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Abstract In this article,with an essential assumption,we provide an evolution formula for theYamabe constant
along of the Ricci–Bourguignon flow of an n-dimensional closed Riemannianmanifold for n ≥ 3. In particular,
we show that Yamabe constant is increasing on [0, δ] for some δ > 0.
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1 Introduction

Recently, the geometric flows such as the Ricci flow [15], Ricci–Bourguignon flow [6,7], Cotton flow [18] and
Yamabe flow [3,11,16] have been widely studied owing to their numerous applications in both mathematics
and physics. In this paper, we consider the Ricci–Bourguignon flow introduced by Bourguignon in [6]. Let M
be an n-dimensional closed Riemannian manifold with metric g. The family g(t) of Riemannian metrics on
manifold M is called the Ricci–Bourguignon flow whenever it satisfies the equation

∂

∂t
g(t) = −2Ric(g(t)) + 2ρR(g(t))g(t) = −2(Ric − ρRg), (1.1)

with the initial condition

g(0) = g0.

Here and in the sequel, Ric is the Ricci tensor of g(t), R is the scalar curvature and ρ is a real constant. As a
way of quick remark, we mention that the Ricci–Bourguignon flow contains quite a number of other geometric
flows. This could be seen for special values of the constant ρ appearing in (1.1). Specifically, when ρ = 0 the
tensor Ric − ρRg corresponds to the Ricci tensor and the Ricci–Bourguignon flow (1.1) then becomes Ricci
flow. Other situations include when ρ = 1

n , the case where the tensor Ric − ρRg corresponds to the traceless
Ricci tensor and the flow (1.1) becomes the normalized Ricci flow, when ρ = 1/2(n − 1) and (1.1) reduces
to Schouten tensor since Ric − ρRg, in this case, is a multiple of Schouten tensor. Ricci–Bourguignon flow
also interpolates between the Ricci flow and the Yamabe flow when ρ is nonpositive after appropriate time
rescaling. The short time existence and uniqueness for solution to the Ricci–Bourguignon flow 1.1 as a system
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of partial differential equations on [0, T ) have been established by Catino et al. ( [7]) for the case ρ < 1
2(n−1) .

Other recent studies around this flow include [1,9,21].
Yamabe problem which is more or less the generalization of uniformization of compact surfaces to higher

dimensional smooth manifolds is well known in the literature since the 60s and remains an active research
area to date. An important geometric quantity associated with this problem is an invariant quantity known
as Yamabe constant or Yamabe invariant. Detail descriptions of Yamabe constant and Yamabe invariant are
given in Sect. 2. Yamabe invariant of smooth manifolds carries several important geometric and topological
consequences or information. For instance, Yamabe invariant is positive if and only if the underlying manifold
admits a metric of positive scalar curvature. Due to Perelman’s resolution of Poincaré conjecture, it follows that
a simply connected manifold can have negative Yamabe invariant only if it is of 4-dimensional. Our interest at
this time is to study the behaviors of Yamabe invariant of manifolds evolving by certain geometric flow, which
will enable us to reach some useful conclusions.

The aim of this paper is to provide an evolution formula for the Yamabe constant, which is defined as (2.2),
under the Ricci–Bourguignon flow of an n-dimensional closed Riemannian manifold for n ≥ 3. The evolution
of subcritical Yamabe constant was studied by Chang and Lu [10] under the Ricci flow and they established a
differential inequality of constant under some technical assumption. Later Chang–Lu’s results were extended
to the relative subcritical Yamabe constant under the Ricci flow with boundary under the condition that the
mean curvature of the boundary vanishes by Botvinnik and Lu [5]. Danesvar Pip and Razavi [13] extended the
same results to the case of Bernhard List’s flow. See also [8] and [22] for similar results under Cotton flow and
conformal Ricci flow, respectively. Also, in [23,24] have been investigated the evolution of some geometric
constants along the geometric flows.

Motivated by the above works we are concerned with the evolution of the Yamabe constant under Ricci–
Bourguignon flow, as an application, we show that under some conditions, the initial metric is an Einstein
metric if and only if the Yamabe flow constant is nondecreasing along the Ricci–Bourguignon flow. The rest
of this paper is, therefore, planned as follows: Sect. 2 gives some basics and preliminary results on the Yamabe
constant vis-a-vis Yamabe problem. Section 3 is devoted to the main results and their applications. In Sect. 4,
we give three examples of the evolution of Yamabe constant on Einstein metrics, Ricci–Bourguignon soliton,
and 3-dimensional Heisenberg Lie group.

