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Abstract Approximating the closest positive semi-definite bisymmetric matrix using the Frobenius norm to
a data matrix is important in many engineering applications, communication theory and quantum physics. In
this paper, we will use the interior point method to solve this problem. The problem will be reformulated into
various forms, in the beginning as a semi-definite programming problem and later, into the form of a mixed
semidefintie and second-order cone optimization problem. Numerical results comparing the efficiency of these
methods with the alternating projection algorithm will be reported.

Mathematics Subject Classification 49M15 · 52A27 · 65F30 · 90C90

1 Introduction

Bisymmetric matrices, that is, symmetric and persymmetric matrices, have been extensively discussed since
1931, which are very effective in engineering problems and have practical applications in information theory,
communication theory, quantum physics, linear system theory, numerical analysis and statistics. Some results
for the inverse problemof bisymmetricmatrices have been obtained in [1,11,13]. The least squares bisymmetric
andpartially bisymmetric solutions havebeen studies by [9,19].Other problems related to bisymmetricmatrices
have been studies by [7,14,21]. The persymmetric Hankel and symmetric Toeplitz matrices are special forms
of bisymmetric matrices that usually appear in different applications, such as vibration in structures, matching
filters and estimates of shaping [4,6].

In some of these application areas, it is required to evaluate the nearest positive semi-definite bisymmetric
matrix to a given data matrix. The required matrix has no restriction on its rank. An existence theorem for
the problem solutions is given in [20], and the general expression of the solutions is derived using Newton
method. Similar problems containing structured covariance estimation were studied in [2–4].

Interior point algorithms can solve semi-definite programming problems efficiently in polynomial time
[5]. This motivates us to construct the problem as mixed second-order cone and semi-definite programming
problem. The constraints in this problem are constraints over the second-order cone and the positive semi-
definite cones. The software SDPT3 by Toh et al. [17] is an efficient software for implementation of primal-dual
path-following methods that will be used to solve the problem.

There are many similar semi-definite programming problems, for example Todd [16] formulated the opti-
mization of the spectral norm of a special matrix as a semi-definite programming problem. Later, some other
problemswere compiled asmixed semi-definite and second-order cone optimization problems [15]. The special
structure of our problem is an advantage, however, none of the above formulations utilized it.
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To take advantage of bisymmetric structure, an isometry operatorbvec is introduced. The isometry operator,
bvec takes n × n bisymmetric matrices into r vectors, where r given (1.3) and it is much smaller than n2. This
operator will give our methods an advantage over the other methods.

Some notations are introduced now thatwill be used throughout the paper. The set of all n×n real symmetric
matrices will be denoted by Sn . The cone of all n × n real symmetric positive semi-definite matrices will be
denoted by S+

n , where

S+
n = {A : A ∈ IRn×n, and zT Az ≥ 0, ∀ z ∈ IRn} (1.1)

is a convex cone of dimension n(n + 1)/2. Qh is a second-order cone of dimension h, and is defined as

Qh = {y ∈ IRh : ‖y2:h‖2 ≤ y1},

where ‖.‖2 stands for the Euclidean distance norm defined as ‖y‖2 =
√∑n

i=1 y
2
i , ∀y ∈ IRn and x2:h =

[x2, x2, . . . , xh]T . The set of all n × n real bisymmetric matrices will be denoted by Bn , where

Bn = {B(b) : B(b) ∈ IRn×n, B(b) is bisymmetric}, (1.2)

which is a subspace of dimension r . In the following, the structure of an n × n real bisymmetric matrix B(b):

B(b) =

⎡
⎢⎢⎢⎢⎣

b1 b2 · · · bn
b2 bn+1 · · · bn−1
...

...
. . .

...
bn−1 b2n−2 · · · b2
bn bn−1 · · · b1

⎤
⎥⎥⎥⎥⎦

, b ∈ IRr , (1.3)

where r = mn − k, m = n/2 and k = n(n − 2)/4 if n is even and m = (n + 1)/2 and k = (n − 1)(n + 1))/4
if n is odd. It is obvious that Bn ⊂ Sn . The norm defined on Sn is the Frobenius norm expressed as follows:

‖W‖F = √
W • W = ‖vecT (W )vec(W )‖2, ∀ W ∈ Sn . (1.4)

Here W • W = trace(W · W ) = ∑n
i, j W

2
i, j , vec(W ) means vectorization operator founded by putting all

columns of the matrix W on top of each other as one column and vecT is the transpose of vec. We denote the
partial ordering on S+

n and Qh on Sn and IRh , respectively, by 	 and ≥Q . That is,

W 	 P ⇔ W − P ∈ S+
n , ∀ W, P ∈ Sn

and

w ≥Q p ⇔ w − p ∈ Qh, ∀ w, p ∈ IRk,

where y ≥ 0 for a vector y ∈ IRn stands for each component of y being nonnegative. We denote the zero and
identity matrices by 0 and I , respectively.

