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Abstract: The temperature distributions of concrete structures strongly depend on the value of thermal conductivity of concrete.

However, the thermal conductivity of concrete varies according to the composition of the constituents and the temperature and

moisture conditions of concrete, which cause difficulty in accurately predicting the thermal conductivity value in concrete. For this

reason, in this study, back-propagation neural network models on the basis of experimental values carried out by previous

researchers have been utilized to effectively account for the influence of these variables. The neural networks were trained by 124

data sets with eleven parameters: nine concrete composition parameters (the ratio of water–cement, the percentage of fine and

coarse aggregate, and the unit weight of water, cement, fine aggregate, coarse aggregate, fly ash and silica fume) and two concrete

state parameters (the temperature and water content of concrete). Finally, the trained neural network models were evaluated by

applying to other 28 measured values not included in the training of the neural networks. The result indicated that the proposed

method using a back-propagation neural algorithm was effective at predicting the thermal conductivity of concrete.

Keywords: concrete, temperature distribution, thermal conductivity, prediction, neural network.

1. Introduction

Many accidental and environmental factors continue to
produce and change heat flow within concrete structures.
The magnitude of the temperature variance and resulting
thermal behaviors primarily depend on the accuracy of
thermal conductivity of concrete (TCC). Since concrete is a
composite material composed of water, cement, fine aggre-
gate, coarse aggregate, and other admixtures, the thermal
conductivity value changes according to the combination of
the concrete compositions including the volume faction and
the unit weight of the constituents, and the ratio of water to
cement. In addition to the mix proportion and constituents of
concrete, many other variables such as quality control, water
content, and temperature are directly associated with the
value of the TCC. Consequently, the prediction of the TCC
is limited and imprecise in the heat transfer and thermal
structure analysis of concrete structures.

The age of concrete hardly affects the change in the TCC
except for very early age of about two days due to hydration
(Kim et al. 2003). Toyokazu and Yoshiro (1976) also found
that the conductivity of concrete slightly increased during
the first three days and became almost constant after the age
of three days. Thus, this study focused on the value of the
TCC in the dry state and accounted for the important vari-
ables, such as the mix proportioning, moisture and temper-
ature status, and unit weight of concrete.
The testing methods and procedure for the measurement of

the TCC are also complicated and time-consuming. In
general, there are three methods of measuring the TCC: the
two-linear parallel probe method, the plane heat source
method, and the hot guarded plate method (Morabito 1989;
Carslaw and Jaeger 1959; Nevile 1995). All the three
methods based on similar basic principles require additional
efforts to cut the specimen thin and firmly place the thermal
probe on/in the specimen, as well as long time control of the
dependent and independent variables during the entire test-
ing. Moreover, the conditions of concrete structures exposed
to real environmental conditions might differ from those
experimentally controlled. Therefore, for the evaluation of
temperature distributions and thermal behaviors in the cur-
rent state of concrete structures, an accurate prediction of the
value of the TCC that can account for all these characteris-
tics of the concrete is essential but very complex. For this
reason, to investigate the complexity and influences of
numerous factors on the TCC, we have employed a back-
propagation neural algorithm that emerged as a new alter-
native to complicated pattern recognition in many fields such
as the medical and biochemistry field.
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The neural network, a prediction method for the estimation
of the TCC, was constructed and trained using 124 experi-
mental data obtained by previous studies (Kim et al. 2003;
Morabito 1989; Harmathy 1983; Yamazaki et al. 1995; Lie
and Kodur 1996; Van Geem et al. 1997; Khan et al. 1998;
Khan 2002; Kodur and Sultan 2003). Based on their data
sets, the developed neural network model was trained with
regard to eleven parameters: nine parameters representing
the composition of concrete constituents, which were the
water–cement ratio, the fine aggregate percentage, the coarse
aggregate percentage, the unit water weight, the unit cement
weight, the unit fine aggregate weight, the unit coarse
aggregate weight, the unit fly ash weight, and the unit silica
fume weight, and two parameters representing the state of
concrete, which were the temperature of the concrete and the
water content in the concrete. Finally, the TCC estimated by
the neural network model was compared with 28 randomly-
selected measured data not included in the neural network
training. As a result, the neural network model, trained by
the eleven parameters, accurately estimated the values of the
TCC. Therefore, this study demonstrated that the proposed
prediction method based on a neural network algorithm
could be used as a reliable and effective technique for
determining thermal conductivity in the thermal design and
analysis of concrete structures.

