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Abstract A novel lectin was purified from the dorsal spines of the devil stinger, Inimicus japonicus using a

combination of affinity chromatography techniques. A single band was detected on a native PAGE gel with a

relative molecular mass of 97 kDa. The N-terminal partial amino acid of the intact 75 kDa subunit of the

97 kDa lectin was found to be DHEDS. The agglutination of rabbit erythrocytes by the 97 kDa lectin was

inhibited most effectively by methyl a-D-mannoside. The 97 kDa lectin stimulated mitogenesis in murine

splenocytes. This is the first study to examine the dorsal lectin of I. japonicus and one of the very few studies

on venom lectins from venomous scorpaeniform fish. These results suggest that the devil stinger, I. japonicus,

may be a novel resource for biologically active substances.
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Background

A large number of venomous and poisonous animals exist in aquatic environments worldwide. More than 200

of the approximately 22,000 species of fish in the ocean are considered to be venomous (Halstead 1988;

Russell 1996). Most of these venomous fish are non-migratory, slow moving, and mainly live in shallow

waters in protected habitats (Maretic 1988). Venomous scorpaeniform fish include the lionfish and scorpi-

onfish from the family Scorpaenidae, devil stinger and stonefish from the family Synanceiidae, and waspfish

from the family Tetrarogidae (Kiriake et al. 2013). These fish possess 11–17 dorsal, 2 pelvic, and 3 anal

spines, with the venom secretory complex being located within the anterolateral grooves of these spines

(Russell 1965; Halstead 1988; Haddad et al. 2003; Smith and Wheeler 2006; Andrich et al. 2010).

The devil stinger Inimicus japonicus, which belongs to the family Synanceiidae, has 17 dorsal, 1 pelvic, and

2 anal spines, which contain venom glands that are covered by an integumentary sheath (Tange 1954). I.

japonicus, a valuable demersal scorpaenid fish, is widely distributed along the coastal areas of eastern Asia at

a depth of between 10 and 200 m (Wang et al. 2013). The body of Inimicus is covered in warts or skin lumps,

with many skin tubercle glands similar to the stonefish. Envenomation occurs when people carelessly handle

or step on these fish, and are stung by the dorsal spines. Envenomation appears immediately as intense, sharp,

and persisting local pain, and swelling around the sting (Auerbach 1991; Yamamoto et al. 2010). Symptoms

depend on the amount of venom injected. Systemic effects including dizziness, fever, and delirium have been

reported (Auerbach 1991). However, only a limited number of studies have investigated the toxicity of I.

japonicus. Therefore, we herein examined the dorsal venom of the devil stinger, I. japonicus using column

chromatography and, for the first time, separated a novel lectin that induced mitogenic activity.

Methods

Isolation of a dorsal lectin

Inimicus japonicus (18 specimens, average size of 20 cm) were collected by local fishermen from the coast of

Hiroshima Prefecture and Tokushima Prefecture, Japan in May 2003 (Fig. 1a, b). The collected fish were

transported alive or frozen to our laboratory. The dorsal spines (a total of 17) of I. japonicus were cut from

their base, and the dorsal venom protein was extracted with 0.15 M NaCl as reported previously (Nagasaka

et al. 2009). Briefly, in the first step of purification, the venom protein was applied to a Phenyl Sepharose CL-

4B (GE Healthcare, Uppsala, Sweden) affinity chromatographic column (2 ml) equilibrated with 16 mM Tris-

HCl buffer containing 2 M NaCl (pH 7.4). The sample was rinsed and washed with the same buffer containing

0.01 M NaCl at a flow rate of 20 ml/h (Fig. 1a). The 2-ml elution fractions were collected and analyzed for

absorption at 280 nm and agglutinating activity. Each of the unbound and bound fractions was pooled and

Fig. 1 The devil stinger Inimicus japonicus as seen from above (a) and a specimen with erect dorsal spines (b)
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analyzed for electrophoresis. The final step of purification was achieved using a Concanavalin A-Sepharose

4B (Sigma-Aldrich, Missouri, USA) column (2 ml) equilibrated with 20 mM Tris-HCl buffer containing

0.4 M NaCl (pH 7.4). The unbound fraction (the PS-I fraction) was rinsed and washed with the same buffer,

and eluted with the same buffer containing 100 mM methyl-a-D-mannoside in the buffer at a flow rate of

20 ml/h (Fig. 1b). Elution fractions (2 ml) were collected and analyzed for absorption at 280 nm and ag-

glutinating activity. Each of the unbound (PS-I-ConA-I fraction) and bound (PS-I-ConA-II fraction) fractions

was pooled and analyzed for electrophoresis. PS-I-ConA-II was then used as the purified lectin. Protein

content was measured according to the method of Bradford (1976) using bovine albumin as a standard.

