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Abstract A t-frugal colouring of a graph G is an assignment of colours to the vertices of G, such that each
colour appears at most t times in the neighbourhood of any vertex. A dichotomy theorem for the complexity
of deciding whether a graph has a 1-frugal colouring with k colours was found by McCormick and Thomas,
and then later extended to restricted graph classes by Kratochvil and Siggers. We generalize the McCormick
and Thomas theorem by proving a dichotomy theorem for the complexity of deciding whether a graph has a
t-frugal colouring with k colours, for all pairs of positive integers t and k. We also generalize bounds of Lih
et al. for the number of colours needed in a 1-frugal colouring of a given K4-minor-free graph with maximum
degree � to t-frugal colourings, for any positive integer t .

Mathematics Subject Classification 05C15 · 68Q17

1 Introduction and background

A colouring of a graph G is t -frugal if, for every v ∈ V and for every colour c, the colour c is assigned to at
most t vertices of N (v). We consider only proper colourings.

Frugal colourings were introduced by Hind, Molloy, and Reed in 1997 [16]. Their main result is that every
graph with sufficiently large maximum degree � has a �log8 ��-frugal (� + 1)-colouring. Molloy and Reed
later proved that every graph G with sufficiently large maximum degree has a (50 log�/ log log�)-frugal
(� + 1)-colouring [22]. Their work was generalized by Kang and Müller [18].

Rather than focussing on the values of t for which a graph has a t-frugal colouring with a given number of
colours, we fix t and focus on the number of colours needed for a t-frugal colouring. The t -frugal chromatic
number of G is the smallest positive integer k, such that there exists a t-frugal k-colouring of G, and is denoted
by χt (G).

Amini, Esperet, and van den Heuvel [1] examined t-frugal colourings of planar graphs and outerplanar
graphs. For planar graphs, they showedχt ≤ ⌊ 2�+19

t

⌋
, and gave improvements for planar graphs of sufficiently

large girth and maximum degree. For outerplanar graphs with maximum degree � ≥ 3, they showed χt ≤
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⌊
�−1
t

⌋ + 3 for t ≥ 2. The bound was improved for 2-connected outerplanar graphs with maximum degree at
least 7.

The case t = 1 has a substantial history under the names injective colouring, distance 2 colouring, colouring
the square, and L(1, 1)-labelling; for example, see [5,6,11,12,26]. These colourings arise as an example in the
monadic second-order logic of graphs [7]. Similar concepts were considered earlier; see [17], pages 156-158.
The smallest number of colours needed in a 1-frugal colouring of a graph G is χ(G2), where G2 is the graph
obtained from G by adding edges between all pairs of vertices at distance 2 in G.

Wegner [26] conjectured that if G is planar, then:

χ1(G) ≤

⎧
⎪⎨

⎪⎩

7 if � = 3,
� + 5 if 4 ≤ � ≤ 7,⌊ 3�

2

⌋ + 1 if � ≥ 8.

The case � = 3 has been settled [13,25]. In the case � ≥ 8, Molloy and Salavatipour [23] established the

bound χ1(G) ≤
⌊
5
3�

⌋
+ 78, and showed that the additive constant can be replaced by 25 for large �. Havet,

van den Heuvel, McDiarmid, and Reed [14] later showed that the (list) chromatic number of the square of a
planar graph with � ≥ 8 is at most 3

2�(1+ o(1)). Lih et al. [21] proved a restricted version of the conjecture
by showing that if G is a K4-minor-free graph, then:

χ1(G) ≤
{

� + 3 if 2 ≤ � ≤ 3,⌊ 3�
2

⌋ + 1 if � ≥ 4.

We generalize this result to all t ≥ 1 by proving:

Theorem 1.1 Let G be a K4-minor-free graph and t ≥ 1. Then:

χt (G) ≤

⎧
⎪⎨

⎪⎩

3 + ⌊
�−1
t

⌋ + ⌊ 1
t

⌋
2 ≤ � ≤ 3

3 +
⌊⌊

3�
2

⌋
−2

t

⌋

� ≥ 4.

