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Abstract In this paper, we first define a new pseudo-metric d on a normed linear space X. We do this
by introducing two different classes of elementary topical functions. Next, we use this pseudo-metric d to
investigate the non-expansivity and some properties of topical functions. Finally, the characterizations of fixed
points of topical functions are given, and a relation between the pseudo-metric d and the original norm of the
normed linear space X is presented.

Mathematics Subject Classification 47H09 · 47H10 · 26A48 · 26B25 · 06F20

1 Introduction

The Cayley–Hilbert’s metric (Hilbert’s metric) is especially beneficial in proving the existence of a unique
fixed point for a positive homogeneous operator defined on a Banach space X [7]. This metric has been defined
on a closed convex, pointed cone and solid subset K of a Banach space X. In fact, in [7] Bushell restricted
the domain of a particular type of a positive nonlinear operator and the existence of its unique fixed point was
proved using theBanach contraction-mapping theorem.Moreover, in [4] Birkhoff obtained the other usefulness
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of this metric in algebra and analysis. For example, the Perron–Frobenius theorem for non-negative matrices
has been proved by an application of the Banach contraction-mapping theorem in suitable metric spaces.

Birkhoff’s version of Hilbert’s metric is a distance between pairs of rays in a closed cone, and is closely
related to Hilbert’s classical cross-ratio metric [6]. A version of this metric is discussed by Bushell [5] which
could be traced back to the work of Birkhoff [4] and Samelson [16]. It has found numerous applications
in mathematical analysis, especially in the analysis of linear, and nonlinear, mappings on cones. Birkhoff’s
version of Hilbert’s metric provides a different perspective onHilbert geometries and naturally leads to infinite-
dimensional generalizations. Recently, it has been given a strong convergence theorem for an iterative algorithm
that approximates fixed points of those self-mappings of the Hilbert ball which are non-expansive with respect
to the hyperbolic metric [10]. Moreover, in [9] an extension of the Banach Contraction Principle for best
proximity points of a non-self mapping on the open unit Hilbert ball has been obtained, and this result also
was established for best proximity points of non-expansive mappings and firmly non-expansive mappings.

This is a motivation for us to define a metric (or, a pseudo-metric) and investigate the non-expansivity,
characterizations of fixed points and other properties of topical functions (i.e., plus-homogeneous and increas-
ing). Indeed, we do this, by introducing two different classes of elementary topical functions, in particular,
these two classes are of min-type and max-type functions (see, Example 3.1, below).

The structure of the paper is as follows. In Sect. 2, we provide definitions, notations and preliminary
results related to topical functions. In Sect. 3, we first introduce two different classes of elementary topical
functions, and define a new pseudo-metric d using these two classes. Next, we investigate the properties of
the pseudo-metric d. The results on non-expansivity of topical functions and characterizations of fixed points
of this class of functions are given in Sect. 4. Furthermore, we present a relation between the pseudo-metric d
and the original norm of the normed linear space X.

2 Preliminaries

Let (X, ‖ · ‖) be a real normed linear space. We assume that X is equipped with a closed convex pointed cone
S. The cone S is called pointed if S∩ (−S) = {0}.We also assume that int S �= ∅,where int A denotes interior
of a subset A of X. For each x, y ∈ X, we say that x ≤ y or y ≥ x if and only if y − x ∈ S. Also, we say that
x < y or y > x if and only if y − x ∈ S\{0}. It is easy to see that " ≤ " is a partial order on X, and so, (X, ≤)
is an ordered normed linear space.

Moreover, we assume that S is a normal cone. Recall [14] that the cone S is called normal if there exists a
constant m > 0 such that ‖x‖ ≤ m‖y‖, whenever 0 ≤ x ≤ y with x, y ∈ X. Let 1 ∈ int S (see Remark 2.5,
below) and let

B := {x ∈ X : −1 ≤ x ≤ 1}. (1)

It is well known and easy to check that B can be considered as the unit ball of a certain norm ‖ · ‖1 on X,
which is equivalent to the initial norm ‖ · ‖. Assume without loss of generality that ‖ · ‖ = ‖ · ‖1.

In the sequel, we will consider the ordered normed linear space (X, ≤, ‖·‖) and the unit ball B as described
above unless stated otherwise.

We recall from [11] the following definitions.
A function p : X −→ R̄ := [−∞, +∞] is called plus-homogeneous if p(x + λ1) = p(x) + λ for all

x ∈ X and all λ ∈ R, where 1 ∈ int S.

A function p : X −→ R̄ is called increasing if for each x, y ∈ X with x ≤ y, then p(x) ≤ p(y).

Definition 2.1 [15] A function p : X −→ R̄ is called topical if f is increasing and plus-homogeneous.

For more details and properties of topical functions, see, for example; [3,13,15].

Definition 2.2 [2,8] A function T : X −→ X is called non-expansive with respect to a metric d (or, a
pseudo-metric d) if

d(T (x), T (y)) ≤ d(x, y), ∀ x, y ∈ X.

Definition 2.3 [2,8] A function T : X −→ X is called contractive with respect to a metric d (or, a pseudo-
metric d) if

d(T (x), T (y)) < d(x, y), ∀ x, y ∈ X, with x �= y.
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Definition 2.4 [2,8] A function T : X −→ X is called contraction with respect to a metric d (or, a pseudo-
metric d) if there exists α ∈ (0, 1) such that

d(T (x), T (y)) ≤ αd(x, y), ∀ x, y ∈ X.

