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Abstract Let (Pn)n≥0 be the sequence of Perrin numbers defined by ternary relation P0 = 3, P1 = 0, P2 = 2,
and Pn+3 = Pn+1+Pn for all n ≥ 0. In this paper, we use Baker’s theory for nonzero linear forms in logarithms
of algebraic numbers and the reduction procedure involving the theory of continued fractions, to explicitly
determine all Perrin numbers that are concatenations of two repeated digit numbers.

Mathematics Subject Classification 11B37 · 11D61 · 11J86

1 Introduction

Let (Pn)n≥0 be the sequence of Perrin numbers, given by the ternary recurrence relation

Pn+3 = Pn+1 + Pn, for n ≥ 0, with the initial conditions P0 = 3, P1 = 0, and P2 = 2.

The first few terms of this sequence are

(Pn)n≥0 = {3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, . . .}.
A repdigit (in base 10) is a non-negative integer N that has only one distinct digit. That is, the decimal expansion
of N takes the form

N = d · · · d
︸ ︷︷ ︸

� times

= d

(

10� − 1

9

)

,

for some non-negative integers d and � with 1 ≤ d ≤ 9 and � ≥ 1. This paper is an addition to the growing
literature around the study of Diophantine properties of certain linear recurrence sequences. More specifically,
our paper focuses on a Diophantine equation involving the Perrin numbers and repdigits. This is a variation
on a theme on the analogous problem for the Padovan numbers, a program developed in [5,7].

In [7], the authors found all repdigits that can be written as a sum of two Padovan numbers. This result
was later extended by the third author to repdigits that are a sum of three Padovan numbers in [4]. In another
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direction, in [5], Ddamulira considered all Padovan numbers that can be written as a concatenation of two
repdigits and showed that the largest such number is Pad(21) = 200. More formally, it was shown that if
Pad(n) is a solution of the Diophantine equation Pad(n) = d1 · · · d1

︸ ︷︷ ︸

� times

d2 · · · d2
︸ ︷︷ ︸

m times

, then

Pad(n) ∈ {12, 16, 21, 28, 37, 49, 65, 86, 114, 200}.
The Padovan numbers and Perrin numbers share many similar properties. In particular, they have the same
recurrence relation, the difference being that the Padovan numbers are initialized via Pad(0) = 0 and
Pad(1) = Pad(2) = 1. This means that the two sequences also have the same characteristic equation.

Despite the similarities, the two sequences also have some stark differences. For instance, the Perrin
numbers satisfy the remarkable divisibility property that if n is prime, then n divides Pn . One can easily
confirm that this does not hold for the Padovan numbers.

Inspired by the second author’s result in [5], we study and completely solve the Diophantine equation

Pn = d1 · · · d1
︸ ︷︷ ︸

� times

d2 · · · d2
︸ ︷︷ ︸

m times

= d1

(

10� − 1

9

)

× 10m + d2

(

10m − 1

9

)

, (1.1)

where d1, d2 ∈ {0, 1, 2, 3, . . . , 9}, d1 > 0, �,m ≥ 1, and n ≥ 0.
Our main result is the following.

Theorem 1.1 The only Perrin numbers which are concatenations of two repdigits are

Pn ∈ {10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 277, 644}.

2 Preliminary results

In this section, we collect some facts about Perrin numbers and other preliminary lemmas that are crucial to
our main argument.

2.1 Some properties of the Perrin numbers

Recall that the characteristic equation of the Perrin sequence is given by φ(x) := x3 − x − 1 = 0, with zeros
α, β and γ = β given by

α = r1 + r2
6

and β = −(r1 + r2) + i
√
3(r1 − r2)

12
,

where

r1 = 3
√

108 + 12
√
69 and r2 = 3

√

108 − 12
√
69.

For all n ≥ 0, Binet’s formula for the Perrin sequence tells us that the nth Perrin number is given by

Pn = αn + βn + γ n. (2.1)

Numerically, the following estimates hold for the quantities {α, β, γ }:
1.32 < α < 1.33,

0.86 < |β| = |γ | = α− 1
2 < 0.87.

It follows that the complex conjugate roots β and γ only have a minor contribution to the right-hand side of
Eq. (2.1). More specifically, let

e(n) := Pn − αn = βn + γ n. Then, |e(n)| <
3

αn/2 for all n ≥ 1.

