

Edoardo Ballico

Zero-dimensional complete intersections and their linear span in the Veronese embeddings of projective spaces

Received: 22 March 2018 / Accepted: 13 August 2018 / Published online: 24 August 2018 © The Author(s) 2018

Abstract Let $v_{d,n} : \mathbb{P}^n \to \mathbb{P}^r$, $r = \binom{n+d}{n}$, be the order *d* Veronese embedding. For any $d_n \ge \cdots \ge d_1 > 0$ let $\check{\eta}(n, d; d_1, \ldots, d_n) \subseteq \mathbb{P}^r$ be the union of all linear spans of $v_{d,n}(S)$ where $S \subset \mathbb{P}^n$ is a finite set which is the complete intersection of hypersurfaces of degree d_1, \ldots, d_n . For any $q \in \check{\eta}(n, d; d_1, \ldots, d_n)$, we prove the uniqueness of the set $v_{d,n}(S)$ if $d \ge d_1 + \cdots + d_{n-1} + 2d_n - n$ and q is not spanned by a proper subset of $\nu_{d,n}(S)$. We compute dim $\check{\eta}(2, d; d_1, d_1)$ when $d \ge 2d_1$.

Mathematics Subject Classification 14N05 · 15A69

الملخص

 $\check{\eta}(n; d; d_1, ..., d_n) \subseteq \mathbb{P}^r$ لتكن $r = \binom{n+d}{n}$ ، $v_{d,n}: \mathbb{P}^r \to \mathbb{P}^r$ لتكن $\check{\eta}(n; d; d_1, ..., d_n) \subseteq \mathbb{P}^r$ اتحادا لکل مولّدات $v_{d,n}(S)$ و $d_1 \geq \cdots \geq d_1$ ، حيث أن $S \subset \mathbb{P}^r$ مجموعة منتهية تکمّل تقاطع فوق السطوح بدرجات d_1 ، المجموعة ($\check{\gamma}(n; d; d_1, ..., d_n) \ni q$ إذا كان $\check{\gamma}(n; d; d_1, ..., d_n)$ المحموعة ($\check{\gamma}(n; d; d_1, ..., d_n)$ و q غير مولّد بمجموعة جزئية فعلية من $v_{d,n}(S)$. نقوم بحساب بعد $d \ge d_1 + \dots + d_{n-1} + 2d_n - n$ $d \ge 2d_1$ عندما يكون $\check{\eta}(2; d; d_1, ..., d_n)$

Let K be an algebraically closed field. The vector space $H^0(\mathcal{O}_{\mathbb{P}^n}(d))$ parameterizes the degree d homogeneous polynomials in n + 1 variables. Let $\nu_{d,n} : \mathbb{P}^n \to \mathbb{P}H^0(\mathcal{O}_{\mathbb{P}^n}(d)) = \mathbb{P}^r$, $r := \binom{n+d}{n} - 1$, denote the Veronese embedding of \mathbb{P}^n . For any scheme, $A \subset \nu_{n,d}(\mathbb{P}^n)$ let $\langle A \rangle$ denote the linear span of A in \mathbb{P}^r . For any finite set $S \subset \mathbb{P}^n$, we have $q \in \langle v_{d,n}(S) \rangle$ if and only if the homogeneous polynomial associated to q is a linear combination of the d-powers of |S| linear forms ℓ_p , $p \in S$ ([13]). Sometimes it is cheaper to describe the set S than to describe each of the point of S and then add |S| such descriptions. This comes handy if we only need to describe the linear space $\langle v_{d,n}(S) \rangle$, not a set of generators for it. We do the description taking as S only the complete intersection finite sets (or the complete intersection zero-dimensional schemes).

Fix positive integers $d_1 \leq \cdots \leq d_n$. Let $W(n; d_1, \ldots, d_n)$ (resp. $M(n; d_1, \ldots, d_n)$) denote the set of all finite sets (resp. zero-dimensional schemes) of \mathbb{P}^n which are the complete intersection of n hypersurfaces of degree d_1, \ldots, d_n . The set $M(n; d_1, \ldots, d_n)$ is an irreducible quasi-projective variety and