Electrophoresis

Polyacrylamide gel electrophoresis (PAGE) was performed as described by Davis (1964) using a 4–20 %

gradient gel. Sodium dodecyl sulfate (SDS)-PAGE was carried out by the method of Laemmli (1970) using a

10–20 % gradient gel. Protein samples were heated in the presence of 2-mercaptoethanol for 4 min at 98 �C.
The gels were stained with Coomassie brilliant blue.

Glycoprotein staining

The glycoprotein sugar moieties of the sample protein were detected in the SDS-PAGE gel using the GelCode

Glycoprotein kit (Pierce Biotech., Inc., IL, USA). This kit detects sugars that occur in glycoproteins, including

galactose, mannose, glucose, N-acetylglucose, N-acetylgalactosamine, sialic acid, fucose, and xylose.

Assay of agglutinating activity

Agglutinating activity was assayed using rabbit erythrocytes on microtiter plates. Twenty-five microliters of a

2 % (v/v) suspension of erythrocytes in 6.4 mM phosphate-buffered saline (PBS) was added to 50 ll of a
serial twofold dilution of the sample. The plates were incubated at room temperature for 1 h. The results

obtained were expressed by the minimum concentration of the sample (lg/ml) required for positive agglu-

tination. The inhibition of agglutination was expressed as the minimum concentration of each sugar required

to inhibit the agglutinating activity of the sample.

Mitogenic activity

Mitogenic activity in murine splenocytes was determined using a cell culture assay with a dye, the tetrazolium

salt 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Nakagawa et al. 1997). Splenocytes

were collected from female ddY mice and suspended in RPMI-1640 medium supplemented with penicillin and

streptomycin (100 lg/ml and 100 U/ml). Splenocytes (5 9 106 cells/ml) with or without concanavalin A

(1 lg/ml) and samples were plated on flat-bottom microplates and incubated at 37 �C in a humidified at-

mosphere containing 5 % CO2 for 68 h. Ten microliters of the MTT tetrazolium salt solution (5 mg/ml) was

then introduced into each well, and formazan was extracted from the cells with 10 % sodium sulfate (SDS)

after 4 h. The optical density of each well was measured spectrophotometrically with a microplate reader

(Thermo Fisher Scientific, MultiskanGo, Yokohama, Japan) at 570 nm.

N-terminal amino acid sequencing

Approximately, 3 lg of the sample protein was subjected to SDS-PGE, followed by electroblotting on a

polyvinylidene difluoride membrane. The membrane was then stained with Ponceau S and destained. The

protein band was excised and subjected to automated Edman degradation using the Shimadzu Model PPSQ-30

protein sequencer (Shimadzu Corp., Kyoto, Japan).
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Statistical analysis

Data are expressed as the mean or mean ± standard deviation (SD). Statistical analyses were performed using

the SPSS version 16.0 software package (SPSS, Chicago, Inc., IL, USA). Statistical analyses of the results

obtained were performed using Dunnett’s multiple comparison test when various experimental groups were

compared to the control groups, and the Student’s t test was used for paired groups. P\ 0.05 was considered

significant.

Results and discussion

Dorsal venom was previously reported to induce weak agglutination in rabbit erythrocytes and stimulated

mitogenesis in murine splenocytes (Nakagawa et al. 2011). The venom possessed a glycoprotein that was

stained by SDS-PAGE using the GelCode Glycoprotein kit, indicating that it contained one band corre-

sponding to a protein with an apparent mass of 75 kDa (data not shown). Therefore, we herein attempted to

isolate a lectin from the dorsal spines of I. japonicus using a combination of affinity chromatography tech-

niques (Fig. 2a, b). Dorsal venom was applied to a Phenyl Sepharose CL-4B column (2 ml) equilibrated with

16 mM Tris-HCl buffer containing 2 M NaCl (pH 7.4). The sample was rinsed with the same buffer and then

eluted with the same buffer containing 0.01 M NaCl at a flow rate of 20 ml/h. Figure 2a shows the elution

pattern with two protein peaks. The first peak (the PS-I fraction) induced agglutinating activity at a dose of