Remark 2.5 Since S is a cone, it follows that int S is also a cone. Therefore, there exists 0 �= u ∈ int S because
int S �= ∅, and hence, u

‖u‖ ∈ int S. Let 1 := u
‖u‖ . So, 1 ∈ int S and ‖1‖ = 1.

Throughout the paper, let 1 ∈ int S be as in Remark 2.5.

3 A new pseudo-metric and its properties

In this section, using the elementary topical functions defined in [11,12], we first introduce a newpseudo-metric
d, and then we investigate its properties. We start with the definition of the elementary topical functions.

In [11,12], the elementary topical function ϕ : X × X −→ R is defined by

ϕ(x, y) := sup{λ ∈ R : λ1 + y ≤ x}, ∀ x, y ∈ X.

It should be noted that, in view of (1), the set {λ ∈ R : λ1+ y ≤ x} is non-empty and bounded from above (by
‖x − y‖). Clearly, this set is closed. So, in the definition of ϕ, we can use maximum instead of supremum. It
follows from the definition of ϕ that:

−‖x − y‖ ≤ ϕ(x, y) ≤ ‖x − y‖, ∀ x, y ∈ X. (2)

ϕ(x, y)1 + y ≤ x, ∀ x, y ∈ X. (3)

We enlist some properties of the function ϕ,which have been obtained in [11,12] (therefore, we state them
without proof).

Proposition 3.1

(x1, x2 ∈ X with x1 ≤ x2) �⇒ ϕ(x1, y) ≤ ϕ(x2, y), ∀ y ∈ X, (4)

(y1, y2 ∈ X with y1 ≤ y2) �⇒ ϕ(x, y2) ≤ ϕ(x, y1), ∀ x ∈ X, (5)

ϕ(x, x) = 0, ∀ x ∈ X, (6)

ϕ(x + λ1, y) = ϕ(x, y) + λ, ∀ x, y ∈ X, ∀ λ ∈ R, (7)

ϕ(x, y + λ1) = ϕ(x, y) − λ, ∀ x, y ∈ X, ∀ λ ∈ R, (8)

ϕ(x, y) = ϕ(−y,−x), ∀ x, y ∈ X, (9)

ϕ(x, x + λ1) = −λ, ∀ x ∈ X, ∀ λ ∈ R. (10)

Now, for each y ∈ X, we define the function ϕy : X −→ R by ϕy(x) := ϕ(x, y) for all x ∈ X. Therefore, it
is clear that, for each y ∈ X, the function ϕy satisfies the relations (2)–(10).

In the sequel, we also consider the elementary topical function (cf. [11,12]) ψ : X × X → R defined by

ψ(x, y) := inf{λ ∈ R : x ≤ λ1 + y}, ∀ x, y ∈ X.

It is worth noting that, in view of (1), the set {λ ∈ R : x ≤ λ1+ y} is non-empty and bounded from below (by
−‖x − y‖). Clearly, this set is closed. So, in the definition of ψ, we can use minimum instead of infimum. It
follows from the definition of ψ that:

−‖x − y‖ ≤ ψ(x, y) ≤ ‖x − y‖, ∀ x, y ∈ X. (11)

x ≤ ψ(x, y)1 + y, ∀ x, y ∈ X. (12)

We present some properties (without proof) of the function ψ obtained in [11,12].
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Proposition 3.2

(x1, x2 ∈ X with x1 ≤ x2) �⇒ ψ(x1, y) ≤ ψ(x2, y), ∀ y ∈ X, (13)

(y1, y2 ∈ X with y1 ≤ y2) �⇒ ψ(x, y2) ≤ ψ(x, y1), ∀ x ∈ X, (14)

ψ(x, x) = 0, ∀ x ∈ X, (15)

ψ(x + λ1, y) = ψ(x, y) + λ, ∀ x, y ∈ X, ∀ λ ∈ R, (16)

ψ(x, y + λ1) = ψ(x, y) − λ, ∀ x, y ∈ X, ∀ λ ∈ R, (17)

ψ(x, y) = ψ(−y,−x), ∀ x, y ∈ X, (18)

ψ(x, x + λ1) = −λ, ∀ x ∈ X, ∀ λ ∈ R. (19)

For each y ∈ X, we define the function ψy : X −→ R by ψy(x) := ψ(x, y) for all x ∈ X. Therefore, it is
clear that, for each y ∈ X, the function ψy satisfies the relations (11)–(19).

We now give some crucial properties of ϕy and ψy (y ∈ X).

Proposition 3.3 For each y ∈ X, the functions ϕy and ψy are topical.

Proof This is an immediate consequence of the relations (4), (7), (13) and (16). ��
Lemma 3.4 For each x, y ∈ X,

ϕy(x) = −ψx (y). (20)

Proof The result follows from the definitions of ϕy and ψy . ��
Proposition 3.5

ϕy(x)1 + y ≤ x ≤ ψy(x)1 + y, ∀ x, y ∈ X. (21)

Proof This is an immediate consequence of the relations (3) and (12). ��
Corollary 3.6

ϕy(x) ≤ ψy(x), ∀ x, y ∈ X. (22)

Proof Assume if possible that there exist x, y ∈ X such that ϕy(x) > ψy(x). This together with 0 �= 1 ∈ S
and the fact that S is a cone implies that

[ϕy(x) − ψy(x)]1 ∈ S\{0},
and hence, ψy(x)1 < ϕy(x)1. This contradicts Proposition 3.5 (see page 3, for the definition of the strict order
" < "). ��

Now, using the elementary topical functions ϕy and ψy (y ∈ X), we introduce a new pseudo-metric on X.

