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Abstract Letvy, : P" — P, r = (":d), be the order d Veronese embedding. For any d,, > --- > d; > 0
let n(n,d; dy, ...,d,) € P be the union of all linear spans of vy ,(S) where S C P” is a finite set which is
the complete intersection of hypersurfaces of degree dy, ..., d,. For any ¢ € n(n,d; dy, ..., d,), we prove
the uniqueness of the set vy ,(S) ifd > d1 +--- +dy—1 + 2d, — n and q is not spanned by a proper subset of
Vg (S). We compute dim (2, d; dy, d) when d > 2d;.

Mathematics Subject Classification 14N0S5 - 15A69

ol

N d; dy,...,dy) S P7 (S wgnd slgisy d Ly o = (n:d) VanP" > P (s
Gsd ablas JaS Huge Aegame S CPT o s ody 2 2 dy 5 Vga(S) wlidse JSI 1l
O 13] Vg n(8) desazll dslusg cuts 0j(n; d; dy, dy) 3 @ SO dyee djaleyay sl
day Sy 2585 Vg () oo Aulad Bty Acsamay go pe 9 d 2 dy + -+ dyy +2dy — 1

d = 2d; 065 e 7(2; d;dy,. dy)

Let K be an algebraically closed field. The vector space H°(Opr (d)) parameterizes the degree d homogeneous
polynomials in n + 1 variables. Let vy, : P" — PHO(Opn(d)) =P, r := (”:d) — 1, denote the Veronese
embedding of P". For any scheme, A C v, 4(P") let (A) denote the linear span of A in P". For any finite
set S C P", we have g € (vg,,(S)) if and only if the homogeneous polynomial associated to ¢ is a linear
combination of the d-powers of | S| linear forms £, p € S ([13]). Sometimes it is cheaper to describe the set
S than to describe each of the point of S and then add |S| such descriptions. This comes handy if we only need
to describe the linear space (V4 ,(S)), not a set of generators for it. We do the description taking as S only the
complete intersection finite sets (or the complete intersection zero-dimensional schemes).

Fix positive integers dy < --- < d,. Let W(n;dy,...,d,) (resp. M(n;d;,...,d,)) denote the set
of all finite sets (resp. zero-dimensional schemes) of P which are the complete intersection of n hyper-
surfaces of degree di,...,d,. The set M(n;dy,...,d,) is an irreducible quasi-projective variety and
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W(n; dy, ..., d,)isanon-empty Zariski open subset of it. The dimension« (n; dy, ..., d,) of M(n; dy, ..., dy)

and W(n; dy, ..., d,) depends only on the integers n, dy, ..., d, and it can easily be computed. In the par-
ticular case d; = d; for all i it is the dimension of the Grassmannian of all n-dimensional linear subspaces
of the (":dl)-dimensional vector space H(Opn(dy)) and hence a(n; dy, ..., d,) = n(("tld‘) —n). A gen-

eral formula for complete intersections of dimension at least 2 is in [14, §2] and this case in prt2 helps
to get a(n;dy,...,dy). Fix any Z € M(n;dy,...,d,) and set B(n,d; dy, ..., d,) = dim(vg ,(Z)). We
have B(n,d;d;, ..., d,) = (":d) — hO(Iz(d)) and hence the integer 8(n, d; dy, ..., d,) may be computed
using the Koszul complex of forms f1, ..., f, with Z as their scheme-theoretic zero locus and it does not
depend from the choice of Z. Set I(n, d; dy, ..., d,) denote the subset of W(n; dy, ..., d,) x P" formed by
all pairs (S,q) with S € W(n;dy,...,dy) and g € (vq.,(S)). I(n,d; d1, ..., d,) is an irreducible quasi-
projective variety of dimension «(n; dy,...,d,) + B(n,d;di,...,dy). Let n(n,d; d,, ..., d,) denote the
image of I(n, d; dy, . .., d,) by the projection W(dy, ..., d,) xP" — P".Call n(n, d; dy, ..., d,) the closure
of n(n,d; dy, ...,d,) in P". By a theorem of Chevalley ([11, Exercises 11.3.18, I1.3.19]), n(n, d; dy, . .., dy)
is constructible. Since I(n, d; di, ..., d,) is irreducible, n(n,d; dy, ...,d,) and n(n,d; d;, ..., d,) are irre-
ducible. They obviously have at most dimension «(n; dy, ..., dy) + B(n,d; d1, ..., d,). We call the integer

min{r, a(n;dy, ..., dy) + Bn,d; dy, ..., dy)}

the expected dimension of n(n, d; di, ..., d,).
A Koszul complex shows that 8(n,d;d;,...,d,) = di---d, — 1 (ie., hl(IZ(d)) = 0 for any Z €
M(n;dy,...,dy))ifandonly ifd >dy +---+d, — n.