We can now describe our problem in mathematical notation as follows: Given a data matrix G ∈ IRn×n ,
find the closest positive semi-definite bisymmetric matrix B(b) to G such that ‖G− B(b)‖F is minimal. Thus,
we have the following minimization problem:

minimize ‖G − B(b)‖F
subject to B(b) ∈ Bn, B(b) 	 0. (1.5)

In Sect. 2, we describe briefly the alternating projection method. Although the rate of convergence is
slow, the modified alternating projection method converges globally to the optimal solution. We can compare
the results achieved by alternating projection method with our methods in Sects. 3 amd 4, since alternating
projectionmethod provides us with an accurate solutions. A brief description of semi-definite and second-order
cone minimization problems alongside the interior point formulas of problem (1.5) in the formation of the
relevant classwill be given in Sects. 3 and 4, respectively. The performance of these primal-dual path-following
methods against the alternating projection method is shown in numerical results Sect. 5.
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2 The alternating projection method

The algorithm of this section is obtained from modified alternating projection method that are originally
proposed by von Neumann [18] for finding the minimum distance from a given fixed point to an intersection
of convex sets.

When applying the projection method to approximate a bisymmetric matrices, it is convenient to use the
Frobenius norm, as expressed (1.4). To apply projection method, the projection maps PS(.) and PB(.) are
needed. These projections are the maps from K = {G : G ∈ IRn×n} on to S+

n and Bn . The projection mapping
PS(G) on to S+

n is given by the formula [10]

PS (G) = U�+UT , (2.1)

where

�+ =
[
�r 0
0 0

]
,

and �r = diag [λ1, λ2, . . . , λr ] is the diagonal matrix consisting from the nonnegative eigenvalues of �.
The mapping PB(G) formula onto Bn is now given by

PB(G) = Bis(b1, b2, . . . , br ), (2.2)

where bp in the (i, j) position of the matrix (1.3) is given by

bp = (Gi, j + G j,i + G(n−i+1,n− j+1) + G(n− j+1,n−i+1))/4.

The single valued projection mappings PS(G) and PB(G) given in (2.1) and (2.2) can now be used to
execute the Dykstra algorithm. A data matrix G ∈ IRn×n is given, then the method is initialized by G(0) = G.
The iteration algorithm is given now by:

G(k+1) = G(k) + (PB(PS(G(k)))) − PS(G(k)). (2.3)

Both sequences {PS(G(k))} and {PB(PS(G(k)))} produced by (2.3) converge globally to the optimal solution
B∗ of (1.5), [8].

3 Semidefinite programming approach

The primal standard form for semi-definite programming (SDP) problem is given by:

(P) minimizeX D • X

subject to Ai • X = bi , i = 1, 2, . . . ,m, X 	 0, (3.1)

where all Ai , D ∈ Sn, b ∈ IRm are given and the variable is X ∈ Sn . This minimization problem (3.1) is a
convex minimization problem since its constraint and objective are convex. The dual problem of (3.1) is

(D) maximizey bT y

subject to
m∑
i=1

yi Ai � D,
(3.2)

where the variable is y ∈ IRm . Many problems are special cases of problems (3.1) and (3.2) and there are
many applications, in particular (1.5). The following lemma is useful in writing (1.5) in the form of (3.2):

Lemma 3.1 (Schur Complement) If

N =
[
B D
DT C

]

where B ∈ S+
n is nonsingular matrix and C ∈ Sn, then the matrix N is positive (semi)definite if and only if

the matrix C − DT B−1D is positive (semi)definite.

This matrix C − DT B−1D is called the Schur complement of B in N .
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3.1 Formulation I (SDV)

Letting ‖G − B(b)‖2F ≤ t , where t is a real nonnegative scalar and observing that:

‖G − B(b)‖2F = vecT (G − B(b))vec(G − B(b)),

we have:

vecT (G − B(b))vec(G − B(b)) ≤ t

⇔ t − vecT (G − B(b))Ivec(G − B(b)) ≥ 0

⇔
[

I vec(G − B(b))
vecT (G − B(b)) t

]
	 0.