The proof of this theorem appears in Sect. 2.
McCormick and Thomas [24] determined the complexity of deciding whether a given graph has a 1-frugal

k-colouring. Their result was later strengthened by Kratochvíl and Siggers [20]. The problem is NP-complete
for every fixed k ≥ 4 when the input is restricted to planar graphs. The case k = 4 follows from [10]. The
problem is polynomially solvable for each k ≤ 3. For example, a graph has a 1-frugal 3-colouring if and only
if every component is either a path, or a cycle of length divisible by 3. It is known that every planar graph
with � ≤ 5

3k − 52 has a 1-frugal k-colouring [23]. Kratochvíl and Siggers also consider degree restrictions
and show that, for each k ≥ 7, the problem of deciding whether a given graph with maximum degree at most
2
√
k − 1 has a 1-frugal k-colouring is NP-complete. By contrast, it follows from Brooks’ Theorem (applied

to the square) that any graph with maximum degree at most
√
k − 1 has a 1-frugal k-colouring.

We generalize the theorem of McCormick and Thomas [24] to all pairs of positive integers t and k by
proving:

Theorem 1.2 If k ≤ 2, or k = 3 and t = 1, then the problem of deciding whether a given graph has a t-frugal
k-colouring is solvable in polynomial time. If k = 3 and t ≥ 2, or k ≥ 4 and t ≥ 1, then the problem of
deciding whether a given graph has a t-frugal k-colouring is NP-complete.

The proof of this theorem appears in Sect. 3.
For all integers t and k, the existence of a t-frugal k-colouring can be described in monadic second-order

logic. Hence, by Courcelle’s Theorem [7], the existence of such a colouring can be decided in linear time for
graphs of bounded treewidth.

We conclude this section by briefly mentioning some related work. Locally injective colourings which
need not be proper colourings are considered, for example, in [4,9,12,15,20,28]. For recent work on locally
injective colourings of digraphs, see [3]. Colourings of a graph in which all vertices at distance at most d
must be assigned different colours are discussed in [19,27]. Results on L(i, j)-labellings, which generalize
L(1, 1)-labellings, are surveyed in [5,6]
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2 K4-minor-free graphs

A graph G is called K4-minor-free if no subgraph of G can be transformed into K4 by contracting edges. The
K4-minor-free graphs are exactly the graphs of treewidth 2. This graph class properly contains the outerplanar
graphs.

As noted in the previous section, the existence of a t-frugal k-colouring can be decided in linear time for
graphs of bounded treewidth, hence in particular for K4-minor-free graphs. The decision algorithm can be
combined with binary search to obtain a O(n log n) algorithm to compute the t-frugal chromatic number of
a K4-minor-free graph with n vertices. However, since K4-minor-free graphs have bounded clique-width, the
t-frugal chromatic number can be computed in linear time [2,8].

In this section, we prove Theorem 1.1, which generalizes the theorem of Lih et al. [21]. Our approach is
similar to theirs.

Let G be a K4-minor-free graph, and let u be a vertex of G. Let S(u) = {x |d(x) ≥ 3 and either xu ∈
E or there exists w, d(w) = 2 s.t. xw, uw ∈ E}, and let D(u) = |S(u)|. We make use of the following
structural lemma.

Lemma 2.1 [21] Let G be a K4-minor-free graph. Then, one of the following holds:

• δ(G) ≤ 1;
• there exist two adjacent vertices of degree 2;
• there exists a vertex u with d(u) ≥ 3 and D(u) ≤ 2.

Using this lemma, we now prove Theorem 1.1.

Proof (Theorem 1.1) The case t = 1 is the theorem of Lih et al. [21]. Hence, assume t ≥ 2. Note that
⌊ 1
t

⌋ = 0.
If � = 2, then any proper colouring of G is a proper t-frugal colouring of G. Since K4-minor-free graphs

have chromatic number at most 3, and 3 + ⌊
�−1
t

⌋ = 3 when � = 2 and t ≥ 2, the theorem holds for � = 2.
Hence, assume � ≥ 3.

For convenience, let:

K (�) =

⎧
⎪⎨

⎪⎩

3 + ⌊
�−1
t

⌋
if � = 3,

3 +
⌊⌊

3�
2

⌋
−2

t

⌋

if � ≥ 4.

The theorem is clearly true for graphs with at most 4 vertices. Hence, assume |V (G)| ≥ 5.
We colour G by induction on n = |V (G)|. The base cases 1 ≤ n ≤ 4 are covered above. Suppose the

statement holds for all graphs on at most n − 1 vertices. Let G be a K4-minor-free graph on n vertices. Our
strategy is to delete a vertexw to obtain H = G−w. The graph H can be coloured by induction. We then seek
to extend the colouring of H to G by assigning a colour to w. We will show that the number of colours which
are excluded as options for the colour of w is less than the number of colours which are available; hence, an
extension exists. For a vertex w in G, let ft (w) be the maximum number of colours which cannot be used
to extend a proper t-frugal colouring of H to a proper t-frugal colouring of G. Colours are excluded if they
are used to colour a vertex adjacent to w, or are used t times in the neighbourhood of some neighbour of w.