E. Ballico (🖂)

Department of Mathematics, University of Trento, 38123 Povo, TN, Italy

E-mail: ballico@science.unitn.it

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

 $W(n; d_1, \ldots, d_n)$ is a non-empty Zariski open subset of it. The dimension $\alpha(n; d_1, \ldots, d_n)$ of $M(n; d_1, \ldots, d_n)$ and $W(n; d_1, \ldots, d_n)$ depends only on the integers n, d_1, \ldots, d_n and it can easily be computed. In the particular case $d_i = d_1$ for all i it is the dimension of the Grassmannian of all n-dimensional linear subspaces of the $\binom{n+d_1}{n}$ -dimensional vector space $H^0(\mathcal{O}_{\mathbb{P}^n}(d_1))$ and hence $\alpha(n; d_1, \ldots, d_n) = n(\binom{n+d_1}{n} - n)$. A general formula for complete intersections of dimension at least 2 is in [14, §2] and this case in \mathbb{P}^{n+2} helps to get $\alpha(n; d_1, \ldots, d_n)$. Fix any $Z \in M(n; d_1, \ldots, d_n)$ and set $\beta(n, d; d_1, \ldots, d_n) := \dim \langle v_{d,n}(Z) \rangle$. We have $\beta(n, d; d_1, \ldots, d_n) = \binom{n+d}{n} - h^0(\mathcal{I}_Z(d))$ and hence the integer $\beta(n, d; d_1, \ldots, d_n)$ may be computed using the Koszul complex of forms f_1, \ldots, f_n with Z as their scheme-theoretic zero locus and it does not depend from the choice of Z. Set $\mathbb{I}(n, d; d_1, \ldots, d_n)$ denote the subset of $W(n; d_1, \ldots, d_n) \times \mathbb{P}^r$ formed by all pairs (S, q) with $S \in W(n; d_1, \ldots, d_n)$ and $q \in \langle v_{d,n}(S) \rangle$. $\mathbb{I}(n, d; d_1, \ldots, d_n)$ is an irreducible quasiprojective variety of dimension $\alpha(n; d_1, \ldots, d_n) + \beta(n, d; d_1, \ldots, d_n)$. Let $\check{\eta}(n, d; d_1, \ldots, d_n)$ the closure of $\check{\eta}(n, d; d_1, \ldots, d_n)$ in \mathbb{P}^r . By a theorem of Chevalley ([11, Exercises II.3.18, II.3.19]), \check{\eta}(n, d; d_1, \ldots, d_n) is constructible. Since $\mathbb{I}(n, d; d_1, \ldots, d_n)$ is irreducible, $\check{\eta}(n, d; d_1, \ldots, d_n) + \beta(n, d; d_1, \ldots, d_n)$. We call the integer

 $\min\{r, \alpha(n; d_1, \ldots, d_n) + \beta(n, d; d_1, \ldots, d_n)\}$

the *expected dimension* of $\eta(n, d; d_1, \ldots, d_n)$.

A Koszul complex shows that $\beta(n, d; d_1, \dots, d_n) = d_1 \cdots d_n - 1$ (i.e., $h^1(\mathcal{I}_Z(d)) = 0$ for any $Z \in M(n; d_1, \dots, d_n)$) if and only if $d \ge d_1 + \cdots + d_n - n$.

Question 0.1 Assume $\alpha(n; d_1, \ldots, d_n) + \beta(n, d; d_1, \ldots, d_n) < r$. Find conditions assuring that for a general $q \in \check{\eta}(n, d; d_1, \ldots, d_n)$ there is a unique $S \in W(n; d_1, \ldots, d_n)$ such that $q \in \langle v_{d,n}(S) \rangle$?

Obviously, we need $d \ge d_n$, because $\eta(n, d; d_1, \dots, d_n) = \emptyset$ if $d < d_n$.

Under the following strong assumption on d we prove the following uniqueness theorem.

Theorem 0.2 Assume $d \ge d_1 + \cdots + d_{n-1} + 2d_n - n$. Take $q \in \check{\eta}(n, d; d_1, \ldots, d_n)$ and assume the existence of $A \in W(n; d_1, \ldots, d_n)$, $B \in M(n; d_1, \ldots, d_n)$ such that $q \in \langle v_{d,n}(A) \rangle \cap \langle v_{d,n}(B) \rangle$. Then, there exists $E \subseteq A \cap B$ such that $q \in \langle v_{d,n}(E) \rangle$.