The following estimate also holds:
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Lemma 2.1 Let n ≥ 2 be a positive integer. Then

αn−2 ≤ Pn ≤ αn+1.

Lemma 2.1 follows from a simple inductive argument, and the fact that α3 = α + 1, from the characteristic
polynomial φ.

LetK := Q(α, β) be the splitting field of the polynomial φ overQ. Then, [K : Q] = 6 and [Q(α) : Q] = 3.
We note that the Galois group of K/Q is given by

G := Gal(K/Q) ∼= {(1), (αβ), (αγ ), (βγ ), (αβγ )} ∼= S3.

We therefore identify the automorphisms of G with the permutation group of the zeroes of φ. We highlight the
permutation (αβ), corresponding to the automorphism σ : α �→ β, β �→ α, γ �→ γ , which we use later to
obtain a contradiction on the size of the absolute value of a certain bound.

2.2 Linear forms in logarithms

Our approach follows the standard procedure of obtaining bounds for certain linear forms in (nonzero) log-
arithms. The upper bounds are obtained via a manipulation of the associated Binet’s formula for the given
sequence. For the lower bounds, we need the celebrated Baker’s theorem on linear forms in logarithms. Before
stating the result, we need the definition of the (logarithmic) Weil height of an algebraic number.

Let η be an algebraic number of degree d with minimal polynomial

P(x) = a0

d
∏

j=1

(x − η j ),

where the leading coefficient a0 is positive and the η j ’s are the conjugates of η. The logarithmic height of η is
given by

h(η) := 1

d

⎛

⎝log a0 +
d

∑

j=1

log
(

max{|η j |, 1}
)

⎞

⎠ .

Note that, if η = p
q ∈ Q is a reduced rational number with q > 0, then the above definition reduces to

h(η) = logmax{|p|, q}.
We list some well-known properties of the height function below, which we shall subsequently use without
reference

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±
2 ) ≤ h(η1) + h(η2),

h(ηs) = |s|h(η), (s ∈ Z).

We quote the version of Baker’s theorem proved by Bugeaud et al. [1, Theorem 9.4].

Theorem 2.2 [1] Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic number field K ⊂ R

of degree D. Let b1, . . . , bt be nonzero integers, such that

	 := η
b1
1 . . . η

bt
t − 1 
= 0.

Then

log |	| > −1.4 × 30t+3 × t4.5 × D2(1 + log D)(1 + log B)A1 . . . At ,

where

B ≥ max{|b1|, . . . , |bt |},
and

A j ≥ max{Dh(η j ), | log η j |, 0.16}, for all j = 1, . . . , t.
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2.3 Reduction procedure

The bounds on the variables obtained via Baker’s theorem are usually too large for any computational purposes.
To get further refinements, we use the Baker–Davenport reduction procedure. The variant we apply here is
the one due to Dujella and Pethő [6, Lemma 5a]. For a real number r , we denote by ‖ r ‖ the quantity
min{|r − n| : n ∈ Z}, the distance from r to the nearest integer.

Lemma 2.3 [6] Let κ 
= 0, A, B and μ be real numbers, such that A > 0 and B > 1. Let M > 1 be a positive
integer and suppose that p

q is a convergent of the continued fraction expansion of κ with q > 6M. Let

ε :=‖ μq ‖ −M ‖ κq ‖ .

If ε > 0, then there is no solution of the inequality

0 < |mκ − n + μ| < AB−k

in positive integers m, n, k with

log(Aq/ε)

log B
≤ k and m ≤ M.

Lemma 2.3 cannot be applied when μ = 0 (since then ε < 0). In this case, we use the following criterion due
to Legendre, a well-known result from the theory of Diophantine approximation. For further details, we refer
the reader to the books of Cohen [2,3].

Lemma 2.4 [2,3] Let κ be real number and x, y integers, such that

∣

∣

∣

∣
κ − x

y

∣

∣

∣

∣
<

1

2y2
.

Then, x/y = pk/qk is a convergent of κ . Furthermore, let M and N be a non-negative integers, such that
qN > M. Then, putting a(M) := max{ai : i = 0, 1, 2, . . . , N }, the inequality

∣

∣

∣

∣
κ − x

y

∣

∣

∣

∣
≥ 1

(a(M) + 2)y2

holds for all pairs (x, y) of positive integers with 0 < y < M.