We can deduce from Lemma 3.1 the equivalency in the above inequalities. Therefore, we can write (1.5) as
follows

(SDV ) minimize t,

subject to

⎡
⎣
t 0 0
0 B(b) 0
0 0 U

⎤
⎦ 	 0, (3.3)

where

U =
[

I vec(G − B(b))
vecT (G − B(b)) t

]
,

this is an SDP problem in the dual form (3.2) and the dimensions of this problem are r + 1 (see (1.3) number
of variables) and n2 + n + 2 (size of the matrices).

3.2 Formulation II (SDB)

Now, the SDP problem (3.3) is very huge even for a modest data matrix G. For example, a 30 × 30 matrix G
will make the problem grow to a problem with dimensions 240 and 932, thus it is not efficient to solve (1.5)
using formulation (3.3). Furthermore, the structure of the matrix B(b) being bisymmetric is not utilized. An
alternative approach is to develop an SDP problem with acceptable dimensions and utilizes the bisymmetric
structure of B(b). This can now be achieved by means of the following isometry operator.

Definition 3.2 Let bvec : Bn −→ IRr be defined as bvec(U ) = [√2u1,1
√
4u2,1 · · · √

4un−1,1
√
2un,1√

2u2,2
√
4u3,2 · · · √

4un−1,2 · · · √
gum,m]T for any U ∈ Bn , where m = n/2 and g = 2 if n is even and

m = (n + 1)/2 and g = 4 if n is odd.

It is clear that bvec is a linear operator taking the set of all n × n real bisymmetric matrices to IRr . The
characterizations of bvec are given by the following lemma:

Lemma 3.3 Given the operator bvec, defined in the above definition, the following conditions hold: For any
W, P ∈ Bn

(1) W • W = bvecT (W )bvec(W ).
(2) ‖W − P‖2F = bvecT (W − P)bvec(W − P).

Proof It is clear from the definition of the operator bvec that Part 1 is satisfied. Part 2 is a consequence of Part
1. �

From Part 1, it is clear that bvec is an isometry. To take advantage of the above lemma, we need G to be
bisymmetric. Projecting G onto Bn using the above orthogonal projection given in (2.2) makes a bisymmetric
matrix, say Ḡ. In the following proposition, we show that the closest bisymmetric positive semi-definite matrix
to Ḡ is also the nearest to G.

Proposition 3.4 Given an orthogonal projection Ḡ of G onto Bn and let B(b) be the closest bisymmetric
positive semi-definite matrix to Ḡ, then B(b) is so for G.
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Proof The proof is complete if Ḡ is positive semi-definite. If not, then for any T ∈ Bn , we have (G − Ḡ)T •
(Ḡ−T ) = 0 . This is true because Ḡ is the orthogonal projection ofG. Thus, ‖G−T ‖2F = ‖G−Ḡ‖2F+‖Ḡ−T
‖2F . �

As a result of this proposition, the following problem is equivalent to (1.5):

minimize ‖Ḡ − B(b)‖F
subject to B(b) ∈ Bn, B(b) 	 0. (3.4)

From Lemma 3.1, the following are equivalences (for t ≥ 0 ∈ IR):

‖Ḡ − B(b)‖2F ≤ t

⇔ bvecT (Ḡ − B(b))bvec(Ḡ − B(b)) ≤ t by Lemma 3.3

⇔ t − bvecT (Ḡ − B(b))Ibvec(Ḡ − B(b)) ≤ 0

⇔
[

I bvec(Ḡ − B(b))
bvecT (Ḡ − B(b)) t

]
	 0 by Lemma 3.1.

Therefore, we have the following SDP problem:

(SDB) minimize t,

subject to

⎡
⎣
t 0 0
0 B(b) 0
0 0 V̄

⎤
⎦ 	 0, (3.5)

where

V̄ =
[

I bvec(Ḡ − B(b))
bvecT (Ḡ − B(b)) t

]
.

The dimensions of this problem are r and n + r + 2. These dimensions are much better than (3.3) where
r = mn − k, m = n/2 and k = n(n − 2)/4 if n is even and m = (n + 1)/2 and k = (n − 1)(n + 1))/4 if n is
odd.

3.3 Formulation III (SDQ)

An alternative method for formulating (1.5) is by means of the Frobenius norm definition:

‖G − B(b)‖2F = yT Py + 2qT y + s,

where

y = [b1 b2 · · · br ]T ,

P = diag([2 4 · · · 4 2 2 4 · · · 2]) and s = ‖G‖2F
q = [−2G1,1, −4G1,2 · · · − 2G1,n, − 2G2,2, − 4G2,3 · · · − 2Gr,r ].

