can apply Lemma 3.5 so that

lim
ε→0

< −∇ξ ∗ ρε, u ∗ ρε − v ∗ ρε >L2(0,s;H−1(G)),L2(0,s;H1
0 (G))

≥ 0

and thus,

lim
ε→0

< −∇ξ ∗ ρε, λφ ∗ ρε >L2(0,s;H−1(G)),L2(0,s;H1
0 (G))

≥ 0

But

0 ≤ lim
ε→0

< −∇ · ξ ∗ ρε, λφ ∗ ρε >L2(0,s;H−1(G)),L2(0,s;H1
0 (G))

= lim
ε→0

< −∇ · ξ ∗ ρε, λφ ∗ ρε >C∗
s ,Cs

=< −∇ · ξ, λφ >C∗
s ,Cs , by Lemma 2.3
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By considering ±λ, we conclude that

< ∇ · ξ, φ >C∗
s ,Cs = 0

This implies that ∇ · ξ = 0 in V, and hence, in O in the sense of distributions. ��
Remark 3.8 For a solution u of (3.3) and (3.4), the corresponding measure ξ is not
determined uniquely, because we can add to ξ any divergence-free smooth vector field
with compact support in (0, T )× G. We also note that Theorem 3.7 is related to the
general fact that ∂ IK(u) = 0 for u ∈ interior of K if it exists.

4 Stochastic problem

Throughout this section,
(
�,F , P

)
is a given complete probability space and {Ft }t≥0

is a filtration on
(
�,F)

such that Ft is right-continuous for all t, and F0 contains all
P-negligible sets in F . For general information on stochastic calculus, see [6,10,13].

We set

M(t) =
∞∑

j=1

t∫

0

g j d B j (4.1)

where {B j }∞j=1 is a sequence of mutually independent standard Brownian motions on
(
�,F , {Ft }, P

)
, and each g j = g j (ω, t, x) is H1

0 (G)∩ Hk(G)-valued progressively
measurable with k > d

2 + 1 such that

∞∑

j=1

E

( T∫

0

‖g j‖2
H1

0 (G)∩Hk (G)
dt

)
< ∞. (4.2)

Under these assumptions, M(t) ∈ C([0, T ]; C1
0(G)), for P-almost all ω ∈ �.

We first address the issue of existence of a solution, and then we will discuss the
Markov property of the solution and prove the existence of an invariant measure.

4.1 Existence

Definition 4.1 A stochastic process u is a solution of (1.1) and (1.3) if it is adapted
to {Ft } and for P-almost all ω ∈ �, u(ω) is a solution of (3.3) and (3.4) according to
Definition 3.1.

Theorem 4.2 Let T > 0 be given. Suppose that u0 is F0-measurable, and u0(ω) ∈
K, P-almost all ω ∈ �. Under the conditions (4.1) and (4.2), there is a pathwise
unique solution to (1.1) and (1.3).
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Our strategy of the proof is as follows.
By means of the penalty method discussed in [11], we consider the following initial

boundary value problem for each ε > 0.

∂u

∂t
−�u − 1

ε
∇ ·

(
(∣∣∇u

∣
∣2 − 1

)+∇u

)
= ∂M

∂t
, (t, x) ∈ (0, T )× G (4.3)

u(t, x) = 0, (t, x) ∈ [0, T ] × ∂G (4.4)

u(0, x) = u0(x), x ∈ G (4.5)

In conjunction with the existence of a unique solution, we will obtain basic stochastic
estimates of a solution independent of ε > 0. By means of these estimates, we can
construct a pathwise solution for P-almost all ω ∈ �, and use Theorem 3.6 to show
that this is the desired stochastic process.

We now present the technical details.
The above problem (4.3) and (4.5) can be resolved by direct application of Theorems

4.2.4 and 4.2.5 of [13]. For this, we consider the following operator for ε > 0.

Aε(w) = �w + 1

ε
∇ ·

(
(∣∣∇w∣

∣2 − 1
)+∇w

)

Our Gelfand triple is

V = W 1,4
0 (G) ⊂ L2(G) ⊂ W −1, 4

3 (G) = V ∗

It is easy to see the following properties of the operator Aε = Aε(w).

