Zero-dimensional complete intersections and their linear span in the Veronese embeddings of projective spaces

Received: 22 March 2018 / Accepted: 13 August 2018 / Published online: 24 August 2018
© The Author(s) 2018

Abstract

Let $v_{d, n}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{r}, r=\binom{n+d}{n}$, be the order d Veronese embedding. For any $d_{n} \geq \cdots \geq d_{1}>0$ let $\check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right) \subseteq \mathbb{P}^{r}$ be the union of all linear spans of $v_{d, n}(S)$ where $S \subset \mathbb{P}^{n}$ is a finite set which is the complete intersection of hypersurfaces of degree d_{1}, \ldots, d_{n}. For any $q \in \check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$, we prove the uniqueness of the set $v_{d, n}(S)$ if $d \geq d_{1}+\cdots+d_{n-1}+2 d_{n}-n$ and q is not spanned by a proper subset of $v_{d, n}(S)$. We compute $\operatorname{dim} \check{\eta}\left(2, d ; d_{1}, d_{1}\right)$ when $d \geq 2 d_{1}$.

Mathematics Subject Classification $14 \mathrm{~N} 05 \cdot 15 \mathrm{~A} 69$

$$
\begin{aligned}
& \check{\eta}\left(n ; d ; d_{1}, \ldots, d_{n}\right) \subseteq \mathbb{P}^{r} \text { لتكن } d \text { لاحتواء فيرونيز. لتكن } d \text { لتر } d \text { ، } r=\binom{n+d}{n} ، v_{d, n}: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \text { ترتيبا } \\
& \text { اتحادا لكل مولّدات (} \\
& \text { السطوح بدرجات } \\
& \text { 绪 } q \text { و } d \geq d_{1}+\cdots+d_{n-1}+2 d_{n}-n \\
& . d \geq 2 d_{1} \text { عندما يكون } \check{\eta}\left(2 ; d ; d_{1}, \ldots, d_{n}\right)
\end{aligned}
$$

Let \mathbb{K} be an algebraically closed field. The vector space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$ parameterizes the degree d homogeneous polynomials in $n+1$ variables. Let $v_{d, n}: \mathbb{P}^{n} \rightarrow \mathbb{P} H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)=\mathbb{P}^{r}, r:=\binom{n+d}{n}-1$, denote the Veronese embedding of \mathbb{P}^{n}. For any scheme, $A \subset \nu_{n, d}\left(\mathbb{P}^{n}\right)$ let $\langle A\rangle$ denote the linear span of A in \mathbb{P}^{r}. For any finite set $S \subset \mathbb{P}^{n}$, we have $q \in\left\langle v_{d, n}(S)\right\rangle$ if and only if the homogeneous polynomial associated to q is a linear combination of the d-powers of $|S|$ linear forms $\ell_{p}, p \in S$ ([13]). Sometimes it is cheaper to describe the set S than to describe each of the point of S and then add $|S|$ such descriptions. This comes handy if we only need to describe the linear space $\left\langle v_{d, n}(S)\right\rangle$, not a set of generators for it. We do the description taking as S only the complete intersection finite sets (or the complete intersection zero-dimensional schemes).

Fix positive integers $d_{1} \leq \cdots \leq d_{n}$. Let $W\left(n ; d_{1}, \ldots, d_{n}\right)$ (resp. $M\left(n ; d_{1}, \ldots, d_{n}\right)$) denote the set of all finite sets (resp. zero-dimensional schemes) of \mathbb{P}^{n} which are the complete intersection of n hypersurfaces of degree d_{1}, \ldots, d_{n}. The set $M\left(n ; d_{1}, \ldots, d_{n}\right)$ is an irreducible quasi-projective variety and

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
E. Ballico (\boxtimes)

Department of Mathematics, University of Trento, 38123 Povo, TN, Italy
E-mail: ballico@ science.unitn.it
$W\left(n ; d_{1}, \ldots, d_{n}\right)$ is a non-empty Zariski open subset of it. The dimension $\alpha\left(n ; d_{1}, \ldots, d_{n}\right)$ of $M\left(n ; d_{1}, \ldots, d_{n}\right)$ and $W\left(n ; d_{1}, \ldots, d_{n}\right)$ depends only on the integers n, d_{1}, \ldots, d_{n} and it can easily be computed. In the particular case $d_{i}=d_{1}$ for all i it is the dimension of the Grassmannian of all n-dimensional linear subspaces of the $\binom{n+d_{1}}{n}$-dimensional vector space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}\left(d_{1}\right)\right)$ and hence $\alpha\left(n ; d_{1}, \ldots, d_{n}\right)=n\left(\binom{n+d_{1}}{n}-n\right)$. A general formula for complete intersections of dimension at least 2 is in [14, §2] and this case in \mathbb{P}^{n+2} helps to get $\alpha\left(n ; d_{1}, \ldots, d_{n}\right)$. Fix any $Z \in M\left(n ; d_{1}, \ldots, d_{n}\right)$ and set $\beta\left(n, d ; d_{1}, \ldots, d_{n}\right):=\operatorname{dim}\left\langle v_{d, n}(Z)\right\rangle$. We have $\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)=\binom{n+d}{n}-h^{0}\left(\mathcal{I}_{Z}(d)\right)$ and hence the integer $\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)$ may be computed using the Koszul complex of forms f_{1}, \ldots, f_{n} with Z as their scheme-theoretic zero locus and it does not depend from the choice of Z. Set $\mathbb{I}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ denote the subset of $W\left(n ; d_{1}, \ldots, d_{n}\right) \times \mathbb{P}^{r}$ formed by all pairs (S, q) with $S \in W\left(n ; d_{1}, \ldots, d_{n}\right)$ and $q \in\left\langle v_{d, n}(S)\right\rangle . \mathbb{I}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ is an irreducible quasiprojective variety of dimension $\alpha\left(n ; d_{1}, \ldots, d_{n}\right)+\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)$. Let $\check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ denote the image of $\mathbb{I}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ by the projection $W\left(d_{1}, \ldots, d_{n}\right) \times \mathbb{P}^{r} \rightarrow \mathbb{P}^{r}$. Call $\eta\left(n, d ; d_{1}, \ldots, d_{n}\right)$ the closure of $\check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ in \mathbb{P}^{r}. By a theorem of Chevalley ([11, Exercises II.3.18, II.3.19]), $\check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ is constructible. Since $\mathbb{I}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ is irreducible, $\check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ and $\eta\left(n, d ; d_{1}, \ldots, d_{n}\right)$ are irreducible. They obviously have at most dimension $\alpha\left(n ; d_{1}, \ldots, d_{n}\right)+\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)$. We call the integer