6.25 lg/ml, while the second peak (the PS-II fraction) induced this activity at a higher dose of 200 lg/ml (data

not shown). SDS-PAGE analysis of the PS-I fraction showed two main bands that corresponded to proteins

with apparent masses of 30 and 97 kDa (Fig. 2a). The PS-I fraction was applied to a Concanavalin

A-Sepharose 4B column (2 ml) equilibrated with 20 mM Tris-HCl buffer containing 0.4 M NaCl (pH 7.4) for

purification. The column was rinsed thoroughly with the same buffer and then eluted with 100 mM methyl-a-
D-mannoside in the buffer at a flow rate of 20 ml/h.

As shown in Fig. 2b, a native PAGE analysis of the unbound fraction (the PS-I-ConA-I fraction) identified

two bands corresponding to proteins with apparent masses of 30 and 97 kDa. On the other hand, the bound

fraction (the PS-I-ConA-II fraction) showed a single discrete band corresponding to a protein with an apparent

mass of 97 kDa. The PS-I-Con A-II fraction was a glycoprotein fraction that contained mannose residues. This

glycoprotein fraction was designated as a 97 kDa lectin. The recovery of the 97 kDa lectin in terms of protein

content accounted for 0.35 % of the dorsal venom. SDS-PAGE showed that the 97 kDa lectin was mainly

composed of 75 and 30 kDa subunits (Fig. 2b). The 75 kDa subunit of the 97 kDa lectin was subjected to a

partial amino acid sequence analysis. The N-terminal amino acid of the 75 kDa subunit was aspartic acid. The

partial amino acid sequence was determined up to 5 residues, and found to be DHEDS. In the case of the

waspfish Hypodytes rubripinnis, Karatoxin, a novel cytotoxic protein (110 kDa), was successfully purified

from the dorsal spines of this fish (Nagasaka et al. 2009; Shinohara et al. 2010). The N-terminal partial amino

acid sequence of the 76 kDa subunit of Karatoxin was shown to be DQHDDxPxxAPDPG. As the partial

amino acid sequence of the 75 kDa subunit of the 97 kDa lectin was only analyzed up to 5 residues, it is

currently difficult to determine whether it shares homology with the 76 kDa subunit of Karatoxin. Therefore,

we are now attempting to improve the purifying method as well as the recovery of the 97 kDa lectin from the

dorsal venom. Kiriake et al. (2013) recently identified the toxin of I. japonicus as a 160 kDa heterodimer

composed of 80 kDa a- and b-subunits by cDNA cloning. This toxin was very similar to those of the lionfish

P. lunulata and waspfish H. rubripinnis. The venoms of most venomous fish have been proposed to have

similar toxic properties and molecules with similar structures (Saunders 1960; Russell 1965; Church and

Hodgson 2002). Therefore, more detailed studies on the structure of the 97 kDa lectin are needed to elucidate

its sequence homology to Karatoxin and piscine venoms such as those from the stonefish.

The agglutinating activity of the 97 kDa lectin was inhibited most effectively by methyl a-D-mannoside

and, to a lesser extent, by D-mannose, and D-Glucose, suggesting that the hydrogen groups at C-1, C-3, and C-4

of the pyranose ring structure influenced sugar binding to the lectin (Table 1). Figure 3 shows the results of

mitogen responses in murine splenocytes in the presence of the dorsal venom and PS-I-ConA fractions (the

PS-I-ConA-I fraction and PS-I-ConA-II fraction). As shown in Fig. 3a, the dorsal venom induced mitogenic

activity in murine splenocytes at doses ranging from 25 to 50 lg/ml. However, a higher dose (100 lg/ml) of
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the dorsal venom significantly decreased mitogenic activity, suggesting the presence of another biologically

active component in addition to lectin component(s) in the venom. Most piscine venoms have been shown to

exhibit potent cytolytic activity (Shier 1988; Church and Hodgson 2002). We also observed cytotoxic activity

in human leukemia cells (K562) by the dorsal venom (unpublished data). The PS-I-ConA-I fraction and
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Fig. 2 Isolation of a novel lectin from dorsal spines of Inimicus japonicus. The isolation procedure was described in detail in

‘‘Methods’’. a The first purification step used Phenyl Sepharose CL-4B. b The second purification step used Concanavalin