We will also need the following lemma by Gúzman Sánchez and Luca [8, Lemma 7]:

Lemma 2.5 [8] Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(log L)r . Then

L < 2r H(log H)r .

3 Proof of the main result

3.1 The low range

We used a computer program in Mathematica to check all the solutions of the Diophantine Eq. (1.1) for the
parameters d1, d2 ∈ {0, 1, 2, 3, . . . , 9}, d1 > 0, 1 ≤ �,m, and 1 ≤ n ≤ 500. We only found the solutions
listed in Theorem 1.1. Henceforth, we assume n > 500.
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3.2 The initial bound on n

We note that Eq. (1.1) can be rewritten as

Pn = d1 · · · d1
︸ ︷︷ ︸

� times

d2 · · · d2
︸ ︷︷ ︸

m times

= d1 · · · d1
︸ ︷︷ ︸

� times

× 10m + d2 · · · d2
︸ ︷︷ ︸

m times

= 1

9

(

d1 × 10�+m − (d1 − d2) × 10m − d2
)

. (3.1)

The next lemma relates the sizes of n and � + m.

Lemma 3.1 All solutions of (3.1) satisfy

(� + m) log 10 − 2 < n logα < (� + m) log 10 + 1.

Proof Recall that αn−2 ≤ Pn ≤ αn+1. We note that

αn−2 ≤ Pn < 10�+m .

Taking the logarithm on both sides, we get

n logα < (� + m) log 10 + 2 logα.

Hence, n logα < (� + m) log 10 + 1. The lower bound follows via the same technique, upon noting that
10�+m−1 < Pn ≤ αn+1. �

We proceed to examine (3.1) in two different steps as follows.
Step 1. From Eqs. (2.1) and (3.1), we have

9(αn + βn + γ n) = d1 × 10�+m − (d1 − d2) × 10m − d2.

Hence

9αn − d1 × 10�+m = −9e(n) − (d1 − d2) × 10m − d2.

Thus, we have

|9αn − d1 × 10�+m | = | − 9e(n) − (d1 − d2) × 10m − d2|
≤ 27α−n/2 + 18 × 10m

< 4.6 × 10m+1,

where we used the fact that n > 500. Dividing both sides by d1 × 10�+m , we get
∣

∣

∣

∣

(

9

d1

)

αn × 10−�−m − 1

∣

∣

∣

∣
<

4.6 × 10m+1

d1 × 10�+m
≤ 46

10�
. (3.2)

We let

	1 :=
(

9

d1

)

αn × 10−�−m − 1. (3.3)

We shall proceed to compare this upper bound on |	1|with the lower boundwe deduce fromTheorem 2.2. Note

that 	1 
= 0, since this would imply that αn = 10�+m×d1
9 . If this is the case, then applying the automorphism

σ on both sides of the preceding equation and taking absolute values, we have that
∣

∣

∣

∣
σ

(

10�+m × d1
9

)∣

∣

∣

∣
= |σ(αn)| = |βn| < 1,
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which is false. We thus have 	1 
= 0.
With a view towards applying Theorem 2.2, we define the following parameters:

η1 := 9

d1
, η2 := α, η3 := 10, b1 := 1, b2 := n, b3 := −� − m, t := 3.

Note that, by Lemma 3.1, we have that � +m < n. Thus, we take B = n. We note that K := Q(η1, η2, η3) =
Q(α). Hence, D := [K : Q] = 3.

We note that

h(η1) = h

(

9

d1

)

≤ 2h(9) = 2 log 9 < 5.

We also have that h(η2) = h(α) = logα
3 and h(η3) = log 10. Hence, we let

A1 := 15, A2 := logα, A3 := 3 log 10.

Thus, we deduce via Theorem 2.2 that

log |	1| > −1.4 × 306 × 34.5 × 32 × (1 + log 3)(1 + log n)(15)(logα)(3 log 10)

> −8 × 1013(1 + log n).

Comparing the last inequality obtained above with (3.2), we get

� log 10 − log 46 < 8 × 1013(1 + log n).

Hence

� log 10 < 8.1 × 1013(1 + log n). (3.4)

Step 2.We rewrite Eq. (3.1) as

9αn − d1 × 10�+m + (d1 − d2) × 10m = −9e(n) − d2.