In the set-up of Theorem 0.2, we have $|S| = \prod_{i=1}^{n} d_i$, which is often much higher than d/2. Thus, Theorem 0.2 is not a by-product of other uniqueness theorems for secant varieties of Veronese embedding ([7, Theorem 1.18]). Example 1.1 shows that, in general, the assumption $d \ge d_1 + \cdots + d_{n-1} + 2d_n - n$ in Theorem 0.2 cannot be improved, but this is a very specific example with $n = d_1 = 2$ and we do not know if (under certain assumptions on n, d_1, \ldots, d_n) we may take a lower value of d.

Remark 0.3 Take $Z \in W(n; d_1, \ldots, d_n)$ and a general $q \in \langle v_{d,n}(Z) \rangle$. If $d \ge d_1 + \cdots + d_n - n$, then $v_{d,n}(Z)$ is linearly independent, i.e., $\dim \langle v_{d,n}(Z) \rangle = \deg(Z) - 1$. Since q is general in $\langle v_{d,n}(Z) \rangle$, we have $q \notin \langle v_{d,n}(Z') \rangle$ for any $Z' \subsetneq Z$. Thus, when $d \ge d_1 + \cdots + d_{n-1} + 2d_n - n$ Theorem 0.2 implies that Z is the only $A \in M(n; d_1, \ldots, d_n)$ such that $q \in \langle v_{d,n}(Z) \rangle$.

Remark 0.4 Take n = 1. Fix positive integers d and d_1 . We have r = d and $\eta(1, d; d_1)$ is just the classical secant variety $\sigma_{d_1}(v_{d,1}(\mathbb{P}^1))$. Thus, dim $\eta(1, d; d_1) = \min\{d, 2d_1 - 1\}$. Sylvester's theorem shows that both Question 0.1 and the statement of Theorem 0.2 are true for (d_1, d) if and only if $d \ge 2d_1 - 1$ ([12, Theorem 1.40]).

We prove the following result concerning dim $\eta(n, d; d_1, ..., d_n)$.

Theorem 0.5 Assume char(\mathbb{K}) $\neq 2$. Fix integers $d \ge 2b \ge 4$. Then, $\eta(2, d; b, b)$ has the expected dimension $b^2 + {\binom{b+2}{2}} - 3$.

Suppose you may write the given homogenous degree d polynomial f as a sum

$$f = g_1 + \dots + g_k \tag{1}$$

with k very low, and the homogeneous polynomials g_1, \ldots, g_k "simple", but not d-powers of linear forms, or at least not all d-powers of linear forms. Our idea is that perhaps it helps even if we only find very different addenda g_1, \ldots, g_k , in the sense that each g_i is simple for a very different reason and some of them may be given by a complete intersection, even with different multidegrees.

Concerning an additive decomposition like (1), we stress again that the addenda g_i may be simple for very different reasons. In [4,5], all addenda except one are *d*-powers of a linear forms, while the other one is of the form $L^{d-1}M$ with *L* and *M* non-proportional linear forms. The polynomial $L^{d-1}M$ is in the linear span of $v_{d,n}(Z)$, where *Z* is a connected complete intersection of multidegree (a_1, \ldots, a_n) with $a_1 = \cdots = a_{n-1} = 1$, $a_n = 2$, but *Z* is assumed to be connected. We have $L^{d-1}M \in \eta(n, d; 1, \ldots, 1, 2)$. E. Carlini fixed a positive integer $s \leq n$ and considered the case in which each g_i only depends on *s* homogeneous coordinates (each g_i with respect to a different set of *s* linearly independent linear forms). Starting with R. Fröberg, G. Ottaviani and B. Shapiro ([10]) there is a lot of work in the case in which (for a fixed proper divisor *k* of *d*) each g_i is a *k*-power of a homogeneous form of degree d/k ([3,6,8,9,15,17]).

Now assume $g_1 \in \langle v_{d,n}(S) \rangle$ with *S* a complete intersection of multidegree (d_1, \ldots, d_n) , say $S = \{f_1 = \cdots = f_n = 0\}$ with deg $(f_i) = d_i$. The set *S* depends with continuity on the coefficients of f_1, \ldots, f_n and so if we only know approximatively g_1 (but we are assured that $g_1 \in \check{\eta}(n, d; d_1, \ldots, d_n)$) there is hope to recover a good approximation of f_1, \ldots, f_n and of *S*. For different g_i in (1) we may use different multidegrees.