For a nonnegative real scalar t , we have the following problem:

‖G − B‖2F ≤ t

⇔ yT Py + 2qT y + s ≤ t

⇔ (P1/2y)T (P1/2y) + 2qT y + s ≤ t

⇔ t − 2qT y − s − (P1/2y)T I (P1/2y) ≥ 0

⇔
[

I (P1/2y)
(P1/2y)T t − 2qT y − s

]
	 0.
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Therefore, we deduce the following SDP problem:

(SDQ) minimize t,

subject to

⎡
⎣
t 0 0
0 B(b) 0
0 0 Q

⎤
⎦ 	 0, (3.6)

where

Q =
[

I (P1/2y)
(P1/2y)T t − 2qT y − s

]
.

This is an SDP problem in the dual form (3.2) and the dimensions of this problem are r + 1 and n + r + 2. In
spite of the fact that the dimensions of problem (3.5) is the same as the dimensions of problem (3.6), the latter
is less efficient if we solve it using SDP method, especially when G is large in size. It has been found that in
practice, as we will see later in Sect. 5, the performance of SDQ formula is not as efficient as in SDB formula.
The reason for this inefficiency is the matrix P being of full rank which makes the system badly conditioned.
We can develop a more efficient method for this formula by reformulating it over the second-order cone as
described in Sect. 4, (see [12]).

Formula SDQ appears to be straightforward. Nonetheless, we found that using this SDQ formula to solve
related problems was not an adequate option. In the next section, we will explain the cause for that when
we speak about mixed SDP and second-order cone programming method. In Sect. 5, we will understand this
fact about SDQ formula when we use the formula to solve large numerical examples with n > 50. The SDV
formula does not contend favorably with the other two SDB and SDQ formulations due to the quantity of work
per one iteration of interior-point method which solve SDV formula. It is O(n6), where n in the dimension of
G and O(.) is the order of convergence. The SDV formulation is even slower than the projection method in
some cases. Hence, using the SDV formulation to solve (1.5) is time consuming. The above discussion makes
SDB formula as the best choice since we anticipate good performance while it does not have the illness of
SDQ nor the large size of SDV.

4 Mixed semidefinite and second-order cone approach

Now, we explain the primal and the dual mixed semi-definite and second-order cone problem (SOCP) which
is of the form:

(P ′) minimize CS • XS + CT
QXQ

subject to (DS)i • XS + (DQ)Ti XQ = bi , i = 1, 2, . . . ,m

XS 	 0, XQ ≥Q 0. (4.1)

The variables are XS ∈ Sn and XQ ∈ IRk . The given data matrices areCS, (DS)i ∈ Sn and CQ, (DQ)i ∈ IRk,
∀i . In the two above inequalities each has a different explication : XS 	 0 means XS ∈ S+

n and XQ ≥Q 0
means that XQ ∈ Qk .

The dual problem of (4.1) is:

(D′) maximize bT y

subject to
m∑
i=1

yi (DS)i � CS

∑m
i=1 yi (DQ)i ≤Q CQ . (4.2)

Here, y ∈ IRm is the variable.
The objective function of problem (1.5) can now be rewritten as a dual SOCP in three different ways.
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4.1 Formulation IV (SQV)

One direction is to define ‖G − B(b)‖F as

‖G − B(b)‖F = ‖vec(G − B(b))‖2.

Hence, if we place ‖G − B(b)‖F ≤ t for t belong to IR+, the second-order cone definition gives us
[

t
vec(G − B(b))

]
∈ Q1+n2 .

Therefore, we have the following equivalent problem to (1.5):

(SQV ) minimize t,

subject to

[
t 0
0 B(b)

]
	 0

[
t

vec(G − B(b))

]
≥Q 0, (4.3)

where t ∈ IR+. The above problem is in the shape of problem (4.2). The second-order cone constraint is the
difference between this form and SDV. The dimensions of this SQV problem are r + 1, the SDP part is n + 1
and the SOCP part is n2 + 1. This makes us anticipate much less efficiency from SQV when we execute it.

4.2 Formulation V (SQQ)

The second formula is as established in Sect. 3.3, i.e.

‖G − B(b)‖2F = yT Py + 2qT y + s.

Therefore, we have the following problem which is equivalent to problem (1.5)

minimize yT Py + 2qT y + s

subject to B(b) ∈ Bn, B(b) 	 0. (4.4)

But

yT Py + 2qT y + s = ‖P1/2y + P−1/2q‖22 + s − qT P−1q.