Therefore, ft (w) ≤ |N (w)| +
⌊ |N2(w)|

t

⌋
, where N2(w) is the set of vertices at distance 2 from w in G.

Suppose first that δ = 1. Let w be a vertex with degree 1. Clearly, H = G − w is K4-minor-free and
�(H) ≤ �(G). Therefore, H can be t-frugally coloured with K (�) colours. Since ft (w) ≤ |N (w)| +⌊ |N2(w)|

t

⌋
≤ 1+⌊

�−1
t

⌋
< K (�). Therefore, a t-frugal colouring of H can be extended to a t-frugal colouring

of G.
Next, suppose that there are vertices v and w, such that d(v) = d(w) = 2 and vw ∈ E . Consider

H = G − w. By assumption, H can be coloured using K (�) colours. We know that w and v have degree 2,
and t ≥ 2, no valid choice of colour for w can violate the frugality condition for v. Therefore, the neighbour
of v at distance 2 from w can be disregarded which leads to the slightly improved bound ft (w) ≤ |N (w)| +⌊ |N2(w)−1|

t

⌋
≤ 2 +

⌊
(�−1)

t

⌋
< K (�). The colouring of H can therefore be extended to a t-frugal colouring

of G.
By Lemma 2.1, if δ = 2 and the previous case does not apply (i.e., any two vertices which have degree

two are non-adjacent), then there is a vertex u, such that d(u) ≥ 3 and D(u) ≤ 2. Furthermore, since δ ≥ 2,
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it follows that D(u) ≥ 1. Therefore, 1 ≤ D(u) ≤ 2. For a vertex x ∈ S(u), let Mx be the set of degree two
vertices which are adjacent to both u and x , and let mx = |Mx |.

Suppose that D(u) = 1, and let S(u) = {x}. Then, the neighbourhood of x contains the neighbourhood of
u, because no two vertices of degree two are adjacent and x is the only possible neighbour of u which does
not have degree two. (Note that u and x are not necessarily adjacent.) Since d(u) ≥ 3, we have mx ≥ 2. Let
w ∈ Mx and H = G − w, and we may colour H with K (�) colours as before. Since the neighbourhood

of x contains the neighbourhood of u, we have ft (w) ≤ |N (w)| +
⌊ |N2(w)|

t

⌋
≤ 2 +

⌊
(�−1)

t

⌋
< K (�). The

colouring of H can therefore be extended to a t-frugal colouring of G.
Suppose that D(u) = 2, and let S(u) = {x, y}. Without loss of generality, assume mx ≥ my . Since

d(u) ≥ 3, we have mx ≥ 1. Let w ∈ Mx and H = G − w. Suppose H is t-frugally coloured using K (�)
colours. We consider cases based on the possible adjacencies of x and y to u.

First, suppose that xu ∈ E . Since D(u) = 2, we have mx +my ≥ d(u) − 2, and since mx ≥ my , we have

mx ≥
⌈
d(u)−2

2

⌉
=

⌈
d(u)
2

⌉
− 1. Therefore:

ft (w) ≤ |N (w)| +
⌊ |N2(w)|

t

⌋

= 2 +
⌊
d(u) + d(x) − mx − 3

t

⌋

≤ 2 +
⌊

� + � − (
⌈

�
2

⌉ − 1) − 3

t

⌋

= 2 +
⌊
2� − ⌈

�
2

⌉ − 2

t

⌋

= 2 +
⌊⌊ 3�

2

⌋ − 2

t

⌋

< K (�).

The colouring of H can therefore be extended to a t-frugal colouring of G.

Now, suppose that xu /∈ E and yu /∈ E . In this case, we have mx +my = d(u), so mx ≥
⌈
d(u)
2

⌉
. Let c be

a t-frugal colouring of H = G − w with K (�) colours.
If u is not adjacent to a vertex with colour c(x), then either c(u) = c(x) or u can be recoloured, so that

c(u) = c(x). It then follows that:

ft (w) ≤ (|N (w)| − 1) +
⌊ |N2(w)|

t

⌋

= 1 +
⌊
d(u) + d(x) − mx − 1

t

⌋

≤ 1 +
⌊

� + � − ⌈
�
2

⌉ − 1

t

⌋

= 1 +
⌊⌊ 3�

2

⌋ − 1

t

⌋

≤ 2 +
⌊⌊ 3�

2

⌋ − 2

t

⌋

< K (�).