2. Construction of Neural Network

2.1 Principles of Neural Network
As problems such as pattern recognition, system identifi-

cation, and system control became difficult to solve using
conventional computing methods, the concept of neural
networks was inspired by the biological learning and deci-
sion-making process of the human neuron system. In civil
engineering, neural networks were well applied to the
detection of structural damage (Feng and Bahng 1999), the
identification and control of structural systems (Feng and
Bahng 1999; Chen et al. 1995), the modeling of material
behavior (Adeli and Park 1995), and the proportion of
concrete mixtures (Oh et al. 1999). In addition, the com-
pressive strength of concrete (Kim et al. 2004; Kim et al.
2005) was effectively estimated by several researchers,
including the authors of this paper, who have applied the
neural networks. The main advantage of the neural network
approach is easily to perform the predictions, which depend
on multiple variables and find difficult to develop an ana-
lytical model.
In this paper, we have used feed forward neural networks

based on a backward propagation algorithm for the learning
of the network. The basic processing elements of the net-
work are artificial neurons and connecting weights, and the
complex relationships between input data and corresponding
target values are trained to find patterns in data. During the
training of the network, the connecting weights are updated
in accordance to a particular learning rule until the difference
between the predicted values from the feed forward process
and the target values meets a tolerance limit. Calculations are

conducted from the input of network toward the output data,
and errors computed in the output layer are then propagated
backward to the input layer. After that, the trained neural
network is applied for predicting the outcome of new inde-
pendent input data.

2.2 Structure of Neural Network
To develop the relationships between the TCC and the

eleven parameters, this study created a two-layer network
with twenty neurons, presented in Fig. 1. Each layer is fully
connected to the succeeding layers through the connection
weights. The neural network can be expressed as

net¼ f
X

i

WjiPi þ Bj

 !
ð1Þ

in which Pi is the element of input sets, and Wji and Bj are
the connection weights and biases of the neurons. The input
data for the development of the neural network model, which
play a key role to reach a satisfactory quality of the neural
network approach, were obtained from the literature (Kim
et al. 2003; Morabito 1989; Harmathy 1983; Yamazaki et al.
1995; Lie and Kodur 1996; Van Geem et al. 1997; Khan
et al. 1998; Khan 2002; Kodur and Sultan 2003).
The sets of input data with initial weights were passed

through the network layer, and then the weights and biases
were trained using activation functions, which represented a
tangent sigmoid function in the first layer,

f 1ðxÞ ¼ ex � e�x

ex þ e�x
ð2Þ

and a linear transfer function in the second layer,

f 2ðxÞ ¼ x ð3Þ

During the training of the network, the weights and biases
of the network were iteratively adjusted to minimize the
network performance with a back-propagation algorithm.
The network performance was based on the mean squared
error, MSE, defined as

First layer
(20 neurons)

Second
layer

Input data sets Output data sets

Forward propagation

Backward error propagation

Fig. 1 Structure of the back-propagation neural network.
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MSE ¼ 1

N

XN

k¼1

Tk � akð Þ2 ð4Þ

in which Tk is the calculated value in the network, ak is the
desired thermal conductivity of concrete, and N is the
number of the output neurons. The errors associated with
desired output data are adjusted in the way that reduces
these errors in each neuron from the output to the input
layers. The error function was minimized by the Leven-
berg–Marquardt back-propagation algorithm, which com-
bines the gradient decent and the Gauss–Newton method.
When the solution is far from the correct one, the weights
are updated in the direction of the negative gradient. When
the solution is close to the correct one, the Gauss–Newton
method is applied to the training because it is more accurate
and faster near an error minimum than the gradient decent
method.
The available data sets obtained from the literature were

divided into two sets; the training and testing sets. A total of
the experimental data sets are 152, of which 124 data
(accounting for 80 % of the total data) were randomly
selected for the training of the neural network model, and the
remaining 28 data (accounting for 20 %) were utilized for
the testing of the network performance. The neural network
modeling program was implemented in MATLAB 7.01
software. The number of neurons in the input and the output
layers is equal to the number of the input and output data
sets. Optimal number of the neurons in the hidden layer was
determined to be twenty by training the networks with
increases in the number of the neurons.