Definition 3.7 We define the function d : X × X −→ [0,+∞) by

d(x, y) := ψy(x) − ϕy(x), ∀ x, y ∈ X. (23)

Theorem 3.8 (X, d) is a pseudo-metric space.

Proof First, it should be noted that, in view of (6), (15) and (23), d(x, x) = 0 for all x ∈ X. Also, it follows
from Corollary 3.6 that d(x, y) ≥ 0 for all x, y ∈ X. Now, we show that

d(x, y) = 0 ⇐⇒ x = y + λ1, for some λ ∈ R. (24)

Assume that x = y+λ1 for some λ ∈ R. So, by (6), (7), (15), (16), (23) and the fact that ϕy(y) = 0 = ψy(y),
we have

d(x, y) = d(y + λ1, y)
= ψy(y + λ1) − ϕy(y + λ1)
= ψy(y) + λ − ϕy(y) − λ

= ψy(y) − ϕy(y)

123



Arab. J. Math. (2020) 9:49–62 53

= 0.

Conversely, suppose that, for x, y ∈ X,we have d(x, y) = 0. So, it follows from (23) that ϕy(x) = ψy(x).
Therefore, by

ϕy(x) = max{λ ∈ R : λ1 + y ≤ x},
and

ψy(x) = min{λ ∈ R : x ≤ λ1 + y},
we conclude that there exists λ ∈ R such that x = y + λ1.

For triangle inequality, by (3) and (12), for each x, y, z ∈ X, one has

x ≤ ψz(x)1 + z,

and

x ≥ ϕz(x)1 + z.

Therefore, it follows from (4), (7), (13) and (16) that

ψy(x) ≤ ψz(x) + ψy(z),

and

ϕy(x) ≥ ϕz(x) + ϕy(z).

Hence,

d(x, y) = ψy(x) − ϕy(x) ≤ ψz(x) + ψy(z) − ϕz(x) − ϕy(z)

= [ψz(x) − ϕz(x)] + [ψy(z) − ϕy(z)]
= d(x, z) + d(z, y).

Finally, we show that d(x, y) = d(y, x) for all x, y ∈ X. By Lemma 3.4,

d(x, y) = ψy(x) − ϕy(x) = −ϕx (y) − (−ψx (y))

= ψx (y) − ϕx (y) = d(y, x), ∀ x, y ∈ X.

Therefore, in view of (24) (also, see Example 3.10, below), we conclude that d is a pseudo-metric on X, and
so, (X, d) is a pseudo-metric space. ��

From now on, we consider the pseudo-metric space (X, d) given by Theorem 3.8.

Lemma 3.9

(1)d(x + α1, y + β1) = d(x, y), ∀ x, y ∈ X, ∀ α, β ∈ R.

(2)d(αx, αy) = αd(x, y), ∀ x, y ∈ X, ∀ α ≥ 0.

Proof (1). By (7), (8), (16), (17) and (23), we obtain

d(x + α1, y + β1) = ψy+β1(x + α1) − ϕy+β1(x + α1)
= ψy+β1(x) + α − ϕy+β1(x) − α

= ψy+β1(x) − ϕy+β1(x)

= ψy(x) − β − ϕy(x) + β

= ψy(x) − ϕy(x)

= d(x, y).

In view of (23) and using the definitions of ϕy and ψy, the relation (2) follows. ��
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Example 3.10 Let X := R
n with the norm ‖x‖ := max1≤i≤n |xi | for each x := (x1, . . . , xn) ∈ R

n . Let
1 := (1, . . . , 1) ∈ R

n , x := (x1, . . . , xn) ∈ R
n, and y := (y1, . . . , yn) ∈ R

n . Therefore,

ϕy(x) = min
1≤i≤n

{xi − yi },
ψy(x) = max

1≤i≤n
{xi − yi }.

So, in view of (23), one has
d(x, y) = max

1≤i≤n
{xi − yi } + max

1≤i≤n
{yi − xi }. (25)

Now, it is easy to see that if x = y+λ1 (0 �= λ ∈ R), then d(x, y) = 0, but x �= y. In particular, let x, y ∈ R
2

be such that x := (x1, 0) with 0 �= x1 ∈ R and y := (0,−x1). Let 1 := (1, 1) ∈ R
2 and λ := x1. Then,

x = y + λ1, and hence, d(x, y) = 0, but x �= y. Consequently, d is a pseudo-metric.

Definition 3.11 A subset D ⊆ X is called null set if the diameter of D is equal to 0, i.e.,

sup{d(x, y) : x, y ∈ D} = 0,

where we define the diameter of D (diam(D)) by

diam(D) := sup{d(x, y) : x, y ∈ D},
with the convention sup ∅ := 0.

Example 3.12 Let X be as in Example 3.10, and let E := {(x, . . . , x) ∈ X : x ∈ R}. Then, E is a null set,
because in view of (25), one has d(u, v) = 0 for all u, v ∈ E .