The colouring c can therefore be extended to a t-frugal colouring of G.
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xvui
xvui+1yvui

yvui+1zvui
zvui−1

Fig. 1 A portion of the vertex-gadget Fv , where Hv
ui is the graph shown between the dotted lines

If u is adjacent to a vertex with colour c(x), then we have:

ft (w) ≤ |N (w)| +
⌊ |N2(w)| − 1

t

⌋

≤ 2 +
⌊⌊ 3�

2

⌋ − 2

t

⌋

< K (�).

The colouring c can therefore be extended to a t-frugal colouring of G.
Finally, suppose that xu /∈ E and yu ∈ E . In this case, mx +my = d(u)− 1. If mx = my , we may use the

method from the case xu ∈ E . Hence, assume that mx > my . Then, mx ≥
⌈
d(u)
2

⌉
, and we may then proceed

as in the previous case.
This completes the proof. �	

3 Complexity of proper frugal colouring

The decision problem P(t, k)-colouring is formally defined as follows.

Problem: P(t, k)-colouring, t ≥ 1, k ≥ 1.
Instance: A graph G.
Question: Is there a proper t-frugal k-colouring of G?

P(t, k)-colouring clearly belongs to NP for all integers t ≥ 1 and k ≥ 1.
NP-completeness of P(1, k)-colouring for each k ≥ 4 follows from results of McCormick and Thomas

[24] (also see Kratochvil and Siggers [20]).
We will extend the result to P(t, k)-colouring, for all pairs of positive integers t and k. We first treat some

special cases, and then derive the general result from them.

Lemma 3.1 P(2, 3)-colouring is NP-complete.

Proof The transformation is from 3-colouring.
Let G be an instance of 3-colouring. We construct an instance G ′ of P(2, 3)-colouring from G as follows.

First, consider the graph H with vertices x , y, and z, such that x is adjacent to y, and the vertices y and z are
connected by three paths of length two. For each v ∈ V (G), we construct a vertex-gadget Fv from copies
of H as follows. For each vertex u, such that uv ∈ E(G), create a copy Hv

u of H in which the vertices xv
u ,

yv
u , and zvu correspond to the vertices x , y, and z of H , respectively. Let N (v) = {u1, u2, . . . , uδ(v)}. For

1 ≤ i ≤ δ(v) − 1, add an edge between zvui and xv
ui+1

(see Fig. 1). This completes the construction of Fv . To
complete the construction of G ′, for each edge uv ∈ E(G), add an edge between xuv in Fu and xv

u in Fv . The
construction can clearly be carried out in polynomial time.

As above, let v ∈ V (G) and let {u1, u2, . . . , uδ(v)} be the set of vertices adjacent to v, ordered arbitrarily.
Claim 1: In a 2-frugal 3-colouring of Fv , the vertices xv

ui for 1 ≤ i ≤ δ(v) must receive the same colour.
It is sufficient to show that xv

ui and xv
ui+1

must receive the same colour. Let {1, 2, 3} be the set of colours,
and suppose xv

ui has colour 1 without loss of generality. Then, y
v
ui has colour 2 without loss of generality, and

then, the three vertices adjacent to both yv
ui and z

v
ui must use the colour 1 exactly once, and the colour 3 exactly
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two times as a result of the frugality condition. Then, zvui must receive the colour 2, and xv
ui+1

must receive the
colour 1 to satisfy the frugality condition for zvui . This proves the claim.

We refer to the colour used to colour the vertices xv
ui in Fv as the colour of Fv .

Claim 2: Fv can be coloured, such that, for 1 ≤ i ≤ δ(v) − 1, zvui and yv
ui+1

use different colours.
Without loss of generality, we may assume that the colour of Fv is 1. The proof of the above claim shows

that yv
ui and z

v
ui have the same colour for each i , 1 ≤ i ≤ δ(v). However, a colouring that satisfies the conditions

of the claim is easily obtained by colouring yv
ui and z

v
ui with colour 2 when i is even, and colour 3 when i is an

odd. Then, since xv
ui and xv

ui+1
share a colour, and yv

ui and zvui share a colour, we can always colour the three
vertices of Hv

ui which are adjacent to both yv
ui and zvui while maintaining the frugality condition. This proves

the claim.
Claim 3: If u and v are adjacent in G, then the colour of Fu is different than the colour of Fv .
By construction, xuv and xv

u are adjacent in G
′, and hence must be assigned different colours in any 2-frugal