2 Preliminaries

Given a smooth manifold M of dimension n ≥ 3, we consider M to be the set of Riemannian metrics on M .
Recall that the normalized Einstein-Hilbert functional E : M → R is given by

E(g) =
∫

M Rg dμ

V ol(M, g)
n−2

n

, (2.1)

where Rg and dμ are the scalar curvature and the volume element of metric g, respectively. It is well known
that every compact surface has a conformal metric of constant Gaussian curvature. A generalization of this is
Yamabe problem, which asks if any Riemannian metric g on a compact smooth manifold Mn of dimension
n ≥ 3 is conformal to a metric with constant scalar curvature. In 1960, Yamabe [27] attempted to solve this
problem, but his proof contained some error, discovered in 1968 by Trudinger [26]. Trudinger [26], Aubin [2]
and Schoen [25] solved the Yamabe problem with a rather restrictive assumption on the manifold M . They
proved that a minimum value of E(g) is attained in each conformal class of metrics and that this minimum
is achieved by a metric of constant scalar curvature. Note that any metric conformal to g can be written as
g̃ = e2 f g, where f is smooth real-valued function on M .

Now recall that the Yamabe constant of a smooth metric g on a closed manifold M is given by

Y (g) = inf
u∈C∞(M), u>0

∫
M (

4(n−1)
n−2 |∇u|2 + Rgu2)dμ

(
∫

M u
2n

n−2 dμ)
n−2

n

, (2.2)

where∇ is the Riemannian connection on M . A function u for which Y (g) get its infimum is called the Yamabe
minimizer (see [11,20,22,27]).

123



Arab. J. Math. (2022) 11:459–467 461

In the next, we denote � := −a� + R, where a = 4 n−1
n−2 , � is Laplace–Beltrami operator and R is the

scalar curvature of M . Yamabe problem is reduced to saying that g̃ = u
4

n−2 g has constant scalar curvature Y
if and only if u satisfies the Yamabe equation

�u = Yu p−1,

∫

M
u pdμ = 1, with p = 2n

n − 2
. (2.3)

The metric u
4

n−2 g is called the Yamabe metric and has constant scalar curvature. It happens that the exponent
q = p − 1 = (n + 2)/(n − 2) in (2.3) is precisely the critical value, below (subcritical) which the equation is
easy to solve and above which may be delicate. The existence of solution to (2.3) follows from direct method
in the calculus of variation (cf. [20]). It is also observed that equation (2.3) is the Euler–Lagrange equation for

the functional E(g̃). Thus, for a positive smooth function u satisfying g̃ = u
4

n−2 g, we have infimums in (2.1)
and (2.2) being equal, that is,

Y (g) = inf
u>0

E(g).

Set

Y (M) = Y (g) = inf{E(g̃) : g̃ conformal to g}.
This constant Y (M) is an invariant of the conformal classes of (M, g) which is usually called the Yamabe
(or Yamabe invariant) constant. Aubin [2] showed that the Yamabe problem can be solved on any compact
manifold M with Y (M) ≤ Y (Sn), where Sn is the sphere endowedwith its standardmetric. The sigma invariant
of M is defined by

σ(M) := sup
g

Y (g), (2.4)

where sup is taken over all smoothmetrics on M . Therefore, the Yamabeminimizer is u (cf. [20]). In the critical
and supercritical, the existence of solutions becomes a delicate issue. A useful way to handle supercritical
problems consists in reducing the problem to a more general elliptic critical or subcritical problem, either by
considering rotational symmetries or by means of maps preserving Laplace operator, or a combination of both
(cf. [12] for instance).

Chang and Lu [10] assumed that Yamabe minimizer is C1-differentiable with respect to variable t and then
they investigated the evolution of the subcritical Yamabe constant under the Ricci flow. They also showed that,
if g(0) is a Yamabe metric at time t = 0 and Rg

n−1 is not a positive eigenvalue of the Laplacian �gα for any

Yamabe metric gα in the conformal class [g0], then d
dt |t=0Y (g(t)) ≥ 0. Recently, Daneshvar Pip and Razavi

in [13] studied the evolution of the Yamabe constant under Bernhard List’s flow. The results in this paper
generalize and extend the aforementioned results [10,13] as highlighted in the introduction.

3 Variation of Yamabe constant

In this section, we will find evolution formulae for Y (t) along the flow (1.1). First, we recall some evolution
formulae for geometric structure along the Ricci–Bourguignon flow. Next, we will present a useful proposition
about the variation of Yamabe constant under the flow (1.1). From [7], we have the following lemma.