That is

9αn − (d1 × 10� − (d1 − d2)) × 10m = −9e(n) − d2.

Hence

|9αn − (d1 × 10l − (d1 − d2)) × 10m | = | − 9e(n) − d2|
≤ 27

αn/2 + 9 < 36.

Dividing throughout by 9αn , we have
∣

∣

∣

∣

(

d1 × 10� − (d1 − d2)

9

)

α−n × 10m − 1

∣

∣

∣

∣
<

36

9αn
= 4

αn
. (3.5)

We put

	2 :=
(

d1 × 10� − (d1 − d2)

9

)

α−n × 10m − 1.

As before, we have that 	2 
= 0, because this would imply that

αn = 10m ×
(

d1 × 10� − (d1 − d2)

9

)

,

which in turn implies that
∣

∣

∣

∣
10m

(

d1 × 10� − (d1 − d2)

9

)∣

∣

∣

∣
= |σ(αn)| = |βn| < 1,
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which is false. In preparation towards applying Theorem 2.2, we define the following parameters:

η1 :=
(

d1 × 10� − (d1 − d2)

9

)

, η2 := α, η3 := 10, b1 := 1, b2 := −n, b3 := m, t := 3.

To determine what A1 will be, we need to find the maximum of the quantities h(η1) and | log η1|.
We note that

h(η1) = h

(

d1 × 10� − (d1 − d2)

9

)

≤ h(9) + �h(10) + h(d1) + h(d1 − d2) + log 2

≤ 4 log 9 + � log 10

< 8.1 × 1013(1 + log n),

where, in the last inequality above, we used (3.4). On the other hand, we also have

| log η1| =
∣

∣

∣

∣
log

(

d1 × 10� − (d1 − d2)

9

)∣

∣

∣

∣

≤ log 9 + | log(d1 × 10� − (d1 − d2))|
≤ log 9 + log(d1 × 10�) +

∣

∣

∣

∣
log

(

1 − d1 − d2
d1 × 10�

)∣

∣

∣

∣

≤ � log 10 + log d1 + log 9 + |d1 − d2|
d1 × 10�

+ 1

2

( |d1 − d2|
d1 × 10�

)2

+ · · ·

≤ � log 10 + 2 log 9 + 1

10�
+ 1

2 × 102�
+ · · ·

≤ 8.1 × 1013(1 + log n) + 2 log 9 + 1

10� − 1
< 8.2 × 1013(1 + log n),

where, in the second last inequality, we used Eq. (3.4). We note that D · h(η1) > | log η1|.
Thus, we put A1 := 2.46 × 1013(1 + log n). We take A2 := logα and A3 := 3 log 10, as defined in Step

1. Similarly, we take B := n.
Theorem 2.2 then tells us that

log |	2| > −1.4 × 306 × 34.5 × 32 × (1 + log 3)(1 + log n)(logα)(3 log 10)A1

> −1.3 × 1027(1 + log n)2.

Comparing the last inequality with (3.5), we obtain

n logα < 1.3 × 1027(1 + log n)2 + log 4. (3.6)

Thus, we can conclude that

n < 2.6 × 1027(log n)2.

With the notation of Lemma 2.5, we let r := 2, L := n and H := 2.6 × 1027 and notice that these data meet
the conditions of the lemma. Applying the lemma, we obtain

n < 22 × 2.6 × 1027 × (log 2.7 × 1027)2.

After a simplification, we obtain the bound

n < 4.2 × 1031.

Lemma 3.1 then implies that

� + m < 5.5 × 1030.

The following lemma summarizes what we have proved so far:
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Lemma 3.2 All solutions to the Diophantine Eq. (1.1) satisfy

� + m < 5.5 × 1030 and n < 4.2 × 1031.

3.3 The reduction procedure

We note that the bounds from Lemma 3.2 are too large for computational purposes. However, with the help
of Lemma 2.3, they can be considerably sharpened. The rest of this section is dedicated towards this goal. We
proceed as in [5].

Using Eq. (3.3), we define the quantity �1 as

�1 := − log(	1 + 1) = (� + m) log 10 − n logα − log

(

9

d1

)

.

Equation (3.2) can thus be rewritten as

∣

∣e−�1 − 1
∣

∣ <
46

10l
.