[I] For all w1, w2, w3 ∈ V, the map

λ �→< Aε(w1 + λw2), w3 >V ∗, V

is continuous R → R.

[II] For all w1, w2 ∈ V,

< Aε(w1)− Aε(w2), w1 − w2 >V ∗, V ≤ 0

[III] For some constant Cε > 0,

< Aε(w),w >V ∗,V ≤ − 1

2ε

∥
∥w

∥
∥4

V + Cε

for all w ∈ V .
[IV] For all w ∈ V,

∥
∥Aε(w)

∥
∥

V ∗ ≤ Cε
∥
∥w

∥
∥3

V + C
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Here C and Cε are some positive constants.
For the property [II], we consider a convex functional Jε(·) on W 1,4

0 (G) defined by

Jε(w) = 1

2

∫

G

∣
∣∇w∣

∣2
dx + 1

4ε

∫

G

(
(∣∣∇w∣

∣2 − 1
)+

)2

dx

Then, −Aε(w) is the Gâteaux differential at w of Jε .
For [III] and [IV], we note that

1

ε

∫

G

(∣∣∇w∣
∣2 − 1

)+∣
∣∇w∣

∣2
dx ≥ 1

ε

∫

G

∣
∣∇w∣

∣4
dx − 1

ε

∫

G

∣
∣∇w∣

∣2
dx

≥ 1

2ε

∫

G

∣
∣∇w∣

∣4
dx − 1

2ε

∫

G

dx

∣
∣
∣
∣

∫

G

∇w · ∇vdx

∣
∣
∣
∣ ≤ ∥

∥∇w∥
∥

L
4
3 (G)

∥
∥∇v∥∥L4(G) ≤ C

∥
∥∇w∥

∥
L4(G)

∥
∥∇v∥∥L4(G)

≤ (
C

∥
∥∇w∥

∥3
L4(G) + C

)∥∥∇v∥∥L4(G)

and

1

ε

∫

G

(∣∣∇w∣
∣2 − 1

)+∇w · ∇v dx ≤ 1

ε

(∫

G

∣
∣∇w∣

∣4
dx

) 3
4
(∫

G

∣
∣∇v∣∣4

dx

) 1
4

for all v,w ∈ W 1,4
0 (G).

For later use, we also point out the following fact which can be easily proved.

Lemma 4.3 Let f ∈ L2(0, T ; H−1(G)), h ∈ L2(0, T ; V ), and
{
gk

}
be a sequence

in L2(0, T ; V ) such that gk → g, weakly in L2(0, T ; H1
0 (G)). Then,

lim
k→∞

T∫

0

< f, gk >V ∗,V dt =
T∫

0

< f, g >H−1(G),H1
0 (G)

dt

lim
k→∞

T∫

0

< −�gk, gk >V ∗,V dt ≥
T∫

0

∥
∥g

∥
∥2

H1
0 (G)

dt

lim
k→∞

T∫

0

< −�gk, h >V ∗,V dt =
T∫

0

< −�g, h >H−1(G),H1
0 (G)

dt

123



Stoch PDE: Anal Comp (2014) 2:27–53 45

According to Theorems 4.2.4 and 4.2.5 of [13] with help of [I]–[IV], there is a
pathwise unique solution u of (4.3) and (4.5) which satisfies the following properties.

u(ω) ∈ C([0, T ]; L2(G)),

for P-almost all ω ∈ �, and is progressively measurable (4.6)

u ∈ L4([0, T ] ×�, dt ⊗ d P; W 1,4
0 (G)

)
(4.7)

and it holds for P-almost all ω ∈ � that

∥
∥u(t)

∥
∥2

L2(G) + 2

t∫

0

∥
∥u(s)

∥
∥2

H1
0 (G)

ds + 2

ε

t∫

0

∫

G

(∣∣∇u
∣
∣2 − 1

)+∣
∣∇u(s)