Lemma 3.1 Under the Ricci–Bourguignon flow equation (1.1), we get

(1) ∂
∂t gi j = 2(Ri j − ρRgi j ),

(2) ∂
∂t (dμ) = (nρ − 1)Rdμ,

(3) ∂
∂t (�

k
i j ) = −∇ j Rk

i − ∇i Rk
j + ∇k Ri j + ρ(∇ j Rδk

i + ∇i Rδk
j − ∇k Rgi j ),

(4) ∂
∂t R = [1 − 2(n − 1)ρ]�R + 2|Ric|2 − 2ρR2,

where R is scalar curvature.

As a consequence of Lemma 3.1 we obtain the following result.
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Lemma 3.2 Let (M, g(t)), t ∈ [0, T ) be a solution to the flow (1.1) on a closed oriented Riemannian
manifold for ρ < 1

2(n−1) . Let u ∈ C∞(M) be a smooth function on (M, g(t)). Then we have the following
evolutions:

∂

∂t
|∇u|2 = 2Ri j∇i u∇ j u − 2ρR|∇u|2 + 2gi j∇i u∇ j ut , (3.1)

∂

∂t
(�u) = 2Ri j∇i∇ j u + �ut − 2ρR�u − (2 − n)ρ∇k R∇ku, (3.2)

where ut = ∂u
∂t .

Proof By direct computation in local coordinates we have

∂

∂t
|∇u|2 = ∂

∂t
(gi j∇i u∇ j u)

= ∂gi j

∂t
∇i u∇ j u + 2gi j∇i u∇ j ut

= 2Ri j∇i u∇ j u − 2ρR|∇u|2 + 2gi j∇i u∇ j ut ,

wherewe usedLemma3.1 (1) and gives exactly (3.1). Next, by using again Lemma3.1 and the twice-contracted
second Bianchi identity 2∇ i Ri j = ∇ j R we infer

∂

∂t
(�u) = ∂

∂t
[gi j (

∂2u

∂xi∂x j
− �k

i j
∂u

∂xk
)]

= ∂gi j

∂t
(

∂2u

∂xi∂x j
− �k

i j
∂u

∂xk
) + gi j (

∂2ut

∂xi∂x j
− �k

i j
∂ut

∂xk
) − gi j ∂

∂t
(�k

i j )
∂u

∂xk

= 2Ri j∇i∇ j u + �ut − 2ρR�u − (2 − n)ρ∇k R∇ku.

So, the proof of is complete. �	
In the sequel, we shall state our main result.

Proposition 3.3 Let (M, g(t)), t ∈ [0, T ) be a solution of the flow (1.1) on the smooth closed oriented
Riemannian manifold (Mn, g0) for ρ < 1

2(n−1) . For any p ∈ (2, 2n
n−2 ], if there is a C1-family of smooth

functions u(t) > 0, t ∈ [0, T ), which satisfies

�u(t) = Ỹ (t)u(t)p−1 (3.3)

with the condition
∫

M
u pdμ = 1, (3.4)

where Ỹ (t) is a function of t only. Then

d

dt
Ỹ (t) =

∫

M
2a Ri j∇i u∇ j udμ + 2

∫

M
|Ric|2u2dμ

+
(

1 − 2(n − 1)ρ + a(nρ − 1)

p

)∫

M
u2�Rdμ

−
[(

1 − 2

p

)

(1 − nρ) + 2ρ
] ∫

M
(a|∇u|2 + Ru2)Rdμ. (3.5)

Proof Equation (3.3) results in

− a�u + Ru = Ỹ (t)u p−1. (3.6)

Now, multiplying (3.6) by u and upon integrating we use (3.4) to obtain

Ỹ (t) =
∫

M
(a|∇u|2 + Ru2)dμ (3.7)
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since
∫

M u pdμ = 1. Taking time derivative of (3.7) and using Lemmas 3.1 and 3.2 yields

d

dt
Ỹ (t) = a

∫

M
(2Ri j∇i u∇ j u − 2ρR|∇u|2 + 2gi j∇i u∇ j ut )dμ

+
∫

M

(
(1 − 2(n − 1)ρ)�Ru2 + 2|Ric|2u2 − 2ρR2u2 + 2Ruut

)
dμ

+
∫

M
(a|∇u|2 + Ru2)(nρ − 1)Rdμ. (3.8)