A-Sepharose 4B. Inset panels show native PAGE and SDS-PAGE of affinity chromatographic fractions. M mol wt markers

Table 1 Sugar inhibition of agglutinating activity of 97 kDa lectin

Sugar Minimum effective concentration (mM)

D-Mannose 3.1

Methyl a-D-mannoside 0.78

D-Glucose 12.5

N-Acetylglucosamine 12.5

Othersa NI 100

NI non-inhibitory
a

D-Galactose, D-Fucose, L-Glucose, D-Galactosamine, Lactose
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97 kDa lectin effectively induced mitogenesis in a dose-dependent manner in murine splenocytes (Fig. 3b).

The mitogenic activity induced by the PS-I-ConA-I fraction was slightly higher than that induced by the

97 kDa lectin. This suggests that there is a quantitative and/or qualitative difference in the lectin component

between the two fractions. Further biological and structural studies on the PS-I-ConA-I fraction may lead to

the identification of more novel lectin(s).

Lectins are a large group of proteins that reversibly bind specific carbohydrates and possess at least one

non-catalytic domain (Drickamer 1988). Although many lectins have been isolated from various plants,

bacteria, and animals, including invertebrates (Drickamer and Taylor 1993; Hatakeyama et al. 1994; Naka-

gawa et al. 2003; Sharon and Lis 2004; Malagoli et al. 2010), very few have been detected in marine

vertebrates, particularly venomous fish (Satoh et al. 2002; Nagasaka et al. 2009). In the present study, we

successfully isolated and partially characterized the 97 kDa lectin from I. japonicus as a novel piscine lectin.

The 97 kDa lectin from I. japonicus venom exhibited mitogenic activity in murine splenocytes, suggesting

that it may contribute to the local and systemic effects observed on envenomation such as swelling, severe

pain, and fever. We more recently observed chemotactic activity in guinea-pig neutrophils (unpublished data).

Thus, the 97 kDa lectin may affect inflammatory and immunomodulatory processes. The agglutination in-

duced by the 97 kDa lectin was inhibited by D-mannose and methyl a-D-mannoside. These results suggest that

the 97 kDa lectin may induce mitogenic activity by binding the mannose-containing carbohydrate chains

present on the surface of murine splenocytes. Further studies are needed to clarify the mechanisms underlying

the biological activities of the 97 kDa lectin. Moreover, an investigation of the structural features of this lectin

is needed to elucidate the physiological significance of venom from I. japonicus. The present results suggest

0.00

0.05

0.10

0.15

0.20

0 25 50 100

A
bs

or
ba

nc
e 

at
 5

70
 n

m
A

bs
or

ba
nc

e 
at

 5
70

 n
m

Concentration (µg/ml)

Concentration (µg/ml)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 20 40

PS-I-ConA-I
PS-I-ConA-II (97 kDa lectin)

**
**

**

**

**

**

**

**

#

##

###

B

AFig. 3 Mitogen responses of the dorsal

venom (a) and PS-I-ConA fractions (b) in
murine splenocytes. Splenocytes

(5 9 106 cells/ml) were incubated with the

dorsal venom, PS-I-ConA-I and PS-I-ConA-II

(97 kDa lectin), for 68 h and the incubation

was continued with MTT for 4 h in a CO2

humidified atmosphere. Data show the

mean ± SD of two experiments performed in

triplicate (a) or the mean ± SD of 3–4

experiments performed in triplicate (b).
**P\ 0.01, significantly different from the

negative control. #P\ 0.05, ##P\ 0.01,
###P\ 0.001, significant difference between

two groups according to the Student’s

unpaired t test

123

148 Int Aquat Res (2015) 7:143–150



that the 97 kDa lectin from I. japonicus venom is a source of biologically active substances, which may have

applications as research tools.

Conclusions

A novel lectin was isolated from the dorsal spines of I. japonicus using a combination of affinity chro-

matography techniques. Native PAGE showed that the dorsal lectin was a glycoprotein with a molecular mass

of 97 kDa.

The agglutinating activity of the 97 kDa lectin was effectively inhibited by methyl a-D-mannoside. The

97 kDa lectin may exhibit mitogenic activity by binding to a specific carbohydrate chain, such as mannose

moieties on the cell surface. Our results suggest that the venom of the devil stinger, I. japonicus is a potent

resource for piscine lectins.
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