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Abstract Let νd,n : P
n → P

r , r = (n+d
n

)
, be the order d Veronese embedding. For any dn ≥ · · · ≥ d1 > 0

let η̌(n, d; d1, . . . , dn) ⊆ P
r be the union of all linear spans of νd,n(S) where S ⊂ P

n is a finite set which is
the complete intersection of hypersurfaces of degree d1, . . . , dn . For any q ∈ η̌(n, d; d1, . . . , dn), we prove
the uniqueness of the set νd,n(S) if d ≥ d1 + · · · + dn−1 + 2dn − n and q is not spanned by a proper subset of
νd,n(S). We compute dim η̌(2, d; d1, d1) when d ≥ 2d1.

Mathematics Subject Classification 14N05 · 15A69

LetK be an algebraically closed field. The vector space H0(OPn (d)) parameterizes the degree d homogeneous
polynomials in n + 1 variables. Let νd,n : P

n → PH0(OPn (d)) = P
r , r := (n+d

n

) − 1, denote the Veronese
embedding of P

n . For any scheme, A ⊂ νn,d(P
n) let 〈A〉 denote the linear span of A in P

r . For any finite
set S ⊂ P

n , we have q ∈ 〈νd,n(S)〉 if and only if the homogeneous polynomial associated to q is a linear
combination of the d-powers of |S| linear forms �p, p ∈ S ([13]). Sometimes it is cheaper to describe the set
S than to describe each of the point of S and then add |S| such descriptions. This comes handy if we only need
to describe the linear space 〈νd,n(S)〉, not a set of generators for it. We do the description taking as S only the
complete intersection finite sets (or the complete intersection zero-dimensional schemes).

Fix positive integers d1 ≤ · · · ≤ dn . Let W (n; d1, . . . , dn) (resp. M(n; d1, . . . , dn)) denote the set
of all finite sets (resp. zero-dimensional schemes) of P

n which are the complete intersection of n hyper-
surfaces of degree d1, . . . , dn . The set M(n; d1, . . . , dn) is an irreducible quasi-projective variety and
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W (n; d1, . . . , dn) is a non-emptyZariski open subset of it. The dimensionα(n; d1, . . . , dn)ofM(n; d1, . . . , dn)
and W (n; d1, . . . , dn) depends only on the integers n, d1, . . . , dn and it can easily be computed. In the par-
ticular case di = d1 for all i it is the dimension of the Grassmannian of all n-dimensional linear subspaces
of the

(n+d1
n

)
-dimensional vector space H0(OPn (d1)) and hence α(n; d1, . . . , dn) = n(

(n+d1
n

) − n). A gen-
eral formula for complete intersections of dimension at least 2 is in [14, §2] and this case in P

n+2 helps
to get α(n; d1, . . . , dn). Fix any Z ∈ M(n; d1, . . . , dn) and set β(n, d; d1, . . . , dn) := dim〈νd,n(Z)〉. We
have β(n, d; d1, . . . , dn) = (n+d

n

) − h0(IZ (d)) and hence the integer β(n, d; d1, . . . , dn) may be computed
using the Koszul complex of forms f1, . . . , fn with Z as their scheme-theoretic zero locus and it does not
depend from the choice of Z . Set I(n, d; d1, . . . , dn) denote the subset of W (n; d1, . . . , dn) × P

r formed by
all pairs (S, q) with S ∈ W (n; d1, . . . , dn) and q ∈ 〈νd,n(S)〉. I(n, d; d1, . . . , dn) is an irreducible quasi-
projective variety of dimension α(n; d1, . . . , dn) + β(n, d; d1, . . . , dn). Let η̌(n, d; d1, . . . , dn) denote the
image of I(n, d; d1, . . . , dn) by the projectionW (d1, . . . , dn)×P

r → P
r . Call η(n, d; d1, . . . , dn) the closure

of η̌(n, d; d1, . . . , dn) in P
r . By a theorem of Chevalley ([11, Exercises II.3.18, II.3.19]), η̌(n, d; d1, . . . , dn)

is constructible. Since I(n, d; d1, . . . , dn) is irreducible, η̌(n, d; d1, . . . , dn) and η(n, d; d1, . . . , dn) are irre-
ducible. They obviously have at most dimension α(n; d1, . . . , dn) + β(n, d; d1, . . . , dn). We call the integer

min{r, α(n; d1, . . . , dn) + β(n, d; d1, . . . , dn)}
the expected dimension of η(n, d; d1, . . . , dn).