1 Proof of Theorem 0.2

Proof of Theorem 0.2 Since *A* is a finite set, the scheme $A \cap B$ is a finite set contained in *A*. Since deg(A) = deg(B), either A = B or $A \cap B \subsetneq A$. Assume $q \notin \langle v_{n,d}(A \cap B) \rangle$. Since $q \notin \langle v_{n,d}(A \cap B) \rangle$, the existence of q implies $h^1(\mathcal{I}_{A \cup B}(d)) > 0$. Since $d_1 \leq \cdots \leq d_n$ and *B* is a complete intersection of hypersurfaces of degree $d_1, \ldots, d_n, \mathcal{I}_B(d_n)$ is globally generated. Since $A \neq B$ and *A* is a finite set, there is $Y \in |\mathcal{I}_B(d_n)|$ such that $Y \cap A = A \cap B$. Consider the residual exact sequence

$$0 \to \mathcal{I}_{A \setminus A \cap B}(d - d_n) \to \mathcal{I}_{A \cup B}(d) \to \mathcal{I}_{B,Y}(d) \to 0$$
⁽²⁾

Since $d \ge d_1 + \dots + d_n - n$, we have $h^1(\mathcal{I}_B(d)) = 0$. Hence $h^1(Y, \mathcal{I}_{B,Y}(d)) = 0$. Since $d - d_n \ge d_1 + \dots + d_n - n$, we have $h^1(\mathcal{I}_A(d-d_n)) = 0$. Hence, $h^1(\mathcal{I}_{A \setminus A \cap Y}(d-d_n)) = 0$. The exact sequence (2) gives $h^1(\mathcal{I}_{A \cup B}(d)) = 0$, a contradiction.

Example 1.1 Assume $n \ge 2$ and fix integers $2 \le d_1 \le \cdots \le d_n$ and an integer d such that $d_1 + \cdots + d_n - n \le d \le d_1 + \cdots + d_{n-1} + 2d_n - n - 1$. Take an integral $D \in |\mathcal{O}_{\mathbb{P}^n}(d_n)|$ and call A, B the complete intersection of D with general hypersurfaces of degree d_1, \ldots, d_{n-1} . Since these hypersurfaces are general, we have $A, B \in W(n; d_1, \ldots, d_n)$ and $A \cap B = \emptyset$. Since $d \ge d_1 + \cdots + d_n - n$, we have $\dim \langle v_{d,n}(B) \rangle = \dim \langle v_{d,n}(A) \rangle = \deg(A) - 1$, i.e. $h^1(\mathcal{I}_A(d)) = h^1(\mathcal{I}_B(d)) = 0$. To prove that Theorem 0.2 cannot be extended to the data d, d_1, \ldots, d_n it is sufficient to find A, B such that $\langle v_{d,n}(A) \rangle \cap \langle v_{d,n}(B) \rangle \neq \emptyset$, i.e., (since $A \cap B = \emptyset$ and $h^1(\mathcal{I}_A(d)) = h^1(\mathcal{I}_B(d)) = 0$) it is sufficient to find A, B such that $h^1(\mathcal{I}_{A \cup B}(d)) \neq 0$. Since $A \cup B \subset D$, we have the residual exact sequence of D in \mathbb{P}^n :

$$0 \to \mathcal{O}_{\mathbb{P}^n}(d - d_n) \to \mathcal{I}_{A \cup B}(d) \to \mathcal{I}_{A \cup B, D}(d) \to 0$$
(3)

Since $d - d_n \ge 0$, we have $h^1(\mathcal{O}_{\mathcal{O}_{\mathbb{P}^n}}(d - d_n)) = h^2(\mathcal{O}_{\mathcal{O}_{\mathbb{P}^n}}(d - d_n)) = 0$. Thus by (3) it is sufficient to find A, B such that $h^1(D, \mathcal{I}_{A \cup B, D}(d)) \ne 0$. Take $n = 2, d_1 = 2, D$ smooth and $d = d_1 + 2d_2 - 3 = 2d_2 - 1$. We have $D \cong \mathbb{P}^1$ and deg $(\mathcal{O}_D(d)) = 4d_2 - 2$. Thus, $h^0(\mathcal{O}_D(d)) = 4d_2 - 1$. Since deg $(A \cup B) = 4d_2$, we have $h^1(D, \mathcal{I}_{A \cup B, D}(d)) \ne 0$.