∣
∣2

dxds

= ∥
∥u0

∥
∥2

L2(G) + 2
∞∑

j=1

t∫

0

< u(s), g j (s) >L2(G) dB j

+
∞∑

j=1

t∫

0

∥
∥g j (s)

∥
∥2

L2(G)ds, ∀t ∈ [0, T ]. (4.8)

By the Burkholder-Davis-Gundy inequality, we can derive from (4.8) that

E

(
sup

0≤t≤T

∥
∥u(t)

∥
∥2

L2(G)

)
≤ C, (4.9)

E

( T∫

0

∥
∥u(t)

∥
∥2

H1
0 (G)

dt

)
≤ C, (4.10)

E

(
1

ε

T∫

0

∫

G

(∣∣∇u
∣
∣2 − 1

)+∣
∣∇u(s)

∣
∣ds dx

)

≤ E

(
1

ε

T∫

0

∫

G

(∣∣∇u
∣
∣2 − 1

)+∣
∣∇u(s)

∣
∣2

ds dx

)
≤ C (4.11)

for some positive constants C independent of ε. Let us denote by uk the solution when
ε = 1

k , k = 1, 2, . . ., and define

ξk = k
(∣∣∇uk

∣
∣2 − 1

)+∇uk

Since we have

E

(
sup

0≤t≤T

∥
∥uk(t)

∥
∥2

L2(G) + ∥
∥uk

∥
∥2

L2(0,T ;H1
0 (G))

+ ∥
∥
∣
∣ξk

∣
∣
∥
∥

L1([0,T ]×G)

)
≤ C
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for all k ≥ 1, it follows that

P

( ∞⋃

L=1

∞⋂

m=1

∞⋃

k=m

{
ω ∈ �

∣
∣
∣
∣ sup

0≤t≤T

∥
∥uk(t)

∥
∥2

L2(G)

+ ∥
∥uk

∥
∥2

L2(0,T ;H1
0 (G))

+ ∥
∥
∣
∣ξk

∣
∣
∥
∥

L1([0,T ]×G) ≤ L

})
= 1

Hence, there is �̂ ⊂ � such that P
(
� \ �̂) = 0, and for each ω ∈ �̂, there is a

subsequence {km} depending on ω and a positive constant L(ω) such that

sup
0≤t≤T

∥
∥ukm (t)

∥
∥2

L2(G) + ∥
∥ukm

∥
∥2

L2(0,T ;H1
0 (G))

+ ∥
∥
∣
∣ξkm

∣
∣
∥
∥

L1([0,T ]×G) ≤ L(ω) < ∞
(4.12)

for all km . Hence, there is a subsequence still denoted by
{(

ukm , ξkm

)}
such that

ukm → u weak star in L∞(0, T ; L2(G)) (4.13)

ukm → u weakly in L2(0, T ; H1
0 (G)) (4.14)

ξkm → ξ weak star in M([0, T ] × G
)d (4.15)

For each k ≥ 1, it holds for P-almost all ω ∈ � that

∂

∂t

(
uk − M

) −�uk − ∇ · ξk = 0 (4.16)

in the sense of distributions over (0, T )× G, and

s∫

0

<
∂v

∂t
− ∂(uk − M)

∂t
, v − uk + M >V ∗,V dt = 1

2

∥
∥v(s)− uk(s)+ M(s)

∥
∥2

L2(G)

− 1

2

∥
∥v(0)− u0

∥
∥2

L2(G) (4.17)

s∫

0

<
∂(uk − M)

∂t
, v − uk + M >V ∗,V dt =

s∫

0

< �uk, v − uk + M >V ∗,V dt

+
s∫

0

< ∇ · ξk, v − uk >V ∗,V dt

−
s∫

0

∫

G

∇M · ξk dx dt (4.18)
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for all s ∈ [0, T ], and all v ∈ L4(0, T ; V ) such that
∂v