A Koszul complex shows that β(n, d; d1, . . . , dn) = d1 · · · dn − 1 (i.e., h1(IZ (d)) = 0 for any Z ∈
M(n; d1, . . . , dn)) if and only if d ≥ d1 + · · · + dn − n.

Question 0.1 Assume α(n; d1, . . . , dn)+β(n, d; d1, . . . , dn) < r . Find conditions assuring that for a general
q ∈ η̌(n, d; d1, . . . , dn) there is a unique S ∈ W (n; d1, . . . , dn) such that q ∈ 〈νd,n(S)〉?

Obviously, we need d ≥ dn , because η(n, d; d1, . . . , dn) = ∅ if d < dn .
Under the following strong assumption on d we prove the following uniqueness theorem.

Theorem 0.2 Assume d ≥ d1 +· · ·+ dn−1 + 2dn − n. Take q ∈ η̌(n, d; d1, . . . , dn) and assume the existence
of A ∈ W (n; d1, . . . , dn), B ∈ M(n; d1, . . . , dn) such that q ∈ 〈νd,n(A)〉 ∩ 〈νd,n(B)〉. Then, there exists
E ⊆ A ∩ B such that q ∈ 〈νd,n(E)〉.

In the set-up of Theorem 0.2, we have |S| = ∏n
i=1 di , which is often much higher than d/2. Thus, Theorem

0.2 is not a by-product of other uniqueness theorems for secant varieties of Veronese embedding ([7, Theorem
1.18]). Example 1.1 shows that, in general, the assumption d ≥ d1 + · · · + dn−1 + 2dn − n in Theorem 0.2
cannot be improved, but this is a very specific example with n = d1 = 2 and we do not know if (under certain
assumptions on n, d1, . . . , dn) we may take a lower value of d .

Remark 0.3 Take Z ∈ W (n; d1, . . . , dn) and a general q ∈ 〈νd,n(Z)〉. If d ≥ d1 + · · · + dn − n, then
νd,n(Z) is linearly independent, i.e., dim〈νd,n(Z)〉 = deg(Z) − 1. Since q is general in 〈νd,n(Z)〉, we have
q /∈ 〈νd,n(Z ′)〉 for any Z ′

� Z . Thus, when d ≥ d1 + · · · + dn−1 + 2dn − n Theorem 0.2 implies that Z is the
only A ∈ M(n; d1, . . . , dn) such that q ∈ 〈νd,n(Z)〉.
Remark 0.4 Take n = 1. Fix positive integers d and d1. We have r = d and η(1, d; d1) is just the classical
secant variety σd1(νd,1(P

1)). Thus, dim η(1, d; d1) = min{d, 2d1 − 1}. Sylvester’s theorem shows that both
Question 0.1 and the statement of Theorem 0.2 are true for (d1, d) if and only if d ≥ 2d1 − 1 ([12, Theorem
1.40]).

We prove the following result concerning dim η(n, d; d1, . . . , dn).
Theorem 0.5 Assume char(K) = 2. Fix integers d ≥ 2b ≥ 4. Then, η(2, d; b, b) has the expected dimension
b2 + (b+2

2

) − 3.

Suppose you may write the given homogenous degree d polynomial f as a sum

f = g1 + · · · + gk (1)

with k very low, and the homogeneous polynomials g1, . . . , gk “ simple ”, but not d-powers of linear forms,
or at least not all d-powers of linear forms. Our idea is that perhaps it helps even if we only find very different
addenda g1, . . . , gk , in the sense that each gi is simple for a very different reason and some of them may be
given by a complete intersection, even with different multidegrees.