Question 0.1 Assume a(n;dy,...,d,)+pn,d;dy,...,d,) < r.Find conditions assuring that for a general
q € N(n,d; dy,...,dy,) there is a unique S € W(n; dy, ..., d,) such that g € (vg,(S))?

Obviously, we need d > d,,, because n(n,d; dy,...,d,) =0ifd < d,.
Under the following strong assumption on d we prove the following uniqueness theorem.

Theorem 0.2 Assumed > d|+---+d,_1 +2d, —n. Take g € 11(n,d; dy, ..., d,) and assume the existence
of A e Wn;dy,...,dy), B e M(n;dy,...,d,) such that q € (vg,(A)) N (vgn(B)). Then, there exists
E € AN B suchthat g € (vg,(E)).

In the set-up of Theorem 0.2, we have |S| = []/_, d;, which is often much higher than d /2. Thus, Theorem
0.2 is not a by-product of other uniqueness theorems for secant varieties of Veronese embedding ([7, Theorem
1.18]). Example 1.1 shows that, in general, the assumptiond > dy + --- + d,,—1 + 2d,, — n in Theorem 0.2
cannot be improved, but this is a very specific example with n = d; = 2 and we do not know if (under certain
assumptions on n, dy, . .., d,) we may take a lower value of d.

Remark 0.3 Take Z € W(n;d,...,d,) and a general ¢ € (vg,(Z)). If d > di + --- 4+ d, — n, then
Va.n(Z) is linearly independent, i.e., dim(vs ,(Z)) = deg(Z) — 1. Since ¢q is general in (vg ,(Z)), we have
q ¢ (vgn(Z") forany Z' C Z. Thus, whend > d; + - - - +dy—1 + 2d,, — n Theorem 0.2 implies that Z is the
only Ae M(n;dy,...,d,) suchthatqg € (vg ,(Z)).

Remark 0.4 Take n = 1. Fix positive integers d and d;. We have r = d and n(1, d; dy) is just the classical
secant variety oy, (vd,l(}P’l)). Thus, dimn(1, d; d1) = min{d, 2d; — 1}. Sylvester’s theorem shows that both
Question 0.1 and the statement of Theorem 0.2 are true for (dq, d) if and only if d > 2d; — 1 ([12, Theorem
1.40)).

We prove the following result concerning dim n(n, d; dy, . . ., dy).
Theorem 0.5 Assume char(K) # 2. Fix integers d > 2b > 4. Then, n(2, d; b, b) has the expected dimension
b+ ("3?) - 3.
Suppose you may write the given homogenous degree d polynomial f as a sum
f=a+-+eg M

with k very low, and the homogeneous polynomials g1, ..., g “ simple ”, but not d-powers of linear forms,
or at least not all d-powers of linear forms. Our idea is that perhaps it helps even if we only find very different
addenda g1, ..., gk, in the sense that each g; is simple for a very different reason and some of them may be
given by a complete intersection, even with different multidegrees.
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Concerning an additive decomposition like (1), we stress again that the addenda g; may be simple for very
different reasons. In [4,5], all addenda except one are d-powers of a linear forms, while the other one is of the
form L¢~'M with L and M non-proportional linear forms. The polynomial L~ M is in the linear span of
va.n(Z), where Z is a connected complete intersection of multidegree (ay, ..., a,) witha; = --- =a,_1 =1,
a, = 2, but Z is assumed to be connected. We have LY~'M € n(n,d; 1,...,1,2). E. Carlini fixed a positive
integer s < n and considered the case in which each g; only depends on s homogeneous coordinates (each g;
with respect to a different set of s linearly independent linear forms). Starting with R. Froberg, G. Ottaviani
and B. Shapiro ([10]) there is a lot of work in the case in which (for a fixed proper divisor k of d) each g; is a
k-power of a homogeneous form of degree d/k ([3,6,8,9,15,17]).

Now assume g1 € (vg,,(S)) with S a complete intersection of multidegree (d1, ..., d,), say S = {f1 =
--- = f, = 0} with deg(f;) = d;. The set S depends with continuity on the coefficients of f1, ..., f, and so
if we only know approximatively g; (but we are assured that g; € n(n, d; di, ..., d,)) there is hope to recover
a good approximation of fi, ..., f, and of S. For different g; in (1) we may use different multidegrees.