Integrating by parts we obtain
∫

M
(2agi j∇i u∇ j ut + 2Ruut )dμ =

∫

M
(−2aut�u + 2Ruut )dμ

= 2Ỹ (t)
∫

M
ut u

p−1dμ. (3.9)

On the other hand, taking time derivative of the condition (3.4) gives
∫

M
put u

p−1dμ +
∫

M
u p(nρ − 1)Rdμ = 0

which implies
∫

M
ut u

p−1dμ = − (nρ − 1)

p

∫

M
u p Rdμ. (3.10)

Also, multiplying (3.6) by Ru and integrating by parts we have

Ỹ (t)
∫

M
Ru pdμ =

∫

M
(−a Ru�u + R2u2)dμ

= −a

2

∫

M
u2�Rdμ +

∫

M
(a|∇u|2 + Ru2)Rdμ. (3.11)

Hence, using (3.9), (3.10) and (3.11) we have
∫

M
(2agi j∇i u∇ j ut + 2Ruut )dμ = a(nρ − 1)

p

∫

M
u2�Rdμ

−2(nρ − 1)

p

∫

M
(a|∇u|2 + Ru2)Rdμ. (3.12)

Combining (3.8) and (3.12) yields the expected evolution formula. �	
Remark 3.4 The traceless Ricci tensor of Riemannian manifold (Mn, g) is defined by Si j = Ri j − R

n gi j .

So, we can write Ri j = Si j + R
n gi j and |Ri j |2 = |Si j |2 + R2

n . Substituting these into the formula (3.5) with

assumptions of Proposition 3.3 we can rewrite the evolution of Ỹ (t) along the Ricci–Bourguignon flow as
follows:

d

dt
Ỹ (t) = 2a

∫

M
Si j∇i u∇ j udμ + 2

∫

M
|Si j |2u2dμ

+
(

1 − 2(n − 1)ρ + a(nρ − 1)

p

)∫

M
u2�Rdμ

−
[ (

1 − 2

p

)

(1 − nρ) + 2ρ − 2

n

] ∫

M
(a|∇u|2 + Ru2)Rdμ. (3.13)

Taking p = 2n
n−2 in (3.13), then we obtain

d

dt
Ỹ (t) = 2a

∫

M
Si j∇i u∇ j udμ + 2

∫

M
|Si j |2u2dμ − 2

p

∫

M
u2�Rdμ, (3.14)

123



464 Arab. J. Math. (2022) 11:459–467

which contains Chang–Lu’s results [10], Proposition 1 under the Ricci flow (i.e., when ρ = 0).
We also observe that the evolution of Yamabe constant remains the same both under the Ricci flow (at

point n+2
n−2 ) and Ricci–Bourguignon flow (at point 2n

n−2 ). This can be seen from (3.14) which is equivalent to
Chang–Lu’s results [10], Proposition 1 under the Ricci flow without necessarily setting ρ = 0.

Corollary 3.5 Let g(t) be the solution of the Ricci–Bourguignon flow on closed n-dimensional Riemannian

manifold M with g(0) = g0, where g0 is a metric of constant scalar curvature. Assume that
Rg0
n−1 is not a

positive eigenvalue of the Laplacian �g0 . Then d
dt |t=0Ỹ (t) ≥ 0 and the equality holds if and only if g0 is an

Einstein metric.

Proof By Koiso’s decomposition theorem (Corollary 2.9 in [19] or Theorem 4.44 in [4]), there exists a C1-
family of smooth positive functions u(t) on [0, ε) for some ε > 0 with constant u(0), which satisfies the

assumption of Proposition 3.3 for p = 2n
n−2 . Obviously, Ỹ (t) = Ỹp(t) is the scalar curvature of u(t)

4
n−2 g(t).

Since u(0) and Rg0 are constant, ∇u(0) = 0 and ∇ Rg0 = 0. Hence, we have

d

dt
Ỹ (t)|t=0 = 2(u(0))2

∫

M
|Si j (g0)|2dμ ≥ 0. (3.15)

Since the right-hand side of (3.15) is nonnegative, if d
dt Ỹ (t)|t=0 = 0 then the trace Ricci tensor Si j (g0) vanishes

identically. Consequently, g0 is an Einstein metric. �	
Notice that, Ỹ (t) in Corollary 3.5 cannot be equal to the Yamabe constant Y (g(t)) even if g0 satisfies

Ỹ (0) = Y (g(0)). If we suppose that u(t)
4

n−2 g(t) has unit volume and constant scalar curvature Y (g(t)), then
we can conclude as follows, which says that infinitesimally the Ricci–Bourguignon flow will try to increase
the Yamabe constant.