123



Arab. J. Math. (2019) 8:109–113 111

Concerning an additive decomposition like (1), we stress again that the addenda gi may be simple for very
different reasons. In [4,5], all addenda except one are d-powers of a linear forms, while the other one is of the
form Ld−1M with L and M non-proportional linear forms. The polynomial Ld−1M is in the linear span of
νd,n(Z), where Z is a connected complete intersection of multidegree (a1, . . . , an)with a1 = · · · = an−1 = 1,
an = 2, but Z is assumed to be connected. We have Ld−1M ∈ η(n, d; 1, . . . , 1, 2). E. Carlini fixed a positive
integer s ≤ n and considered the case in which each gi only depends on s homogeneous coordinates (each gi
with respect to a different set of s linearly independent linear forms). Starting with R. Fröberg, G. Ottaviani
and B. Shapiro ([10]) there is a lot of work in the case in which (for a fixed proper divisor k of d) each gi is a
k-power of a homogeneous form of degree d/k ([3,6,8,9,15,17]).

Now assume g1 ∈ 〈νd,n(S)〉 with S a complete intersection of multidegree (d1, . . . , dn), say S = { f1 =
· · · = fn = 0} with deg( fi ) = di . The set S depends with continuity on the coefficients of f1, . . . , fn and so
if we only know approximatively g1 (but we are assured that g1 ∈ η̌(n, d; d1, . . . , dn)) there is hope to recover
a good approximation of f1, . . . , fn and of S. For different gi in (1) we may use different multidegrees.

1 Proof of Theorem 0.2

Proof of Theorem 0.2 Since A is a finite set, the scheme A ∩ B is a finite set contained in A. Since deg(A) =
deg(B), either A = B or A ∩ B � A. Assume q /∈ 〈νn,d(A ∩ B)〉. Since q /∈ 〈νn,d(A ∩ B)〉, the existence of
q implies h1(IA∪B(d)) > 0. Since d1 ≤ · · · ≤ dn and B is a complete intersection of hypersurfaces of degree
d1, . . . , dn , IB(dn) is globally generated. Since A = B and A is a finite set, there is Y ∈ |IB(dn)| such that
Y ∩ A = A ∩ B. Consider the residual exact sequence

0 → IA\A∩B(d − dn) → IA∪B(d) → IB,Y (d) → 0 (2)

Sinced ≥ d1+· · ·+dn−n,wehaveh1(IB(d)) = 0.Henceh1(Y, IB,Y (d)) = 0. Sinced−dn ≥ d1+· · ·+dn−n,
we have h1(IA(d−dn)) = 0.Hence, h1(IA\A∩Y (d−dn)) = 0. The exact sequence (2) gives h1(IA∪B(d)) = 0,
a contradiction. ��
Example 1.1 Assume n ≥ 2 and fix integers 2 ≤ d1 ≤ · · · ≤ dn and an integer d such that d1 +· · ·+dn −n ≤
d ≤ d1 + · · · + dn−1 + 2dn − n − 1. Take an integral D ∈ |OPn (dn)| and call A, B the complete intersection
of D with general hypersurfaces of degree d1, . . . , dn−1. Since these hypersurfaces are general, we have
A, B ∈ W (n; d1, . . . , dn) and A∩B = ∅. Sinced ≥ d1+· · ·+dn−n,wehavedim〈νd,n(B)〉 = dim〈νd,n(A)〉 =
deg(A) − 1, i.e. h1(IA(d)) = h1(IB(d)) = 0. To prove that Theorem 0.2 cannot be extended to the data
d, d1, . . . , dn it is sufficient to find A, B such that 〈νd,n(A)〉 ∩ 〈νd,n(B)〉 = ∅, i.e., (since A ∩ B = ∅ and
h1(IA(d)) = h1(IB(d)) = 0) it is sufficient to find A, B such that h1(IA∪B(d)) = 0. Since A ∪ B ⊂ D, we
have the residual exact sequence of D in P

n:

0 → OPn (d − dn) → IA∪B(d) → IA∪B,D(d) → 0 (3)

Since d − dn ≥ 0, we have h1(OOPn
(d − dn)) = h2(OOPn

(d − dn)) = 0. Thus by (3) it is sufficient to find
A, B such that h1(D, IA∪B,D(d)) = 0. Take n = 2, d1 = 2, D smooth and d = d1 + 2d2 − 3 = 2d2 − 1. We
have D ∼= P

1 and deg(OD(d)) = 4d2 − 2. Thus, h0(OD(d)) = 4d2 − 1. Since deg(A ∪ B) = 4d2, we have
h1(D, IA∪B,D(d)) = 0.