1 Proof of Theorem 0.2

Proof of Theorem 0.2 Since A is a finite set, the scheme A N B is a finite set contained in A. Since deg(A) =
deg(B), either A= Bor ANB C A. Assume g ¢ (v, 4(A N B)). Since g ¢ (v, 4(A N B)), the existence of
g implies ' (Z4up(d)) > 0. Since d; < --- < d, and B is a complete intersection of hypersurfaces of degree
di,...,d,, Ip(d,) is globally generated. Since A # B and A is a finite set, there is Y € |Zp(d,)| such that
Y N A = AN B. Consider the residual exact sequence

0 — Za\ang(d — dn) — Zaup(d) — Ipy(d) — 0 (2)

Sinced > di+- - -—i—dn—n,wehavehl(IB(d)) =0. Hencehl(Y, Ip.y(d)) =0.Sinced—d, > di+- - -+d,—n,
we have ! (Z4(d—d,)) = 0. Hence,hl(IA\Amy(d—dn)) = 0. The exact sequence (2) gives W (Zaup(d) =0,
a contradiction. O
Example 1.1 Assumen > 2 and fix integers 2 < d; < --- < d, and an integer d such thatd; +---+d, —n <
d<d+---+d,—1 +2d, —n — 1. Take an integral D € |Opn(d,)| and call A, B the complete intersection
of D with general hypersurfaces of degree dy, ..., d,—1. Since these hypersurfaces are general, we have
A, BeWn;d,...,d,)and ANB = {.Sinced > di+- - -+d,—n,wehavedim(vy ,(B)) = dim(vg ,(A)) =
deg(A) — 1, ie. W (Zs(d)) = W' (Zp(d)) = 0. To prove that Theorem 0.2 cannot be extended to the data
d,dy, ..., d, it is sufficient to find A, B such that (vy ,(A)) N (va.n(B)) # @, i.e., (since AN B = ¢ and
W' (Za(d)) = k' (Zp(d)) = 0) it is sufficient to find A, B such that 2! (Z4up(d)) # 0. Since AU B C D, we
have the residual exact sequence of D in P":

0 — Opn(d —dy) = Zaup(d) — Zaus,p(d) — 0 3

Since d — d, > 0, we have h! (Op,, (d — dy)) = h*(Opy, (d — dy)) = 0. Thus by (3) it is sufficient to find
A, B such thathl(D,IAUB,D(d)) #0.Taken =2,d; =2, D smoothandd = d; +2d, —3 =2d> — 1. We
have D = P! and deg(Op(d)) = 4dy — 2. Thus, h2(Op(d)) = 4d> — 1. Since deg(A U B) = 4d,, we have
h'(D,Zaup.p(d)) # 0.

2 Proof of Theorem 0.5

We are only able to do the case d, = d;. We set b := dj. Thus b is a positive integer and (taking a minimal r)
we may assume b > 2. We also assume n > 2, because Remark 0.4 covers the case n = 1.

For any positive integer k let oy (vs,(P")) € P" denote the k-secant variety of the Veronese variety
va (P, i.e., the closure in P of the union of all linear spaces (vgq ,(S)) with S a finite subset of P" with
cardinality k. All integers dim oy (v4 , (P")) are known by the Alexander—Hirschowitz theorem ([2,6]).

Remark 2.1 For any Z € W(n; b, ...,b), we have deg(Z) = b" and h°(Zz(b)) = n, ie., h'(Tz (b)) =
b*+n— ("+b). Since Z is a finite set, there is Z’ C Z such that |Z/| = (":b) —n, h°%Z, (b)) = n and

n

h'(Zz (b)) = 0.Let S C P" be a general set with | S| = ("H’) —n. Since S is general, we have h0(Zs(b)) = n,

n
i.e. h!(Zg(b)) = 0. Let £ be the scheme-theoretic base locus of |Zg(b)|. The case of Z just discussed shows
that £ is a finite set with cardinality b".

@ Springer



112 Arab. J. Math. (2019) 8:109-113

For any ¢ € P" let 2¢ denote the first infinitesimal neighborhood of ¢ in P”, i.e., the closed subscheme
of P" with (Iq)2 as its ideal sheaf. The scheme 24 is a zero-dimensional scheme with deg(2¢) = n + 1 and

2q)rea = {q}.
Proposition 2.2 Take d > b > 2 and n > 2. Set a := ("”) — n. Take a general S C P" such that |S| = a.

Let SUAwithANS=0Wand|A| =b" +n — (”:b) be the scheme-theoretic base locus of |Zs(b)| (Remark
2.1). Set E := Uyes2q and F := AU E. Then, dimn(n, d; b, ..., b) > dim(vg ,(F)).