2.3 Training of Neural Network
To train the neural network of the TCC, this research

utilized experimental data reported by previous researchers
from the 1980’s to the 2000’s. The training data of the
network were composed of 124 sets from Harmathy (1983),
Morabito (1989), Yamazaki et al. (1995), Lie and Kodur
(1996), Van Geem et al. (1997), Khan et al. (1998), Khan
(2002), Kodur and Sultan (2003) and Kim et al. (2003).
Table 1 presents samples of the data sets used in the training
of the network with eleven parameters: the water–cement
ratio, the fine aggregate percentage, the coarse aggregate
percentage, the unit water weight, the unit cement weight,
the unit fine aggregate weight, the unit coarse aggregate
weight, the unit fly ash weight, the unit silica fume unit
weight, the temperature of concrete, the water content in
concrete.
During the training of the neural network, the weights

and biases of the network were updated until its mean
squared error was less than a target mean squared error.
This study investigated the performance of the neural net-
works on the basis of four different target errors: 0.10,
0.05, 0.01, and 0.005. The prediction performance of the
networks was evaluated using the mean squared error
(MSE) and the statistical correlation coefficient (R). Fig-
ure 2 displays the variations in the mean squared errors and
the correlations of the entire training data. The neural

network, trained by the 0.10 target error, presents a 0.086
error and a 0.850 correlation between the network outputs
and the training sets. As the target errors decreased from
0.10 to 0.005, the mean squared errors also decreased from
0.086 to 0.003. In addition to the mean squared errors, the
correlations between the network outputs and the training
data increased to 0.928, 0.983, and 0.995 in the target
errors 0.05, 0.01, and 0.005, respectively. Furthermore, as
represented in Fig. 3, the distributions of the network
errors, the difference between the network outputs and the
training data sets, showed the decreases as the target errors
decrease from 0.10 to 0.005. The neural networks, trained
by the target errors 0.01 and 0.005, find that most network
errors are in the range of -0.1 to 0.1 W/m K. Since the
difference range is sufficiently accurate in the thermal
analysis of concrete structures, this study determines that
the two neural networks can be applied as optimum models
to the prediction of the TCC.

3. Comparison of Estimated and Measured
Thermal Conductivity of Concrete

Since the training of the neural networks exhibited
similarly good performance in the 0.01 and 0.005 target
errors, this study evaluated the applicability of the two
neural networks to the estimation of the TCC. To evaluate
the trained neural networks, this study randomly selected
28 experimental values not included in the training process
of the neural networks from the research results of
Harmathy (1983), Yamazaki et al. (1995), Lie and Kodur
(1996), Van Geem et al. (1997), Khan et al. (1998), Kodur
and Sultan (2003) and Kim et al. (2003). Table 2 shows
the details of the 28 experimental values with the eleven
parameters: the ratio of water–cement, the percentage of
fine and coarse aggregate, the unit weight of water,
cement, fine aggregate, coarse aggregate, fly ash, and silica
fume, and the temperature and the water content of
concrete.
The values of the TCC obtained in the previous experi-

ments were compared with those estimated by the neural
networks. Table 3 shows the differences between the mea-
sured and estimated values. The results indicate that all of
the estimated values based on the eleven parameters show
good agreement with the measured ones in both neural
networks. In the neural networks with the target error 0.01,
nine estimates matched the measured values, eighteen rep-
resented a 0.1 W/m K difference, and the last one showed a
0.2 W/m K difference. The neural network, trained by the
target error 0.005, showed that twelve estimated values were
the same as the measured ones and that the remaining values
represented the difference of 0.1 W/m K. In addition, Fig. 4
presents the mean squared errors of the neural networks and
the correlations between estimated and measured thermal
conductivity. The errors of the neural networks were found
to be quite small: 0.008 in the target error 0.01 and 0.007 in
the target error 0.005. For the correlation values, the two
neural networks exhibited extremely high values of 0.985
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and 0.987 in the target errors 0.05 and 0.005, respectively.
As a result, the proposed neural networks, developed and
trained by the eleven parameters, estimated the TCC with
high accuracy. Therefore, this estimation method can pro-
vide an efficient technique for obtaining the TCC.