The following example shows that the pseudo-metric d may be a metric on some subspace W of X, and
moreover, (W, d) is a complete metric space.

Example 3.13 Let X := R
2 and 1 := (1, 1) ∈ R

2. Let d be as in Definition 3.7. Assume that m ∈ N with
m ≥ 2 is fixed. Let Em := {(x,mx) : x ∈ R} ⊂ X. Then, (Em, d) is a complete metric subspace of X.

We only show that if u, v ∈ Em are such that d(u, v) = 0, then u = v. This together with Theorem 3.8
implies that d is a metric on Em, and hence, (Em, d) is a metric space. To this end, assume that u, v ∈ Em
are such that d(u, v) = 0. Therefore, u = (x,mx) and v = (y,my) for some x, y ∈ R. Since d(u, v) = 0, it
follows from (24) that there exists λ ∈ R such that u = v + λ1. This implies that

x − y = λ, and m(x − y) = λ. (26)

We claim that λ = 0. Otherwise, in view of (26), we obtain m = 1, which is a contradiction because m ≥ 2.
So, it follows from (26) that x = y, and so, u = v. Thus, by Theorem 3.8, d is a metric on Em .

Now, let {uk}k≥1 be a Cauchy sequence in Em . Then there exists a sequence {xk}k≥1 in R such that
uk = (xk,mxk) (k = 1, 2, . . . ). So, for every ε > 0, there exists N ∈ N such that d(uk, un) < ε for all
k, n ≥ N . In view of (25), we have

d(uk, un) = max{xk − xn,mxk − mxn} + max{xn − xk,mxn − mxk}. (27)

This implies that

|xk − xn| = 1

m − 1
{max{xk − xn,mxk − mxn} + max{xn − xk,mxn − mxk}}

= 1

m − 1
d(uk, un) < ε, ∀ k, n ≥ N (note that m ≥ 2).

Therefore, the sequence {xk}k≥1 is Cauchy in R, and so, there exists x ∈ R such that xk −→ x with respect
to the Euclidean metric. Let u := (x,mx) ∈ Em . But,

d(uk, u) = max{xk − x,mxk − mx} + max{x − xk,mx − mxk}.
This together with the fact that xk −→ x with respect to the Euclidean metric implies that d(uk, u) −→ 0 as
k −→ +∞, i.e., uk −→ u with respect to the metric d. Then, (Em, d) is a complete metric space.
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4 Non-expansivity and characterizations of fixed points of topical functions

In this section, using the pseudo-metric d, we obtain some results on non-expansivity of topical functions. In
fact, we show that each topical function is non-expansive with respect to the pseudo-metric d.Also, we present
the characterizations of fixed points of topical functions. We denote by FixT the set of all fixed points of a
function T : X −→ X, and is defined by

FixT := {x ∈ X : T (x) = x},
(see, [1,2]). It should be noted that a topical function T : X −→ X has not necessarily a fixed point. In the
following, we give an example. We first give the following definition of a topical function.

Definition 4.1 A function T : X −→ X is called topical if T is increasing (x, y ∈ X and x ≤ y �⇒ T (x) ≤
T (y)) and plus-homogeneous (T (x + λ1) = T (x) + λ1 for all x ∈ X and all λ ∈ R).

Example 4.2 Let 0 �= a ∈ R be fixed, and let 1 := 1 ∈ R. Define Ta : R −→ R by Ta(x) := x + a for all
x ∈ R. It is easy to show that Ta is a topical function in the sense of Definition 4.1. Also, by Lemma 3.9 (1),
we have

d(Ta(x), Ta(y)) = d(x + a, y + a) = d(x, y), ∀ x, y ∈ X.

So, Ta is also non-expansivewith respect to the pseudo-metric d.Clearly, Ta has no fixed point, i.e., FixTa = ∅.

Definition 4.3 A subset G of X is called a generator for X, if for each x ∈ X, there exist y ∈ G and λ ∈ R

such that x = y + λ1, and we write X = 〈G〉.
Example 4.4 Assume that X := R

2 and 1 := (1, 1) ∈ R
2. Let G := {(x,−x) ∈ X : x ∈ R}. Then, X = 〈G〉,

i.e., G is a generator for X. Indeed, for each u := (x, y) ∈ X, put

v :=
(
x − y

2
,
y − x

2

)
, and λ := x + y

2
.

Then, v ∈ G, λ ∈ R and u = v + λ1.

Theorem 4.5 Let T : X −→ X be an arbitrary function, and let G ⊆ X be a generator for X. Suppose that
T is plus-homogeneous on G (see Definition 4.1). If T : G −→ G is non-expansive, then T : X −→ X is also
non-expansive.

Proof Let x1, x2 ∈ X be arbitrary. SinceG is a generator for X, in view ofDefinition 4.3, there exist y1, y2 ∈ G
and λ1, λ2 ∈ R such that x1 = y1 + λ11 and x2 = y2 + λ21. This together with Lemma 3.9 and the fact that
T is non-expansive and plus-homogeneous on G implies that

d(T (x1), T (x2)) = d(T (y1 + λ11), T (y2 + λ21))
= d(T (y1) + λ11, T (y2) + λ21)
= d(T (y1), T (y2))

≤ d(y1, y2)

= d(y1 + λ11, y2 + λ21)
= d(x1, x2).