n+b
n

Proof Set a := (":lrb) — n. Fix a general ¢ € n(n,d;b,...,b) and take Z € W(n; b, ..., b) such that
q € (va.n(2)). By the generality of ¢, we may assume that Z is a general element of W (n; b, ..., b) and that
q is a general element of (vg ,(Z)). Take S C Z such that |S| = a and h'(Zs(b)) = 0 (Remark 2.1). Set
A := Z\ S. Take a maximal A" C A such that vy ,(S U A”) is linearly independent, i.e., a minimal A" C A
such that (vg ,(S U A")) = (vg.,(Z)). Take an ordering of the points of S and then an ordering of the points
of A with the points of A’ coming first. Call g1, ..., g|z| the points of Z in this order. For i € {1,...,|Z|}
take regular systems of parameters z;;, 1 < i < |Z], 1 < j < n, of the local ring Op» 4. Set m :=
|SU A’|. Instead of I(n, d; dy, ...,d,) € W(n;dy,...,d,) x P, we consider the map u : (P")? x G(m, r +
1) = n(n,d;b,...,b) defined in a neighborhood of (q1, ..., g4, (va.n(Z))) identifying the points in this

neighborhood with the points (1 (1), .. ., ga(A), (va.n (U4 1g: (1)))) with g; (1) varying near g; (essentially,
we use the ordering of the points of Z and use the product (P")¢ instead of the symmetric product of P"). It is
sufficient to prove that the Jacobian matrix M of u at (q1, .. ., ga, (V4.,(Z))) has rank at least dim(vg , (F)).
Since g is general in (vg,(S U A")) and vy ,(S U A’) is a linearly independent set, there is a unique
0 € (vg.,(S)) such that ¢ € ({o} U (v, 4(A")). By Terracini’s lemma ([1, Corollary 1.10]), the top na x na
principal minor of the Jacobian matrix M of u has rank na — h'(Zg(d)). The restriction of u to (van(2)) is
essentially the identity matrix (or use that the Zariski tangent space of 7(n, d; b, ..., b) at g contains every
linear subspace contained in n(n, d; b, .. ., b) and containing ¢ and in particular it contains (v ,,(A"))). Thus,
the first na + |A’| columns of M have rank dim(v, 4(E U A")). Since, (vg ,(S U A")) = (vg.,(S U A)) and
E D S, we have (vg ,(E U A")) = (vg.,(E U A)). O
Lemma 2.3 Assume char(K) # 2. Fix a general Z € W(n,d; b, ..., b). Then, K" (Zs(b)) = O0forall A C Z
such that |A| = (”:d) —n.
Proof Since Z is general, the complete intersection of n — 1 different elements of |Z4(b)| is an integral curve,
C. It is sufficient to prove the lemma for a general effective divisor Z’ of C, which is the complete intersection
of C and a degree b hypersurface. Call V € H 0(Oc¢ (b)) the image of the restriction map. Since Opr (D) is
very ample, in characteristic O it is easy to see that the monodromy group of the embedding j of C induced

by V is the full symmetric group. In characteristic # 2 we use [16, Corollary 2.2] and that » > 2 to see the
reflexivity of the curve j(C). O

Proof of Theorem 0.5 Fix a general Z € W (2; b, b), take S C Z with |S| = (*}?) =2 and with h' (Zs(b)) = 0

andset A := Z\ S, E := U, ecs2g and F := AUE. By proposition 2.2, it is sufficient to prove that W(Zrd) =
0. Take a general C € |Zz(b)|. Since Z is general, C is irreducible (take the complete intersection of two general
members of |Op2 (b)[). We have Resc (F) = S. Since Z is general, we may assume that S is a general subset

of C with cardinality (°}%) — 2. Since d > 2b, we have h(Oc(d — b)) = h®(Oc (b)) = (*1?) > |S| and S is
general in C, we have n'(c, Zs,c(d —b)) = 0. Since the restriction map HO(OPz (d —b)) - H°(Oc(d —b))
is surjective, we get h'(Zg(d — b)) = 0. By the residual exact sequence

0—Zs(d—-b) - Ir - Zpnc,c(d) — 0

it is sufficient to prove that h'(c s Irnc.c(d)) = 0. Since d > 2b, it is sufficient to prove that
hl(C,Ich,c(Zb)) = 0. Let G be the degree 2b? divisors 2Z of C (each point of Z counts with mul-
tiplicity 2). Since Z € |Oc¢c(b)|, we have G € |Oc¢(2b)|. Thus, hO(C,IG,c(Zb)) = 1. Recall that
hoOc2b)) = (%) — ("33 = (3b* + 3b)/2. Since Z € |Oc(b)|, we have Iz.c(2b) = Oc(b).
Since wc = Oc(b — 3), we have h'(C,Zz.c(2b)) = 0, ie. h%(C,Zz.c(2b)) = (b> + 3b)/2. Since
ho(C,Zg.c(2b)) = 1, and (bzz) — 2 = (b* 4+ 3b — 2)/2, there is a divisor G’ with Z ¢ G’ C F with
deg(G") = ("1%) — 2+ deg(Z) (i.e., in G’ exactly ("$?) — 2 of the points of Z appear with multiplicity 2) and
rl(c, Zg.c(2b)) = 0. Lemma 2.3 says that we may take G’ as F. O
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