∂t
∈ L2(0, T ; H−1(G)). Here,

we note that

uk ∈ L4(0, T ; V ), ∇ · ξk ∈ L
4
3 (0, T ; V ∗),

and

∂

∂t

(
uk − M

) ∈ L
4
3 (0, T ; V ∗),

for P-almost all ω ∈ �.
By adding (4.17) and (4.18), we have

s∫

0

<
∂v

∂t
, v − uk + M >V ∗,V dt −

s∫

0

< �uk, v − uk + M >V ∗,V dt

−
s∫

0

< ∇ · ξk, v − uk >V ∗,V dt +
s∫

0

∫

G

∇M · ξk dx dt

= 1

2

∥
∥v(s)− uk(s)+ M(s)

∥
∥2

L2(G) − 1

2

∥
∥v(0)− u0

∥
∥2

L2(G) (4.19)

But

〈−∇ ·
(

(∣∣∇v∣∣2 − 1
)+∇v

)
+ ∇ ·

(
(∣∣∇uk

∣
∣2 − 1

)+∇uk

)
, v − uk

〉
V ∗,V ≥ 0

for almost all t ∈ [0, T ], and

(∣∣∇v(t)∣∣2 − 1
)+ = 0 if v(t) ∈ K

Thus, if v(t) ∈ K, for almost all t ∈ [0, T ],

− < ∇ · ξk, v − uk >V ∗,V ≤ 0, for almost all t ∈ [0, T ]

and hence, (4.19) yields

s∫

0

<
∂v

∂t
, v − uk + M >V ∗,V dt −

s∫

0

< �uk, v − uk + M >V ∗,V dt

+
s∫

0

∫

G

∇M · ξkdx dt ≥ 1

2

∥
∥v(s)− uk(s)+ M(s)

∥
∥2

L2(G) − 1

2

∥
∥v(0)− u0

∥
∥2

L2(G)

(4.20)
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for all s ∈ [0, T ].
It follows that

T∫

0

ψ(s)

( s∫

0

<
∂v

∂t
, v − uk + M >V ∗,V dt

)
ds

−
T∫

0

ψ(s)

( s∫

0

< �uk, v − uk + M >V ∗,V dt

)
ds

+
T∫

0

ψ(s)

( s∫

0

∫

G

∇M · ξk dx dt

)
ds

≥
T∫

0

ψ(s)

(
1

2

∥
∥v(s)− uk(s)+ M(s)

∥
∥2

L2(G) − 1

2

∥
∥v(0)− u0

∥
∥2

L2(G)

)
ds

(4.21)

for all ψ ∈ C([0, T ]) such that ψ(t) ≥ 0,∀t .
There is �† ⊂ �̂ such that P

(
� \ �†

) = 0 and for each ω ∈ �†, (4.16) and
(4.21) hold for all k, all ψ ∈ C([0, T ]) such that ψ(t) ≥ 0,∀t, and all v such that
∂v

∂t
∈ L2(0, T ; H−1(G)) and v(t) ∈ K, for almost all t ∈ [0, T ]. For ω ∈ �†, let

(
u, ξ

)
be determined by (4.13)–(4.15). Then, by Lemma 4.3, (4.21) implies that

T∫

0

ψ(s)

( s∫

0

<
∂v

∂t
, v − u + M >H−1(G),H1

0 (G)
dt

)
ds

−
T∫

0

ψ(s)

( s∫

0

< �u, v − u + M >H−1(G),H1
0 (G)

dt

)
ds

+
T∫

0

ψ(s)

( ∫

[0,s]×G

∇M · dξ

)
ds

≥
T∫

0

ψ(s)

(
1

2

∥
∥v(s)− u(s)+ M(s)

∥
∥2

L2(G) − 1

2

∥
∥v(0)− u0

∥
∥2

L2(G)

)
ds

(4.22)

Hence, it holds that
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s∫

0

<
∂v

∂t
, v − u + M >H−1(G),H1

0 (G)
dt −

s∫

0

< �u, v − u + M >H−1(G),H1
0 (G)

dt

+
∫

[0,s]×G

∇M · dξ ≥ 1

2

∥
∥v(s)− u(s)+M(s)

∥
∥2

L2(G) − 1

2

∥
∥v(0)−u0

∥
∥2

L2(G) (4.23)

for almost all s ∈ [0, T ], for each v such that
∂v

∂t
∈ L2(0, T ; H−1(G))with v(t) ∈ K,

for almost all t ∈ [0, T ]. It also follows from (4.16) that

∂

∂t

(
u − M

) −�u − ∇ · ξ = 0 (4.24)

in the sense of distributions over (0, T )× G. We now modify the measure ξ.