This completes the proof. ��
We now show that if a topical function T : X −→ X has at least one fixed point, then T has infinitely

many fixed points. We first give the following definition.

Definition 4.6 Let y0 ∈ X be fixed. A subset C of X is called pseudo-plus cone in the direction y0, if x ∈ C,
then x + λy0 ∈ C for all λ ∈ R+.

Proposition 4.7 Let T : X −→ X be a topical function. Then, Fi xT is a pseudo-plus cone in the direction 1.
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Proof If FixT = ∅, then it is clear that FixT is a pseudo-plus cone in the direction 1.Assume that FixT �= ∅.
Let x0 ∈ FixT and λ ∈ R+ be arbitrary. Since T (x0) = x0 and T is topical, it follows that

T (x0 + λ1) = T (x0) + λ1 = x0 + λ1.

This implies that x0 + λ1 ∈ FixT for all λ ∈ R+, and hence, FixT is a pseudo-plus cone in the direction 1.
Consequently, if FixT �= ∅, then FixT has infinitely many points. ��

The following result exerts that there does not exist any topical function which is contractive with respect
to the pseudo-metric d.

Theorem 4.8 There does not exist any topical function T : X −→ X that is contractive, i.e., there does not
exist a topical function T : X −→ X, which satisfies the following strict inequality:

d(T x, T y) < d(x, y), ∀ x, y ∈ X with x �= y. (28)

Proof Assume if possible that there exists a topical function T : X −→ X,which satisfies the strict inequality
(28). Now, let x0 ∈ X be arbitrary, and let α, β ∈ R\{0} be such that α �= β. Put x := x0+α1 and y := x0+β1
in (28). Then,

d(T (x0 + α1), T (x0 + β1)) < d(x0 + α1, x0 + β1).

This together with the fact that T is topical implies that

d(T (x0) + α1, T (x0) + β1) < d(x0 + α1, x0 + β1).

Therefore, by Lemma 3.9, we obtain

d(T (x0), T (x0)) < d(x0, x0),

which is a contradiction because d(z, z) = 0 for all z ∈ X. This completes the proof. ��
Definition 4.9 Let p ∈ R be fixed and arbitrary. A function T : X −→ X is called p-topical if T is increasing
in the sense of Definition 4.1 and T (x + λ1) = T (x) + pλ1 for all x ∈ X and all λ ∈ R.

Note that if p = 1 in Definition 4.9, then T is topical.

Theorem 4.10 Let the function T : X −→ X be p-topical (p > 0). Then,

d(T (x), T (y)) ≤ pd(x, y), ∀ x, y ∈ X. (29)

Proof Let x, y ∈ X be arbitrary. By (21), we have

ϕy(x)1 + y ≤ x ≤ ψy(x)1 + y.

This together with the fact that T is p-topical implies that

pϕy(x)1 + T (y) ≤ T (x) ≤ pψy(x)1 + T (y). (30)

Now, in view of the definitions of ϕy and ψy and (30), we get

pϕy(x) ≤ ϕT (y)(T (x)), and ψT (y)(T (x)) ≤ pψy(x). (31)

Therefore, it follows from (23) and (31) that

d(T (x), T (y)) = ψT (y)(T (x)) − ϕT (y)(T (x))

≤ pψy(x) − pϕy(x)

= pd(x, y).

��
Remark 4.11 In view of Theorem 4.10, every p-topical function (p > 0) is continuous with respect to the
pseudo-metric d.
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Remark 4.12 In Theorem 4.10, if p = 1, then T is topical, and so, by (29), we conclude that T is non-
expansive. Consequently, every topical function is non-expansive with respect to the pseudo-metric d.

Remark 4.13 In Theorem 4.10, if 0 < p < 1, then it follows from (29) that T is a contraction with respect to
the pseudo-metric d.

Example 4.14 Let X := R
2 and 1 := (1, 1) ∈ R

2. Define the function T : R2 −→ R
2 by T (x1, x2) :=

( x12 , x2
2 ) for all (x1, x2) ∈ R

2. It is easy to check that the function T is 1
2 -topical, and so, in view of Remark 4.13,

T is a contraction with the unique fixed point zero.

Now, we give the following result on p-topical functions.

Theorem 4.15 Assume that (X, d) is complete. Let T : X −→ X be a p-topical function (0 < p < 1), and
let x0 ∈ X be fixed. Define xn+1 := T (xn), n = 0, 1, 2, . . . . Then the sequence {xn}n≥0 converges to some
point x ∈ X (it should be noted that x is not necessarily unique, and also, x is not necessarily a fixed point of
T, see Example 4.16, below). Furthermore,

d(T (x), x) = 0, and hence, d(T n(x), Tm(x)) = 0, ∀ n,m ∈ N.

Proof We first show that the sequence {xn}n≥0 converges to some point x ∈ X. To this end, by the hypothesis
and Theorem 4.10, we have

d(xn+1, xn) = d(T (xn), T (xn−1))

≤ pd(xn, xn−1)

...

≤ pnd(x1, x0).

Thus, for each m, n ∈ N with m > n, we obtain

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

≤ (pn + pn+1 + pn+2 + · · · + pm−1)d(x1, x0)

≤ (pn + pn+1 + pn+2 + · · · )d(x1, x0)

= pn

1 − p
d(x1, x0).