Corollary 3.6 Let g(t) be the solution of the Ricci–Bourguignon flow on closed n-dimensional Riemannian
manifold M with g(0) = g0, where g0 is a metric of constant scalar curvature. Assume that there is a C1-family

of smooth positive functions u(t) on [0, ε) for some ε > 0 with constant u(0), such that u(t)
4

n−2 g(t) has unit
volume and constant scalar curvature Y (g(t)). Then

i d
dt |t=0Ỹ (t) ≥ 0 and the equality holds if and only if g0 is an Einstein metric.

ii If g0 further satisfies Y (g0) = σ(M), then g0 is an Einstein metric,

where σ(M) is defined in (2.4).

In what follows, we consider n-dimensional Riemannian manifold M whose sigma invariant is realized by
some metric, the assumption is a little different from that of Corollary 3.6.

Corollary 3.7 Let g(t) be the solution of the Ricci–Bourguignon flow on closed n-dimensional Riemannian
manifold M with g(0) = g0. Suppose that sigma invariant of M is realized by g0, Y (g0) = σ(M). Let {g̃α} be

set the metrics in the conformal class [g0] with Y (g̃α) = σ(M). Assume that for each α,
Rg̃α

n−1 is not a positive
eigenvalue of the Laplacian �g̃α

, then g0 is an Einstein metric and g̃α = g0 for all α.

4 Examples

In this section, we give some examples about the evolution of Yamabe constant along the Ricci–Bourguignon
flow. First, we consider the initial Riemannian manifold (Mn, g0) is Einstein manifold and then we find the
evolving Yamabe constant along the Ricci–Bourguignon flow.

Example 4.1 Let (Mn, g0) be an Einstein manifold, i.e. there exists a constant b such that Ric(g0) = bg0.
Assume that a solution to the Ricci–Bourguignon flow is of the form

g(t) = c(t)g0, c(0) = 1,

where c(t) is a positive function. By a straightforward computation, we have

∂g

∂t
= c′(t)g0, Ric(g(t)) = Ric(g0) = bg0 = b

c(t)
g(t), Rg(t) = bn

c(t)
,
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for this to be a solution of the Ricci–Bourguignon flow, we require

c′(t)g0 = −2Ric(g(t)) + 2ρRg(t)g(t) = (−2b + 2ρbn)g0

this shows that

c(t) = (−2b + 2ρbn)t + 1,

so g(t) is an Einstein metric. Using formula (3.5) for evolution of Yamabe constant along the Ricci–
Bourguignon flow, we obtain

d

dt
Ỹ (t) = −

[(

1 − 2

p

)

(1 − nρ) + 2ρ − 2

n

] bn

c(t)
Ỹ (t).

Integrating of the last inequality with respect to t on [0, t], we get

Ỹ (t) = Ỹ (0)
(
(−2b + 2ρbn)t + 1

)−
[(

1− 2
p

)
(1−nρ)+2ρ− 2

n

]
bn

−2b+2ρbn
.

In the following example, we determine the behaviour of the evolving Yamabe constant on self similar
solutions to the Ricci–Bourguignon flow, which are called Ricci–Bourguignon soliton (see [14]).

Example 4.2 Let (Mn, g(t)) be a solution to the Ricci–Bourguignon flow with initial condition g(0) = g0.
The solution g(t) is called self similar solution if there is a smooth function c(t) and a 1-parameter family of
diffeomorphism φt : M → M such that g(t) = c(t)φ∗

t (g0) with c(0) = 1 and φ0 = idM . Since �φ∗
t g0 ◦ φ∗

t =
φ∗

t ◦ �g0 and Ric(φ∗
t g0) = φ∗

t Ric(g0) we have Rφ∗
t g0 = Rg0 and

�φ∗
t g0 ◦ φ∗

t = (−a�φ∗
t g0 + Rφ∗

t g0) ◦ φ∗
t = φ∗

t ◦ (−a�g0 + R) = φ∗
t ◦ �g0 .

Therefore, the operators�φ∗
t g0 and�g0 have the same eigenvalues with eigenfunctions u and φ∗

t u, respectively.

Hence, if g(t) is a self similar solution to the Ricci–Bourguignon flow on (Mn, g0) then Ỹ (t) = 1
c(t) Ỹ (0).

In the next example, we consider 3-dimensional Heisenberg group.