3-colouring of G ′. By definition, the colour of xuv is the colour of Fu and the colour of xv
u is the colour of Fv ,

and therefore, the claim is proved.
Suppose a 3-colouring c of G is given. To extend this to a 2-frugal 3-colouring c′ of G ′, let c(v) be the

colour of Fv in c′. By Claim 2, we can assume that our colouring of Fv is such that zvui and yv
ui+1

do not
have the same colour, and since zvui and yv

ui+1
are two of the three neighbours of xv

ui+1
, the frugality condition

must be satisfied for xv
ui+1

. The vertices xv
ui are the only vertices of Fv with neighbours outside of Fv . Since

our colouring of Fv satisfies the frugality condition, our colouring c′ also satisfies the frugality condition. It
remains to show that c′ is a proper colouring. Since our colouring of Fv is proper for each v ∈ V (G), this
follows immediately from the fact that c is a proper colouring, and from Claim 3. Therefore, c′ is a 2-frugal
3-colouring of G ′.

Finally, suppose a 2-frugal 3-colouring c′ of G ′ is given. By Claim 1, for each v ∈ V (G), Fv has a
well-defined colour. We can obtain a well-defined 3-colouring c of G from c′, by letting c(v) be the colour
of Fv in G ′. For any edge uv ∈ E(G), the vertex xuv of Fu and the vertex xv

u of Fv are adjacent in G ′ by
construction, and therefore, xuv and xv

u are assigned different colours by the proper colouring c′. Hence, Fu

and Fv are assigned different colours by c′, and so, our colouring c will assign different colours to u and v.
Therefore, c is a proper 3-colouring of G.

Therefore P(2, 3)-colouring is NP-complete. �	
Let G be a graph. The corona of G with respect to Kk−1 is the graph obtained from G by, for each vertex

v of G, creating a copy of Kk−1 and adding edges, such that v is adjacent to each vertex of its copy of Kk−1.

Lemma 3.2 Let t ≥ 1 and k ≥ 1 be integers. Then, P(t, k)-colouring polynomially transforms to P(t +1, k)-
colouring.

Proof Let G be an instance of P(t, k)-colouring. The instance of P(t + 1, k)-colouring obtained from G is
the graph H which is the corona of G with respect to Kk−1. The transformation can clearly be carried out
in polynomial time. We will show that G has a t-frugal k-colouring if and only if H has a (t + 1)-frugal
k-colouring.

For a colouring c of G, a colour x , and a vertex v ∈ V (G), let |cx (v)| denote the number of times in the
colouring c that the colour x appears in the neighbourhood of v.

Let c be a t-frugal k-colouring of G. Clearly, c can be extended to a proper colouring c′ of H by, for each
v ∈ V (G), colouring the copy of Kk−1 associated with v using each of the k − 1 colours in {1, 2, . . . , k} −
{c(v)} exactly once. Then, for each colour x ∈ {1, 2, . . . , k} − {c(v)}, the number of times x appears in the
neighbourhood of v is exactly |cx (v)| + 1. Since c is t-frugal, we have |cx (v)| + 1 ≤ t + 1. Then, since every
vertex in each copy of Kk−1 is adjacent to exactly one vertex of every colour other than its own, we have that
c′ is a (t + 1)-frugal k-colouring of H .

Now, let c′ be a (t + 1)-frugal k-colouring of H . We claim that the colouring c of G induced by c′ is
a t-frugal k-colouring. To see this, observe that for every v ∈ V (G) and every x ∈ {1, 2, . . . , k} − {c′(v)},
|cx (v)| = |c′

x (v)| − 1, as x must be used exactly once in c′ to colour the copy of Kk−1 in H associated with
v. Since c′ is (t + 1)-frugal, we have |cx (v)| = |c′

x (v)| − 1 ≤ (t + 1) − 1 = t , and therefore, c is a t-frugal
k-colouring of G.

We can now prove Theorem 1.2.

Proof (Theorem 1.2) If k = 1, then a graph can be P(t, k)-coloured if and only if it contains no edges. If
k = 2, then a graph can be P(t, k)-coloured if and only if it is bipartite with � ≤ t . If k = 3, then for t = 1,
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the statement is clear (as discussed in the introduction), and for t ≥ 2, the statement follows from Lemma 3.1
and induction on t . If k ≥ 4, then the statement follows from the theorem of McCormick and Thomas [24]
and induction on t using Lemma 3.2. �	
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