2 Proof of Theorem 0.5

We are only able to do the case $d_n = d_1$. We set $b := d_1$. Thus b is a positive integer and (taking a minimal n) we may assume $b \ge 2$. We also assume $n \ge 2$, because Remark 0.4 covers the case n = 1.

For any positive integer k let $\sigma_k(v_{d,n}(\mathbb{P}^n)) \subseteq \mathbb{P}^r$ denote the k-secant variety of the Veronese variety $v_{d,n}(\mathbb{P}^n)$, i.e., the closure in \mathbb{P}^r of the union of all linear spaces $\langle v_{d,n}(S) \rangle$ with S a finite subset of \mathbb{P}^n with cardinality k. All integers dim $\sigma_k(v_{d,n}(\mathbb{P}^n))$ are known by the Alexander–Hirschowitz theorem ([2,6]).

Remark 2.1 For any $Z \in W(n; b, ..., b)$, we have $\deg(Z) = b^n$ and $h^0(\mathcal{I}_Z(b)) = n$, i.e., $h^1(\mathcal{I}_Z(b)) = b^n + n - \binom{n+b}{n}$. Since Z is a finite set, there is $Z' \subset Z$ such that $|Z'| = \binom{n+b}{n} - n$, $h^0(\mathcal{I}_{Z'}(b)) = n$ and $h^1(\mathcal{I}_{Z'}(b)) = 0$. Let $S \subset \mathbb{P}^n$ be a general set with $|S| = \binom{n+b}{n} - n$. Since S is general, we have $h^0(\mathcal{I}_S(b)) = n$, i.e. $h^1(\mathcal{I}_S(b)) = 0$. Let \mathcal{E} be the scheme-theoretic base locus of $|\mathcal{I}_S(b)|$. The case of Z just discussed shows that \mathcal{E} is a finite set with cardinality b^n .

For any $q \in \mathbb{P}^n$ let 2q denote the first infinitesimal neighborhood of q in \mathbb{P}^n , i.e., the closed subscheme of \mathbb{P}^n with $(\mathcal{I}_q)^2$ as its ideal sheaf. The scheme 2q is a zero-dimensional scheme with $\deg(2q) = n + 1$ and $(2q)_{\text{red}} = \{q\}$.

Proposition 2.2 Take $d \ge b \ge 2$ and $n \ge 2$. Set $a := \binom{n+b}{n} - n$. Take a general $S \subset \mathbb{P}^n$ such that |S| = a. Let $S \cup A$ with $A \cap S = \emptyset$ and $|A| = b^n + n - \binom{n+b}{n}$ be the scheme-theoretic base locus of $|\mathcal{I}_S(b)|$ (Remark 2.1). Set $E := \bigcup_{q \in S} 2q$ and $F := A \cup E$. Then, dim $\eta(n, d; b, \ldots, b) \ge \dim \langle v_{d,n}(F) \rangle$.

Proof Set $a := \binom{n+b}{n} - n$. Fix a general $q \in \check{\eta}(n, d; b, \dots, b)$ and take $Z \in W(n; b, \dots, b)$ such that $q \in \langle v_{d,n}(Z) \rangle$. By the generality of q, we may assume that Z is a general element of $W(n; b, \dots, b)$ and that q is a general element of $\langle v_{d,n}(Z) \rangle$. Take $S \subset Z$ such that |S| = a and $h^1(\mathcal{I}_S(b)) = 0$ (Remark 2.1). Set $A := Z \setminus S$. Take a maximal $A' \subseteq A$ such that $v_{d,n}(S \cup A')$ is linearly independent, i.e., a minimal $A' \subseteq A$ such that $\langle v_{d,n}(S \cup A') \rangle = \langle v_{d,n}(Z) \rangle$. Take an ordering of the points of S and then an ordering of the points of A with the points of A' coming first. Call $q_1, \dots, q_{|Z|}$ the points of Z in this order. For $i \in \{1, \dots, |Z|\}$ take regular systems of parameters z_{ij} , $1 \le i \le |Z|$, $1 \le j \le n$, of the local ring $\mathcal{O}_{\mathbb{P}^n,q_i}$. Set $m := |S \cup A'|$. Instead of $\mathbb{I}(n, d; d_1, \dots, d_n) \subseteq W(n; d_1, \dots, d_n) \times \mathbb{P}^r$, we consider the map $u : (\mathbb{P}^n)^a \times G(m, r + 1) \rightarrow \eta(n, d; b, \dots, b)$ defined in a neighborhood of $(q_1, \dots, q_a, \langle v_{d,n}(Z) \rangle)$ identifying the points in this neighborhood with the points of Z and use the product $(\mathbb{P}^n)^a$ instead of the symmetric product of \mathbb{P}^n . It is sufficient to prove that the Jacobian matrix M of u at $(q_1, \dots, q_a, \langle v_{d,n}(Z) \rangle)$ has rank at least dim $\langle v_{d,n}(F) \rangle$.