So, the sequence {xn}n≥0 is Cauchy in X. Since X is a complete pseudo-metric space, then there exists x ∈ X
such that xn −→ x with respect to the pseudo-metric d. Furthermore, by Theorem 4.10 and the fact that
xn+1 = T (xn), n = 0, 1, 2, . . . , it follows that xn −→ T (x) with respect to the pseudo-metric d. Therefore,
for every ε > 0, we conclude that

d(x, T (x)) ≤ d(x, xn) + d(xn, T (x)) <
ε

2
+ ε

2
= ε,

for all sufficiently large n. This implies that d(T (x), x) = 0 (note that in this case, in view of (24), there exists
λ ∈ R such that T (x) = x + λ1), and hence, by Theorem 4.10, we deduce that d(T n(x), Tm(x)) = 0 for all
m, n ∈ N. ��
Example 4.16 Let X := R

k with the norm ‖x‖ := max1≤i≤k |xi | for each x := (x1, . . . , xk) ∈ R
k . Let 1 :=

(1, . . . , 1) ∈ R
k, and let d be the pseudo-metric defined in Definition 3.7. Define the function T : X −→ X

by

T (x1, . . . , xk) := 1

2
(x1, . . . , xk), ∀ (x1, . . . , xk) ∈ R

k .

Then,

(1) (X, d) is a complete pseudo-metric space.
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(2) There exists a sequence {zn}n≥0 ⊂ X with zn+1 = T (zn) (n = 0, 1, 2, . . . ) such that zn −→ α1 with
respect to the pseudo-metric d for each α ∈ R. Moreover,

FixT = {(0, . . . , 0)}.
We now prove the assertions (1) and (2). To this end, first note that in view of Definition 4.9, it is easy to

see that T is a 1
2 -topical function. Also, by (25),

d(x, y) = max
1≤i≤k

{xi − yi } + max
1≤i≤k

{yi − xi }, (32)

for all x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ R
k . Now, let

xn,i := 1

2n
, for each i = 1, 2, . . . , k − 1, xn,k := − 1

2n
, and

zn := (xn,1, . . . , xn,k−1, xn,k) ∈ R
k, n = 1, 2, . . . .

Let z0 := (x0,1, . . . , x0,k−1, x0,k) := (1, . . . , 1, −1) ∈ R
k .

Solution (1). Assume that {(t1n , . . . , tkn )}n≥0 is a Cauchy sequence in X with respect to the pseudo-metric
d. So, for each ε > 0, there exists N ∈ N such that

d((t1n , . . . , tkn ), (t1m, . . . , tkm)) < ε, ∀ m, n ≥ N .

Thus, by (32), one has

max
1≤i≤k

{t in − t im} + max
1≤i≤k

{t im − t in} < ε, ∀ m, n ≥ N .

This implies (not difficult to check) that

|t in − t im | < ε, ∀ m, n ≥ N , i = 1, . . . , k.

Hence, {t in}n≥0 is a Cauchy sequence in R with respect to the Euclidean metric for each i = 1, . . . , k. Then,
there exists t i ∈ R such that t in −→ t i (i = 1, . . . , k). Now, we show that {(t1n , . . . , tkn )}n≥0 converges to
(t1, . . . , tk) with respect to the pseudo-metric d. In view of (32), one has

d((t1n , . . . , tkn ), (t1, . . . , tk)) = max
1≤i≤k

{t in − t i } + max
1≤i≤k

{t i − t in}
≤ max

1≤i≤k
{|t in − t i |} + max

1≤i≤k
{|t in − t i |}

= 2 max
1≤i≤k

{|t in − t i |} −→ 0, as n −→ +∞,

which completes the solution of (1).
Solution (2). In view of the definition of the sequence {zn}n≥0, one has

zn+1 = (xn+1,1, . . . , xn+1,k−1, xn+1,k)

=
(

1

2n+1 , . . . ,
1

2n+1 , − 1

2n+1

)

= T (zn), n = 0, 1, 2, . . . .

Moreover, by (32), we get

d(zn, α1) = d

((
1

2n
, . . . ,

1

2n
, − 1

2n

)
, (α, . . . , α)

)

= max

{
1

2n
− α, . . . ,

1

2n
− α,− 1

2n
− α

}
+ max

{
α − 1

2n
, . . . , α − 1

2n
, α + 1

2n

}

= 1

2n
− α + α + 1

2n
= 1

2n−1 −→ 0, as n −→ +∞.

So, zn −→ α1 with respect to the pseudo-metric d for each α ∈ R. It is easy to see that (0, . . . , 0) is the only
fixed point of T, while α1 (0 �= α ∈ R) is not a fixed point of T . This completes the solution of (2).
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Definition 4.17 Let T : X −→ X be a function. Suppose that p ∈ R and n ∈ N. We say that T is a pn-topical
function if T n is increasing and

T n(x + α1) = T n(x) + pnα1, ∀ x ∈ X, ∀ α ∈ R.

Proposition 4.18 Let T : X −→ X be a p-topical function (p ∈ R), and let n ∈ N. Then, T is a pn-topical
function.

Proof By induction on n. For n = 1, by the assumption T is p-topical, so the result follows. Assume that
for n = k, the function T is pk-topical. We show that the result holds for n = k + 1. To this end, since T is
p-topical, we have

T k+1(x + α1) = T (T k(x + α1))

= T (T k(x) + pkα1)

= T k+1(x) + pk+1α1, ∀ x ∈ X, ∀ α ∈ R.