Example 4.3 The 3-dimensional Heisenberg group is isomorphic to the set of upper-triangle 3 × 3 matrices
⎧
⎨

⎩

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠
∣
∣
∣x, y, z ∈ R

⎫
⎬

⎭

endowed with usual the matrix multiplication. For any given metric g0 on Heisenberg group we choose a
Milnor frame {X1, X2, X3} in which

[X2, X3] = X1, [X3, X1] = 0, [X1, X2] = 0,

the metric g0 is diagonal and we denote by

g0 = A0(θ
1)2 + B0(θ

2)2 + C0(θ
3)2,

where {θ1, θ2, θ3} is the dual coframe to the Milnor frame {X1, X2, X3}. We assume that

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2

be a solution of Ricci–Bourguignon flow. According to [17] under the normalization A0B0C0 = 1, we get

R11 = 1

2
A3, R22 = −1

2
A2B, R33 = −1

2
A2C, R = −1

2
A2, |Ric|2 = 3

4
A4.

The Ricci–Bourguignon flow equations are then
⎧
⎪⎨

⎪⎩

d
dt A = −(1 + ρ)A3,
d
dt B = (1 − ρ)A2B,
d
dt C = (1 − ρ)A2C.
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Starting with the equation for A, these can be integrated directly to have

⎧
⎪⎪⎨

⎪⎪⎩

A = A0
(
1 + 2(1 + ρ)A2

0t
)− 1

2 ,

B = B0
(
1 + 2(1 + ρ)A2

0t
) 1−ρ
2(1+ρ) ,

C = C0
(
1 + 2(1 + ρ)A2

0t
) 1−ρ
2(1+ρ) .

Therefore, for ρ 
= −1 Eq. (3.5) yields

d

dt
Ỹ (t) = 2a

∫

M

[−(1 + ρ)A3∇1u∇1u + (1 − ρ)A2B∇2u∇2u + (1 − ρ)A2C∇3u∇3u
]

dμ

+3

2
A4 + 1

2

[(

1 − 2

p

)

(1 − 3ρ) + 2ρ
]

A2Ỹ (t)

≤ 2(1 − ρ)A2Ỹ (t) + (1 − ρ)A4 + 3

2
A4 + 1

2

[ (

1 − 2

p

)

(1 − 3ρ) + 2ρ
]

A2Ỹ (t)

=
[5

2
(1 − ρ) − 1

p
(1 − 3ρ)

]
A2Ỹ (t) + (

5

2
− ρ)A4.

Let a = 5
2 (1 − ρ) − 1

p (1 − 3ρ) and b = ( 52 − ρ). If a 
= −2(1 + ρ) then we have

d

dt

(
(
1 + 2(1 + ρ)A2

0t
)− a

2(1+ρ) Ỹ (t) + bA4
0

1 + a
2(1+ρ)

(
1 + 2(1 + ρ)A2

0t
)−(1+ a

2(1+ρ)
)

)

≤ 0.

Thus, the quantity

(
A

A0
)

a
1+ρ

(

Ỹ (t) + bA2
0

1 + a
2(1+ρ)

A2

)

is nonincreasing along the Ricci–Bourguignon flow. If a = −2(1 + ρ) then we get

d

dt

(
(
1 + 2(1 + ρ)A2

0t
)− a

2(1+ρ) Ỹ (t) − bA2
0

2(1 + ρ)
ln(1 + 2(1 + ρ)A2

0t)

)

≤ 0.

This shows that the quantity

(
1 + 2(1 + ρ)A2

0t
)− a

2(1+ρ) Ỹ (t) − bA2
0

2(1 + ρ)
ln(1 + 2(1 + ρ)A2

0t)

is nonincreasing under the Ricci–Bourguignon flow.

5 Conclusion

We have obtained the evolution formula for Yamabe constant Ỹ (t) under the Ricci–Bourguignon flow as (3.5)
and (3.13) on closed n-dimensional Riemannian manifolds with initial metric g0. We assume that g0 is a metric
of constant scalar curvature and we conclude that d

dt |t=0Ỹ (t) ≥ 0 and the equality holds if and only if g0 is an
Einstein metric, whenever one of the following condition holds:

(1)
Rg0
n−1 is not a positive eigenvalue of the Laplacian �g0 ,

(2) there is a C1-family of smooth positive functions u(t) on [0, ε) for some ε > 0 with constant u(0), such

that u(t)
4

n−2 g(t) has unit volume and constant scalar curvature Y (g(t)).
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Also, we give examples on Einstein manifold, Ricci–Bourguignon soliton, and Heisenberg group in support
of our results.
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