2 Proof of Theorem 0.5

We are only able to do the case dn = d1. We set b := d1. Thus b is a positive integer and (taking a minimal n)
we may assume b ≥ 2. We also assume n ≥ 2, because Remark 0.4 covers the case n = 1.

For any positive integer k let σk(νd,n(P
n)) ⊆ P

r denote the k-secant variety of the Veronese variety
νd,n(P

n), i.e., the closure in P
r of the union of all linear spaces 〈νd,n(S)〉 with S a finite subset of P

n with
cardinality k. All integers dim σk(νd,n(P

n)) are known by the Alexander–Hirschowitz theorem ([2,6]).

Remark 2.1 For any Z ∈ W (n; b, . . . , b), we have deg(Z) = bn and h0(IZ (b)) = n, i.e., h1(IZ (b)) =
bn + n − (n+b

n

)
. Since Z is a finite set, there is Z ′ ⊂ Z such that |Z ′| = (n+b

n

) − n, h0(IZ ′(b)) = n and

h1(IZ ′(b)) = 0. Let S ⊂ P
n be a general set with |S| = (n+b

n

)−n. Since S is general, we have h0(IS(b)) = n,
i.e. h1(IS(b)) = 0. Let E be the scheme-theoretic base locus of |IS(b)|. The case of Z just discussed shows
that E is a finite set with cardinality bn .
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For any q ∈ P
n let 2q denote the first infinitesimal neighborhood of q in P

n , i.e., the closed subscheme
of P

n with (Iq)2 as its ideal sheaf. The scheme 2q is a zero-dimensional scheme with deg(2q) = n + 1 and
(2q)red = {q}.
Proposition 2.2 Take d ≥ b ≥ 2 and n ≥ 2. Set a := (n+b

n

) − n. Take a general S ⊂ P
n such that |S| = a.

Let S ∪ A with A ∩ S = ∅ and |A| = bn + n − (n+b
n

)
be the scheme-theoretic base locus of |IS(b)| (Remark

2.1). Set E := ∪q∈S2q and F := A ∪ E. Then, dim η(n, d; b, . . . , b) ≥ dim〈νd,n(F)〉.
Proof Set a := (n+b

n

) − n. Fix a general q ∈ η̌(n, d; b, . . . , b) and take Z ∈ W (n; b, . . . , b) such that
q ∈ 〈νd,n(Z)〉. By the generality of q , we may assume that Z is a general element of W (n; b, . . . , b) and that
q is a general element of 〈νd,n(Z)〉. Take S ⊂ Z such that |S| = a and h1(IS(b)) = 0 (Remark 2.1). Set
A := Z \ S. Take a maximal A′ ⊆ A such that νd,n(S ∪ A′) is linearly independent, i.e., a minimal A′ ⊆ A
such that 〈νd,n(S ∪ A′)〉 = 〈νd,n(Z)〉. Take an ordering of the points of S and then an ordering of the points
of A with the points of A′ coming first. Call q1, . . . , q|Z | the points of Z in this order. For i ∈ {1, . . . , |Z |}
take regular systems of parameters zi j , 1 ≤ i ≤ |Z |, 1 ≤ j ≤ n, of the local ring OPn ,qi . Set m :=
|S ∪ A′|. Instead of I(n, d; d1, . . . , dn) ⊆ W (n; d1, . . . , dn) × P

r , we consider the map u : (Pn)a ×G(m, r +
1) → η(n, d; b, . . . , b) defined in a neighborhood of (q1, . . . , qa, 〈νd,n(Z)〉) identifying the points in this

neighborhood with the points (q1(λ), . . . , qa(λ), 〈νd,n(∪a+|A′|
i=1 qi (λ))〉) with qi (λ) varying near qi (essentially,

we use the ordering of the points of Z and use the product (Pn)a instead of the symmetric product of P
n). It is

sufficient to prove that the Jacobian matrix M of u at (q1, . . . , qa, 〈νd,n(Z)〉) has rank at least dim〈νd,n(F)〉.
Since q is general in 〈νd,n(S ∪ A′)〉 and νd,n(S ∪ A′) is a linearly independent set, there is a unique