Also, for each x, y ∈ X with x ≤ y, by the hypothesis of induction, one has T k(x) ≤ T k(y). As T is
increasing, so we conclude that

T k+1(x) = T (T k(x)) ≤ T (T k(y)) = T k+1(y),

and hence, T is a pn-topical function. ��
Theorem 4.19 Let the function T : X −→ X be pn-topical (p > 0, n ∈ N). Then,

d(T n(x), T n(y)) ≤ pnd(x, y), ∀ x, y ∈ X.

Proof This follows by an argument similar to the proof of Theorem 4.3. ��
By Theorem 4.19, the proof of the following theorem is similar to that of Theorem 4.4, and therefore, we

omit its proof.

Theorem 4.20 Assume that (X, d) is complete. Let the function T : X −→ X be p-topical (and hence, a
pn-topical function) (0 < p < 1, n ∈ N), and let x0 ∈ X be fixed. Define xn+1 := T n(x0), n = 0, 1, 2, . . . .
Then the sequence {xn}n≥0 converges to some point x ∈ X (it should be noted that x is not necessarily unique,
and also, x is not necessarily a fixed point of T ).

Lemma 4.21 Let T : X −→ X be a pn-topical function (0 < p < 1, n ∈ N). Then the set of fixed points of
T (FixT ) is a null set in the sense of Definition 3.2.

Proof Let x, y ∈ FixT be arbitrary. Then, T (x) = x and T (y) = y, and so, for each n ∈ N, one has
T n(x) = x, T n(y) = y. This together with Theorem 4.19 implies that

d(x, y) ≤ pnd(x, y), (n ∈ N).

Since 0 < p < 1, we conclude that d(x, y) = 0. So, diam(FixT ) = 0, and hence, FixT is a null set. ��
The definition of a firmly non-expansive operator on a Hilbert space has been given in [2, Chapter 4]. We

adopt it in the pseudo-metric space (X, d) as follows.

Definition 4.22 Let T : X −→ X be a function. We say that T is firmly non-expansive if

d2(T (x), T (y)) + d2((I d − T )(x), (I d − T )(y)) ≤ d2(x, y), ∀ x, y ∈ X.

Remark 4.23 It should be noted that in view of Definition 4.22, T is firmly non-expansive if and only if I d−T
is firmly non-expansive.

Theorem 4.24 Let T : X −→ X be an arbitrary function, and let G ⊆ X be a generator for X. Suppose that
T is plus-homogeneous on G (see Definition 4.1). If T : G −→ G is firmly non-expansive, then T : X −→ X
is also firmly non-expansive.
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Proof Let x1, x2 ∈ X be arbitrary. SinceG is a generator for X, in view ofDefinition 4.3, there exist y1, y2 ∈ G
and α1, α2 ∈ R such that x1 = y1 + α11 and x2 = y2 + α21. This together with Lemma 3.9 and the fact that
T is plus-homogeneous on G implies that

d(T (x1), T (x2)) = d(T (y1 + α11), T (y2 + α21))
= d(T (y1) + α11, T (y2) + α21)
= d(T (y1), T (y2)), (33)

and also,

d(x1 − T (x1), x2 − T (x2))

= d(y1 + α11 − T (y1 + α11), y2 + α21 − T (y2 + α21))
= d(y1 + α11 − T (y1) − α11, y2 + α21 − T (y2) − α21)
= d(y1 − T (y1), y2 − T (y2)). (34)

Moreover, by Lemma 3.9, we have

d(x1, x2) = d(y1 + α11, y2 + α21) = d(y1, y2). (35)

Hence, (33), (34) and (35) together with the fact that T is firmly non-expansive on G imply that

d2(T (x1), T (x2)) + d2((I d − T )(x1), (I d − T )(x2))

= d2(T (y1), T (y2)) + d2((I d − T )(y1), (I d − T )(y2))

≤ d2(y1, y2)

= d2(x1, x2), ∀ x1, x2 ∈ X.

So, T is firmly non-expansive on X, and hence, the proof is complete. ��
In the following, we give the relation between the norm of X and the pseudo-metric d.

Theorem 4.25 The following inequality holds.

d(x, y) ≤ 2‖x − y‖, ∀ x, y ∈ X. (36)

Proof As B is the unit ball of X, so it follows from (1) that

−‖x‖1 ≤ x ≤ ‖x‖1, ∀ x ∈ X. (37)

Now, let y ∈ X be arbitrary. Since the function ϕy : X −→ R is increasing, we conclude from (37) that

ϕy(−‖x‖1) ≤ ϕy(x) ≤ ϕy(‖x‖1), ∀ x ∈ X. (38)

On the other hand, the function ϕy : X −→ R is plus-homogeneous, so it follows from (38) that

ϕy(0) − ‖x‖ ≤ ϕy(x) ≤ ϕy(0) + ‖x‖, ∀ x ∈ X. (39)

By an argument similar to the above and the fact that the function ψy : X −→ R is topical (increasing and
plus-homogeneous), we obtain

ψy(0) − ‖x‖ ≤ ψy(x) ≤ ψy(0) + ‖x‖, ∀ x ∈ X. (40)

By adding the inequalities (39) and (40), we have

[ψy(0) − ϕy(0)] − 2‖x‖ ≤ ψy(x) − ϕy(x) ≤ [ψy(0) − ϕy(0)] + 2‖x‖, ∀ x, y ∈ X. (41)

In view of the definition of the pseudo-metric d, it follows from (41) that

|d(x, y) − d(0, y)| ≤ 2‖x‖, ∀ x, y ∈ X. (42)
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Replacing x and y by x − y in (42), we get

d(0, x − y) = |d(0, x − y)| ≤ 2‖x − y‖, ∀ x, y ∈ X. (43)

By the definition of the pseudo-metric d, and the definitions of ϕy and ψy, it is easy to check that

d(0, x − y) = ψx (y) − ϕx (y) = d(y, x) = d(x, y), ∀ x, y ∈ X.