4. Conclusions

The determination of the TCC is essential to the analysis of
its thermal behavior. However, the conductivity value
depends on numerous variables, including the composition,
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Fig. 3 Distributions of the network errors for the training data sets.
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the temperature, and the water content of concrete. Thus, this
paper proposed an effective prediction method based on a
back-propagation neural algorithm and investigated the
influences of all the factors on the TCC. The neural network
model was trained using 124 data sets, obtained experimen-
tally in previous research, with regard to eleven parameters:
the ratio of water to cement, the percentage of fine and coarse
aggregate, the unit content of water, cement, fine aggregate,
coarse aggregate, fly ash content, and silica fume, and the
temperature and the water content of the concrete.
To determine the optimum neural network model for the

estimation of the TCC, this study investigated the variations

and distributions of the network errors as the target errors
decreased from 0.10 to 0.005. Since the two neural networks,
trained by the 0.01 and 0.005 target errors, showed similarly
good performance, the two neural networks were used to
estimate the 28 previouslymeasured values not included in the
training of the neural networks. The estimated values by the
proposed neural networks were very close to the measured
values. For the 0.01 neural network, ten estimated values
were the same as the measured ones, seventeen differed
by 0.1 W/m K, and the last one differed by 0.2 W/m K.
The neural network of the 0.005 target error showed that
twelve values were the same as the measured ones and that the

Table 3 Comparisons between the estimated and experimental values.

Researchers Data no. Concrete thermal conductivity (W/m K)

Measured Estimated by the target
0.01 network

Estimated by the target
0.005 network

Harmathy (1983) 1 0.3 0.4 (0.1) 0.3 (0.0)

2 0.7 0.8 (0.1) 0.8 (0.1)

3 0.9 1.0 (0.1) 0.9 (0.1)

4 1.2 1.2 (0.0) 1.1 (0.0)

5 1.3 1.5 (0.2) 1.4 (0.1)

6 1.5 1.4 (0.1) 1.3 (0.1)

Yamazaki et al. (1995) 7 1.0 1.0 (0.1) 1.1 (0.1)

8 1.3 1.3 (0.0) 1.3 (0.0)

Khan et al. (1998) 9 1.6 1.7 (0.1) 1.7 (0.1)

10 1.8 1.8 (0.0) 1.7 (0.1)

Lie and Kodur (1996) 11 1.0 1.1 (0.1) 1.0 (0.0)

12 1.2 1.3 (0.1) 1.2 (0.0)

Van Geem et al. (1997) 13 1.8 1.9 (0.1) 1.9 (0.1)

14 1.9 1.8 (0.1) 1.9 (0.0)

15 2.0 1.9 (0.1) 2.0 (0.0)

16 2.1 2.2 (0.1) 2.1 (0.0)

Kodur and Sultan (2003) 17 1.4 1.5 (0.1) 1.5 (0.1)

18 1.6 1.7 (0.1) 1.7 (0.1)

Kim et al. (2003) 19 1.0 0.9 (0.1) 0.9 (0.1)

20 1.3 1.2 (0.1) 1.2 (0.1)

21 1.3 1.3 (0.0) 1.2 (0.1)

22 1.4 1.4 (0.0) 1.5 (0.1)

23 1.7 1.7 (0.0) 1.7 (0.0)

24 1.8 1.9 (0.1) 1.8 (0.0)

25 1.8 1.7 (0.1) 1.9 (0.1)

26 2.2 2.2 (0.0) 2.2 (0.0)

27 2.3 2.3 (0.0) 2.4 (0.1)

28 2.4 2.4 (0.0) 2.4 (0.0)

The values in parenthesis present the differences between the measured and estimated thermal conductivity.
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remaining values differed by 0.1 W/m K. The differences in
the two proposed neural network models are accurate enough
to determine the precise temperature distributions of concrete
structures. In addition, the correlations between the estimated
and measured values were found to be very high: 0.985 and
0.987 in the target error 0.05 and 0.005, respectively.
In conclusion, the back-propagation neural networks

include the influence of multiple factors such as the com-
position of concrete constituents and the temperature and
water content of the concrete in the estimation of the TCC.
Based on the estimated results, the proposed network models
provide an efficient method for the determination of the
TCC. Furthermore, as new data are added to the current
training data sets, the performance of the proposed method
should dramatically increase.
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