If � ≥ 2, then the above inequality is bounded above by 1
2 . Recall that if x and y are real numbers, such that

|ex − 1| < y, then x < 2y. We therefore conclude that |�1| < 92
10� . Equivalently

∣

∣

∣

∣
(� + m) log 10 − n logα − log

(

9

d1

)∣

∣

∣

∣
<

92

10�
.

Dividing throughout by logα, we get
∣

∣

∣

∣
(� + m)

log 10

logα
− n +

(

log(d1/9)

logα

)∣

∣

∣

∣
<

92

10� logα
. (3.7)

Towards applying Lemma 2.3, we define the following quantities:

τ := log 10

logα
, μ(d1) := log(d1/9)

logα
, A := 92

logα
, B := 10, and 1 ≤ d1 ≤ 8.

The continued fraction expansion of τ is given by

τ = [a0; a1, a2, . . .] = [8; 5, 3, 3, 1, 5, 1, 8, 4, 6, 1, 4, 1, 1, 1, 9, 1, 4, 4, 9, 1, 5, 1, 1, 1, 5, 1, 1, 1, 2, 1, 4, . . .].
We takeM := 5.5×1030, which, by Lemma 3.2, is an upper bound for �+m. A computer assisted computation
of the convergents of τ returns the convergent

p

q
= p70

q70
= 279286791688025658508849870525521

34107459123075987278056929200353

as the first one forwhich the denominator q = q70 > 3.3×1031 = 6M .Maintaining the notation of Lemma2.3,
the smallest (positive) value of ε, corresponding to d1 = 5 is chosen as ε = 0.154964 < ‖μq‖ − M‖τq‖. We
deduce that

� ≤ log(332q/ε)

log 10
< 35.

For the case d1 = 9, we have that μ(d1) = 0. In this case, we apply Lemma 2.4. The inequality (3.7) can be
rewritten as

∣

∣

∣

∣

log 10

logα
− n

� + m

∣

∣

∣

∣
<

92

10�(� + m) logα
<

1

2(� + m)2
,
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because � + m < 5.5 × 1030 := M . It follows from Lemma 2.4 that n
�+m is a convergent of κ := log 10

logα
. So

n
�+m is of the form pk/qk for some k = 0, 1, 2, . . . , 70. Thus

1

(a(M) + 2)(l + m)2
≤

∣

∣

∣

∣

log 10

logα
− n

� + m

∣

∣

∣

∣
<

92

10�(� + m) logα
.

Since a(M) = max{ak : k = 0, 1, 2, . . . , 70} = 49, we get that

� ≤
log

(

51 × 92 × 5.5 × 1030

logα

)

log 10
< 35.

Thus, � ≤ 34 in both cases. In the case � < 2, we have that � < 2 < 35. Thus, � ≤ 34 holds in all cases.
Proceeding, recall that d1, d2 ∈ {1, . . . , 9}. We now have that 1 ≤ � ≤ 34. We define

�2 := log(	2 + 1) = log

(

d1 × 10� − (d1 − d2)

9

)

− n logα + m log 10.

We rewrite inequality (3.5) as
∣

∣e�2 − 1
∣

∣ <
4

αn
.

Recall that n > 500; therefore, 4
αn < 1

2 . Hence, |�2| < 8
αn . Equivalently

∣

∣

∣

∣
m log 10 − n logα + log

(

d1 × 10� − (d1 − d2)

9

)∣

∣

∣

∣
<

8

αn
.

Dividing both sides by logα, we have that
∣

∣

∣

∣
m

(

log 10

logα

)

− n + log((d1 × 10� − (d1 − d2))/9)

logα

∣

∣

∣

∣
<

8

αn logα
. (3.8)

Again, we apply Lemma 2.3 with the quantities

κ := log 10

logα
, μ(d1, d2) := log((d1 × 10l − (d1 − d2))/9)

logα
, A := 8

logα
, B := α.

We take the same κ and its convergent p/q = p70/q70 as before. Since m < l + m < 5.5 × 1030, we choose
M := 5.5 × 1030 as the upper bound on m. With the help of Mathematica, we get that ε > 0.00044, and thus

n ≤ log((8/ logα)q/ε)

logα
< 295.

Therefore, we have that n ≤ 294. This contradicts our assumption that n > 500. Hence, Theorem 1.1 is
proved. �
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