ξ̂
(
F

) def= ξ
(
F ∩ {(0, T ] × G}), ∀F ∈ B([0, T ] × G

)

Then,

∥
∥ξ̂

∥
∥({0} × G

) = 0 (4.25)

and, (4.23) and (4.24) are still valid with ξ replaced by ξ̂ , because M(0, x) = 0, for
all x ∈ G. Since the functional

w �→
T∫

0

∫

G

(∣∣∇w∣
∣2 − 1

)+
dx dt

is convex on L2(0, T ; H1
0 (G)), it follows from (4.12) and (4.14) that

T∫

0

∫

G

(∣∣∇u
∣
∣2 − 1

)+
dx dt ≤ lim

m→∞

T∫

0

∫

G

(∣∣∇ukm

∣
∣2 − 1

)+
dx dt

≤ lim
m→∞

T∫

0

∫

G

(∣∣∇ukm

∣
∣2 − 1

)+∣
∣∇ukm

∣
∣dx dt

≤ lim
m→∞

L(ω)

km
= 0

Therefore,

u(t) ∈ K, for almost all t ∈ [0, T ] (4.26)
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and u and ξ̂ satisfy all the conditions of Definition 3.1. Also, by Lemma 3.2, we see
that

u ∈ Cr ([0, T ); W s,p(G)), for all 0 ≤ s < 1, 1 ≤ p < ∞

and, by Lemma 2.4,

u(t) ∈ K, for all t ∈ [0, T )

For each ω ∈ �†, a solution u(ω) of (3.3) and (3.4) has been obtained as the limit
of a convergent subsequence satisfying (4.13)–(4.15). By Theorem 3.6, the limit is
independent of the choice of such a subsequence. Based on this, we will establish
measurability of u.

Fix any t∗ ∈ (0, T ).As above, let uk be the solution of (4.3)–(4.5) for ε = 1
k , k ≥ 1,

with corresponding ξk . We set

�(uk) = sup
0≤t≤t∗

∥
∥uk(t)

∥
∥2

L2(G) + ∥
∥uk

∥
∥2

L2(0,t∗;H1
0 (G))

+ ∥
∥
∣
∣ξk

∣
∣
∥
∥

L1([0,t∗]×G)

and choose any ψ ∈ L2(0, t∗; L2(G)) and λ ∈ R. It holds that

{
ω ∈ �†

∣
∣
∣
∣ < u, ψ >L2(0,t∗;L2(G))≤ λ

}

=
∞⋂

ν=1

∞⋃

L=1

∞⋂

m=1

∞⋃

k=m

{
ω ∈ �†

∣
∣
∣
∣ < uk, ψ >L2(0,t∗;L2(G)) ≤ λ+ 1

ν
, �(uk) ≤ L

}

Since the set on the right-hand side belongs to Ft∗ and L2(0, t∗; L2(G)) is separable, u
is L2(0, t∗; L2(G))-valued Ft∗-measurable, which is valid for each t∗ ∈ (0, T ). Let ρε
be a mollifier satisfying (2.6). Then,

(
u ∗ ρε

)
(t∗) is L2(G)-valued Ft∗+ε-measurable.

Since u ∈ Cr ([0, T ); L2(G)), for each ω ∈ �†,

(
u ∗ ρε

)
(t∗) → u(t∗) strongly in L2(G)

as ε → 0. Since Ft∗+ = Ft∗ , u(t∗) is L2(G)-valued Ft∗-measurable. Also, u(t∗) is
H1

0 (G)-valued Ft∗ -measurable, because B(
H1

0 (G)
) ⊂ B(

L2(G)
)
.Hence, u is adapted

to {Ft }. Pathwise uniqueness is a direct consequence of Theorem 3.6. Now the proof
of Theorem 4.2 is complete.