Now, we optimize ‖G − B(b)‖2F by minimizing ‖P1/2y + P−1/2q‖2. Then, we have the following equivalent
problem:

(SQQ) minimize t,

subject to

[
t 0
0 B(b)

]
	 0

[
t

P1/2y + P−1/2q

]
≥Q 0, (4.5)

where t ∈ IR+. The above problem is in the shape of problem (4.2). The second-order cone constraint is
the difference between this form and SDQ. The dimensions of this SQQ problem are r + 1, the SDP part
is n + 1 and the SOCP part is r + 1. It may be noticed that we did not speak about the constraint of B(b)
being bisymmetric. This is because the structure of the bisymmetric matrix B(b) is embedded inside the other
constraints.
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Table 1 ‖G − B∗‖F among all methods

n 20 40 50 70 90 110 130 150

0.2999 0.6054 0.7845 1.0787 1.4002 1.71605 1.97994 2.30513

4.3 Formulation VI (SQB)

The last formula will take advantage and feature the bisymmetric structure of B(b) explicitly. In Sect. 3,
we introduced the operator vectorization bvec on bisymmetric matrices. This operator will be used to develop
SQB formula. Lemma 3.3 gives us the following:

‖Ḡ − B(b)‖F = ‖bvec(Ḡ − B(b))‖2
where Ḡ = PB(G), which leads to:

(SQB) minimize t,

subject to

[
t 0
0 B(b)

]
	 0

[
t

bvec(Ḡ − B(b))

]
≥Q 0. (4.6)

The second-order cone dimension in this form is r + 1, which is the same as that of SQQ.
The mixed formulations are expected to be more efficient in practice than SDP-only formulas, particularly

the SQQ and SQB which have the least dimension in the second-order cone constraint. For interior point
method, the SOCP has superior worst-case complexity more than the SDP method. Nevertheless, SDB has a
much less SDP dimension with no weakness like SDQ has, and that causes SDB a preferable choice among
other SDP. This is due to the economical vectorization operator bvec. It was clear from practical experiments
that the SQB formula shows competitive behaviour over SQQ and similar to SDB (see Sect. 5).

5 Numerical results

In this section, we compare and present the performance of the methods we discussed in previous sections.
First, we present numerical results for the projection method and then we use NT-direction of the interior-point
primal-dual path-following method. Next, we present numerical results for all the six different formulas of
Sects. 3and 4, and compare them with the alternating projection method.

To implement the modified alternating projection method, a Matlab code was written and the iteration is
stopped when ‖PB(PS(G j ))− PS(G j )‖F ≤ 10−5. For the six SDP and SOCP formulas, we used the software
SDPT3 ver. 3.0 [17] because of its stability and its ability to utilize sparsity very efficiently.

Problem (1.5) was transformed into six different formulas as explained in Sects. 3 and 4. For each formula,
we wrote a Matlab code. This Matlab code transforms the problem and passes it through to SDPT3 for a first
run. A second run is done with the minimal iterate from the first run being the starting initial point. We repeat
this process until no more progress is detected. We execute all the numerical experiment in this section using
Matlab 9.0.

We applied all approaches to problems starting from small dense problems with n = 10 up to a large
problems with n = 150. We apply the methods to obtain results as follows: we construct a matrix B positive
definite bisymmetric randomly, then we perturb this matrix by adding random noise matrix N to B, where
elements of B changes between −10.0 and 10.0. Then, the problem is to retrieve the matrix before the matrix
noise was added. The optimal solution is found for all the cases with high accuracy, at least seven decimals,
except for the projection method where we stop with five decimals of accuracy. Table 1 shows how close, in
Frobenius norm for selected test problem and the minimal solution of each method, B∗ to the data matrix G.
We show in Fig. 1 the comparison results, comparing the CPU time in ln of seconds against the size of the
data matrix G. The correlation between the size of the matrix and the CPU time is shown in Fig. 1.

The SDV formulation does not compete favorably with the other formulations due to the volume of work
at each iteration of interior-point methods which solve SDV formula in O(n6), where O(.) is the order of
convergence. The SDV formulation is even sometimes slower than the projection method. Hence, using the
SDV formulation to solve (1.5) is time consuming. This leaves us with SDB and SQB formula in which we
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Fig. 1 Comparing CPU time in minutes for all seven approaches

anticipate good performance since it does not have the weakness of SDQ or SQQ nor the huge size of SDV or
SQV. However, we practically found that all formulations work well except for the SDV and SQV.
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