Since q is general in $\langle v_{d,n}(S \cup A') \rangle$ and $v_{d,n}(S \cup A')$ is a linearly independent set, there is a unique $o \in \langle v_{d,n}(S) \rangle$ such that $q \in \langle \{o\} \cup \langle v_{n,d}(A') \rangle$. By Terracini's lemma ([1, Corollary 1.10]), the top $na \times na$ principal minor of the Jacobian matrix M of u has rank $na - h^1(\mathcal{I}_E(d))$. The restriction of u to $\langle v_{d,n}(Z) \rangle$ is essentially the identity matrix (or use that the Zariski tangent space of $\check{\eta}(n, d; b, \ldots, b)$ at q contains every linear subspace contained in $\eta(n, d; b, \ldots, b)$ and containing q and in particular it contains $\langle v_{d,n}(A') \rangle$). Thus, the first na + |A'| columns of M have rank $\dim \langle v_{n,d}(E \cup A') \rangle$. Since, $\langle v_{d,n}(S \cup A') \rangle = \langle v_{d,n}(S \cup A) \rangle$ and $E \supset S$, we have $\langle v_{d,n}(E \cup A') \rangle = \langle v_{d,n}(E \cup A) \rangle$.

Lemma 2.3 Assume char(\mathbb{K}) $\neq 2$. Fix a general $Z \in W(n, d; b, ..., b)$. Then, $h^1(\mathcal{I}_A(b)) = 0$ for all $A \subset Z$ such that $|A| = \binom{n+d}{n} - n$.

Proof Since *Z* is general, the complete intersection of n - 1 different elements of $|\mathcal{I}_A(b)|$ is an integral curve, *C*. It is sufficient to prove the lemma for a general effective divisor *Z'* of *C*, which is the complete intersection of *C* and a degree *b* hypersurface. Call $V \subseteq H^0(\mathcal{O}_C(b))$ the image of the restriction map. Since $\mathcal{O}_{\mathbb{P}^n}(b)$ is very ample, in characteristic 0 it is easy to see that the monodromy group of the embedding *j* of *C* induced by *V* is the full symmetric group. In characteristic $\neq 2$ we use [16, Corollary 2.2] and that $b \ge 2$ to see the reflexivity of the curve j(C).

Proof of Theorem 0.5 Fix a general $Z \in W(2; b, b)$, take $S \subset Z$ with $|S| = {\binom{b+2}{2}} - 2$ and with $h^1(\mathcal{I}_S(b)) = 0$ and set $A := Z \setminus S$, $E := \bigcup_{q \in S} 2q$ and $F := A \cup E$. By proposition 2.2, it is sufficient to prove that $h^1(\mathcal{I}_F(d)) = 0$. Take a general $C \in |\mathcal{I}_Z(b)|$. Since Z is general, C is irreducible (take the complete intersection of two general members of $|\mathcal{O}_{\mathbb{P}^2}(b)|$). We have $\operatorname{Res}_C(F) = S$. Since Z is general, we may assume that S is a general subset of C with cardinality ${\binom{b+2}{2}} - 2$. Since $d \ge 2b$, we have $h^0(\mathcal{O}_C(d-b)) \ge h^0(\mathcal{O}_C(b)) = {\binom{b+2}{2}} > |S|$ and S is general in C, we have $h^1(C, \mathcal{I}_{S,C}(d-b)) = 0$. Since the restriction map $H^0(\mathcal{O}_{\mathbb{P}^2}(d-b)) \to H^0(\mathcal{O}_C(d-b))$ is surjective, we get $h^1(\mathcal{I}_S(d-b)) = 0$. By the residual exact sequence

$$0 \to \mathcal{I}_S(d-b) \to \mathcal{I}_F \to \mathcal{I}_{F \cap C,C}(d) \to 0$$