4.2 Markov property and invariant measure

We further assume that g j = g j (x),∀ j, in (4.1), and (4.2) holds for each 0 < T < ∞.
Let X (t; s, x), 0 ≤ s ≤ t < ∞, be the solution of (1.1) with the initial condition

(1.3) replaced by

X (s; s, x) = x ∈ K (4.27)
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Then, for each x ∈ K, we have X (t, s; x) ∈ K, for all t ∈ [s,∞), for P-almost all
ω ∈ �.

For 0 ≤ s < t < ∞, we construct a σ -algebra Gt,s as follows:
Ht,s is the σ -algebra generated by

{
B j (z)− B j (s)

}
, s ≤ z ≤ t, j = 1, 2, . . .,

and P-negligible sets
and

Gt,s =
⋂

ε>0

Ht+ε,s

Then, Gt,s ⊂ Ft , and Gt,s is independent of Fs . Let Xk(t, s; x) be the solution on the
interval [s,∞) of (4.3), (4.4) and

Xk(s, s; x) = x (4.28)

Then, Xk(t, s; x) is adapted to
{Gt,s

}
t≥s . By the same proof of the fact that u(t∗) is

Ft∗-measurable, X (t, s; x) is Gt,s-measurable, and hence, independent of Fs .

Lemma 4.4 For each 0 ≤ s ≤ z ≤ t < ∞, and x ∈ K, it holds that

X (t; s, x) = X
(
t; z, X (z; s, x)

)
, for P-almost all ω ∈ �

Proof This follows from pathwise uniqueness of a solution. ��
Lemma 4.5 Let f be H1

0 (G)-valued Fs -measurable such that f (ω) ∈ K, for
P-almost all ω ∈ �. Then, for each ε > 0, there is a function fε such that

fε(ω) ∈ K, ∀ω, (4.29)

fε(ω) =
N (ε)∑

k=1

akχFk (ω) (4.30)

where ak ∈ K,∀k, and Fk’s are disjoint Fs -measurable subsets such that � =⋃N (ε)
k=1 Fk, and

∥
∥ f (ω)− fε(ω)

∥
∥

L2(G) < ε, for P-almost all ω ∈ �. (4.31)

Here, χFk (·) denotes the characteristic function of the set Fk.

Proof Since K is a compact metric space with the metric of L2(G), it is easy to see
(4.30) and (4.31). Since � = ⋃N (ε)

k=1 Fk, (4.30) implies (4.29). ��
Lemma 4.6 Let 0 ≤ s ≤ t < ∞, For i = 1, 2, let hi be L2(G)-valued Fs -
measurable and hi (ω) ∈ K, for P- almost all ω ∈ �. Then, it holds that

∥
∥X (t, s; h1)− X (t, s; h2)

∥
∥2

L2(G) ≤ ∥
∥h1 − h2

∥
∥2

L2(G), for P-almost all ω ∈ �
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Proof This follows by the same argument as for (3.16) ��
By means of the above Lemmas 4.4–4.6, we can repeat the standard argument to

show the following Markov property of the process X = X (t; s, x). For details, see
[6,13].

Theorem 4.7 Let F be a bounded continuous function on L2(G). For any 0 ≤ s ≤
z ≤ t < ∞, and x ∈ K, it holds that

E

(
F

(
X (t; s, x)

)
∣
∣
∣
∣Fz

)
= E

(
F

(
X (t; z, y)

)
)∣

∣
∣
∣
y=X (z;s,x)

, for P-almost all ω ∈ �.

Theorem 4.8 There is an invariant measure μ on K such that

∫

K

E

(
F

(
X (t; 0, x)

)
)

dμ =
∫

K

F(x) dμ

for all t ≥ 0, and all bounded continuous function F on L2(G).

Proof By virtue of Lemma 2.5 and Theorem 4.7, we can use the method of Krylov
and Bogoliubov to prove the existence of an invariant measure. We omit the details,
which are well-known. ��
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