o ∈ 〈νd,n(S)〉 such that q ∈ 〈{o} ∪ 〈νn,d(A′)〉. By Terracini’s lemma ([1, Corollary 1.10]), the top na × na
principal minor of the Jacobian matrix M of u has rank na − h1(IE (d)). The restriction of u to 〈νd,n(Z)〉 is
essentially the identity matrix (or use that the Zariski tangent space of η̌(n, d; b, . . . , b) at q contains every
linear subspace contained in η(n, d; b, . . . , b) and containing q and in particular it contains 〈νd,n(A′)〉). Thus,
the first na + |A′| columns of M have rank dim〈νn,d(E ∪ A′)〉. Since, 〈νd,n(S ∪ A′)〉 = 〈νd,n(S ∪ A)〉 and
E ⊃ S, we have 〈νd,n(E ∪ A′)〉 = 〈νd,n(E ∪ A)〉. ��
Lemma 2.3 Assume char(K) = 2. Fix a general Z ∈ W (n, d; b, . . . , b). Then, h1(IA(b)) = 0 for all A ⊂ Z
such that |A| = (n+d

n

) − n.

Proof Since Z is general, the complete intersection of n − 1 different elements of |IA(b)| is an integral curve,
C . It is sufficient to prove the lemma for a general effective divisor Z ′ of C , which is the complete intersection
of C and a degree b hypersurface. Call V ⊆ H0(OC (b)) the image of the restriction map. Since OPn (b) is
very ample, in characteristic 0 it is easy to see that the monodromy group of the embedding j of C induced
by V is the full symmetric group. In characteristic = 2 we use [16, Corollary 2.2] and that b ≥ 2 to see the
reflexivity of the curve j (C). ��
Proof of Theorem 0.5 Fix a general Z ∈ W (2; b, b), take S ⊂ Z with |S| = (b+2

2

)−2 and with h1(IS(b)) = 0
and set A := Z \S, E := ∪q∈S2q and F := A∪E . By proposition 2.2, it is sufficient to prove that h1(IF (d)) =
0. Take a generalC ∈ |IZ (b)|. Since Z is general,C is irreducible (take the complete intersection of two general
members of |OP2(b)|). We have ResC (F) = S. Since Z is general, we may assume that S is a general subset
of C with cardinality

(b+2
2

) − 2. Since d ≥ 2b, we have h0(OC (d − b)) ≥ h0(OC (b)) = (b+2
2

)
> |S| and S is

general in C , we have h1(C, IS,C (d −b)) = 0. Since the restriction map H0(OP2(d −b)) → H0(OC (d −b))
is surjective, we get h1(IS(d − b)) = 0. By the residual exact sequence

0 → IS(d − b) → IF → IF∩C,C (d) → 0

it is sufficient to prove that h1(C, IF∩C,C (d)) = 0. Since d ≥ 2b, it is sufficient to prove that
h1(C, IF∩C,C (2b)) = 0. Let G be the degree 2b2 divisors 2Z of C (each point of Z counts with mul-
tiplicity 2). Since Z ∈ |OC (b)|, we have G ∈ |OC (2b)|. Thus, h0(C, IG,C (2b)) = 1. Recall that
h0(OC (2b)) = (2b+2

2

) − (b+2
2

) = (3b2 + 3b)/2. Since Z ∈ |OC (b)|, we have IZ ,C (2b) ∼= OC (b).
Since ωC ∼= OC (b − 3), we have h1(C, IZ ,C (2b)) = 0, i.e. h0(C, IZ ,C (2b)) = (b2 + 3b)/2. Since
h0(C, IG,C (2b)) = 1, and

(b+2
2

) − 2 = (b2 + 3b − 2)/2, there is a divisor G ′ with Z ⊂ G ′ ⊂ F with

deg(G ′) = (b+2
2

) − 2+ deg(Z) (i.e., in G ′ exactly
(b+2

2

) − 2 of the points of Z appear with multiplicity 2) and
h1(C, IG ′,C (2b)) = 0. Lemma 2.3 says that we may take G ′ as F . ��
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