it is sufficient to prove that $h^1(C, \mathcal{I}_{F\cap C,C}(d)) = 0$. Since $d \ge 2b$, it is sufficient to prove that $h^1(C, \mathcal{I}_{F\cap C,C}(2b)) = 0$. Let G be the degree $2b^2$ divisors 2Z of C (each point of Z counts with multiplicity 2). Since $Z \in |\mathcal{O}_C(b)|$, we have $G \in |\mathcal{O}_C(2b)|$. Thus, $h^0(C, \mathcal{I}_{G,C}(2b)) = 1$. Recall that $h^0(\mathcal{O}_C(2b)) = \binom{2b+2}{2} - \binom{b+2}{2} = (3b^2 + 3b)/2$. Since $Z \in |\mathcal{O}_C(b)|$, we have $\mathcal{I}_{Z,C}(2b) \cong \mathcal{O}_C(b)$. Since $\omega_C \cong \mathcal{O}_C(b-3)$, we have $h^1(C, \mathcal{I}_{Z,C}(2b)) = 0$, i.e. $h^0(C, \mathcal{I}_{Z,C}(2b)) = (b^2 + 3b)/2$. Since $h^0(C, \mathcal{I}_{G,C}(2b)) = 1$, and $\binom{b+2}{2} - 2 = (b^2 + 3b - 2)/2$, there is a divisor G' with $Z \subset G' \subset F$ with $\deg(G') = \binom{b+2}{2} - 2 + \deg(Z)$ (i.e., in G' exactly $\binom{b+2}{2} - 2$ of the points of Z appear with multiplicity 2) and $h^1(C, \mathcal{I}_{G',C}(2b)) = 0$. Lemma 2.3 says that we may take G' as F.

🖉 Springer

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Ådlandsvik, B.: Joins and higher secant varieties. Math. Scand. 61, 213–222 (1987)
- 2. Alexander, J.; Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebra Geom. 4(2), 201-222 (1995)
- 3. Backelin, J.; Oneto, A.: On a class of power ideals. J. Pure Appl. Algebra 219(8), 3158-3180 (2015)
- 4. Ballico, E.; Bernardi, A.: Symmetric tensor rank with a tangent vector: a generic uniqueness theorem. Proc. Am. Math. Soc. **140**(10), 3377–3384 (2012)
- 5. Ballico, E.; Bernardi, A.: Minimal decomposition of binary forms with respect to tangential projections. J. Algebra Appl. 12(6), 1350010, 8 pp. (2013)
- 6. Brambilla, M.C.; Ottaviani, G.: On the Alexander-Hirschowitz Theorem. J. Pure Appl. Algebra 212(5), 1229–1251 (2008)
- 7. Buczyński, J.; Ginensky, A.; Landsberg, J.M.: Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture. J. Lond. Math. Soc. **88**, 1–24 (2013)
- 8. Carlini, E.: Beyond Waring's problem for forms: the binary decomposition. Rend. Sem. Mat. Univ. Pol. Torino 1 Polynom. Interp. Proceed. **63**, 87–90 (2005)
- 9. Carlini, E.; Oneto, A.: Monomials as sums of k-th-powers of forms. Commun. Algebra 43(2), 650-658 (2015)
- Fröberg, R.; Ottaviani, G.; Shapiro, B.: On the Waring problem for polynomial rings. Proc. Natl. Acad. Sci. USA 109(15), 5600–5602 (2012)
- 11. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)
- 12. Iarrobino, A.; Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci, vol. 1721. Lecture Notes in Mathematics. Springer, Berlin (1999) (Appendix C by Iarrobino and Steven L. Kleiman)
- Landsberg, J.M.: Tensors: Geometry and Applications Graduate Studies in Mathematics. Am. Math. Soc. Providence, 1 28 (2012)
- Libgober, A.S.; Woo, J.W.: Remarks on moduli spaces of complete intersections, The Lefschetz Centennial Conference, Part I: Proceedings on Algebraic Geometry, Contemporary Mathematics, 58, pp. 183–194. American Mathematical Society, Providence, RI (1986)
- 15. Lundqvist, S.; Oneto, A.; Reznik, B.; Shapiro, B.: On Generic and Maximal k-Ranks of Binary Forms. arXiv: 1711.05014.
- 16. Rathmann, J.: The uniform position principle for curves in characteristic p. Math. Ann. 276(4), 565–579 (1987)
- 17. Scheiderer, C.: Sum of squares length of real forms. Math. Z. 286(1-2), 559-570 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