This together with (43) implies that

d(x, y) ≤ 2‖x − y‖, ∀ x, y ∈ X.

��
Theorem 4.26 Suppose that T : X −→ X is a topical function. Then, T : (X, ‖ · ‖) −→ (X, d) is Lipschitz
continuous with the Lipschitz constant 2.

Proof As B is the unit ball of X, so it follows from (1) that

−‖x − y‖1 ≤ x − y ≤ ‖x − y‖1, ∀ x, y ∈ X.

This implies that
y − ‖x − y‖1 ≤ x ≤ y + ‖x − y‖1, ∀ x, y ∈ X. (44)

Since T is a topical function, it follows from (44) that

T (y) − ‖x − y‖1 ≤ T (x) ≤ T (y) + ‖x − y‖1, ∀ x, y ∈ X.

So,

−‖x − y‖1 ≤ T (x) − T (y) ≤ ‖x − y‖1, ∀ x, y ∈ X.

This together with (1) implies that

‖T (x) − T (y)‖ ≤ ‖x − y‖, ∀ x, y ∈ X. (45)

Now, by Theorem 4.25 and (45), we conclude that

d(T (x), T (y)) ≤ 2‖x − y‖, ∀ x, y ∈ X.

��
Corollary 4.27 Let T : X −→ X be a topical function. Then, for each n ∈ N, the function T n : (X, ‖·‖) −→
(X, d) is Lipschitz continuous with the Lipschitz constant 2.

Proof In view of Remark 4.2 and Theorem 4.3, we have

d(T (x), T (y)) ≤ d(x, y), ∀ x, y ∈ X.

This together with Theorem 4.26 implies that

d(T n(x), T n(y)) ≤ 2‖x − y‖, ∀ x, y ∈ X, ∀ n ∈ N,

i.e., for each n ∈ N, T n : (X, ‖ · ‖) −→ (X, d) is a Lipschitz continuous function with the Lipschitz constant
2. ��

Acknowledgements The authors are very grateful to the anonymous referee for his/her useful suggestions regarding an earlier
version of this paper. The comments of the referee were very useful and they helped us to improve the paper significantly. This
research was partially supported by Mahani Mathematical Research Center.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


62 Arab. J. Math. (2020) 9:49–62

References

1. Al-Homidan, S.; Ansari, Q.H.; Yao, J.-C.: Some generalizations of Ekeland-type variational principle with applications to
equilibrium problems and fixed point theory. Nonlinear Anal. 69, 126–139 (2008)

2. Bauschke, H.H.; Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York
(2011)

3. Barsam, H.; Mohebi, H.: Characterizations of upward and downward sets in semimodules by using topical functions. Numer.
Funct. Anal. Optim. 37(11), 1354–1377 (2016)

4. Birkhoff, G.: Extensions of Jentzch’s theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)
5. Bushell, P.J.: Hilbert’s metric and positive contraction mappings in a Banach space. Arch. Ration. Mech. Anal. 52, 330–338

(1973)
6. Bushell, P.J.: On the projective contraction ratio for positive linear mappings. J. Lond. Math. Soc. 6, 256–258 (1973)
7. Bushell, P.J.: The Cayley-Hilbert’s metric and positive operators. Linear Algebra Appl. 84, 271–280 (1986)
8. Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962)
9. Khan, A.R.; Shukri, S.A.: Best proximity points in the Hilbert ball. J. Nonlinear Convex Anal. 17, 1083–1094 (2016)

10. Kopecka, E.; Reich, S.: Approximating fixed points in the Hilbert ball. J. Nonlinear Convex Anal. 15, 819–829 (2014)
11. Mohebi, H.: Topical functions and their properties in a class of ordered Banach spaces. In: Continuous Optimization 99, pp.

343–360. Springer (2005)
12. Mohebi, H.; Barsam, H.: Some results on abstract convexity of functions. Math. Slovaca (in press)
13. Mohebi, H.; Samet, M.: Abstract convexity of topical functions. J. Glob. Optim. 58, 365–375 (2014)
14. Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer Academic Publishers, Boston, Dordrecht, London

(2000)
15. Rubinov,A.M.; Singer, I.: Topical and sub-topical functions, downward sets and abstract convexity.Optimization50, 307–351

(2001)
16. Samelson, H.: On the Perron–Frobenius theorem. Mich. Math. J. 4, 57–59 (1957)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

123


	On non-expansivity of topical functions by a new pseudo-metric
	Abstract
	1 Introduction
	2 Preliminaries
	3 A new pseudo-metric and its properties
	4 Non-expansivity and characterizations of fixed points of topical functions
	Acknowledgements
	References