$$
\min \left\{r, \alpha\left(n ; d_{1}, \ldots, d_{n}\right)+\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)\right\}
$$

the expected dimension of $\eta\left(n, d ; d_{1}, \ldots, d_{n}\right)$.
A Koszul complex shows that $\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)=d_{1} \cdots d_{n}-1$ (i.e., $h^{1}\left(\mathcal{I}_{Z}(d)\right)=0$ for any $Z \in$ $\left.M\left(n ; d_{1}, \ldots, d_{n}\right)\right)$ if and only if $d \geq d_{1}+\cdots+d_{n}-n$.
Question 0.1 Assume $\alpha\left(n ; d_{1}, \ldots, d_{n}\right)+\beta\left(n, d ; d_{1}, \ldots, d_{n}\right)<r$. Find conditions assuring that for a general $q \in \check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ there is a unique $S \in W\left(n ; d_{1}, \ldots, d_{n}\right)$ such that $q \in\left\langle v_{d, n}(S)\right\rangle$?

Obviously, we need $d \geq d_{n}$, because $\eta\left(n, d ; d_{1}, \ldots, d_{n}\right)=\emptyset$ if $d<d_{n}$.
Under the following strong assumption on d we prove the following uniqueness theorem.
Theorem 0.2 Assume $d \geq d_{1}+\cdots+d_{n-1}+2 d_{n}-n$. Take $q \in \check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$ and assume the existence of $A \in W\left(n ; d_{1}, \ldots, d_{n}\right), B \in M\left(n ; d_{1}, \ldots, d_{n}\right)$ such that $q \in\left\langle v_{d, n}(A)\right\rangle \cap\left\langle v_{d, n}(B)\right\rangle$. Then, there exists $E \subseteq A \cap B$ such that $q \in\left\langle v_{d, n}(E)\right\rangle$.

In the set-up of Theorem 0.2 , we have $|S|=\prod_{i=1}^{n} d_{i}$, which is often much higher than $d / 2$. Thus, Theorem 0.2 is not a by-product of other uniqueness theorems for secant varieties of Veronese embedding ([7, Theorem 1.18]). Example 1.1 shows that, in general, the assumption $d \geq d_{1}+\cdots+d_{n-1}+2 d_{n}-n$ in Theorem 0.2 cannot be improved, but this is a very specific example with $n=d_{1}=2$ and we do not know if (under certain assumptions on n, d_{1}, \ldots, d_{n}) we may take a lower value of d.

Remark 0.3 Take $Z \in W\left(n ; d_{1}, \ldots, d_{n}\right)$ and a general $q \in\left\langle v_{d, n}(Z)\right\rangle$. If $d \geq d_{1}+\cdots+d_{n}-n$, then $v_{d, n}(Z)$ is linearly independent, i.e., $\operatorname{dim}\left\langle v_{d, n}(Z)\right\rangle=\operatorname{deg}(Z)-1$. Since q is general in $\left\langle v_{d, n}(Z)\right\rangle$, we have $q \notin\left\langle v_{d, n}\left(Z^{\prime}\right)\right\rangle$ for any $Z^{\prime} \subsetneq Z$. Thus, when $d \geq d_{1}+\cdots+d_{n-1}+2 d_{n}-n$ Theorem 0.2 implies that Z is the only $A \in M\left(n ; d_{1}, \ldots, d_{n}\right)$ such that $q \in\left\langle v_{d, n}(Z)\right\rangle$.

Remark 0.4 Take $n=1$. Fix positive integers d and d_{1}. We have $r=d$ and $\eta\left(1, d ; d_{1}\right)$ is just the classical secant variety $\sigma_{d_{1}}\left(v_{d, 1}\left(\mathbb{P}^{1}\right)\right)$. Thus, $\operatorname{dim} \eta\left(1, d ; d_{1}\right)=\min \left\{d, 2 d_{1}-1\right\}$. Sylvester's theorem shows that both Question 0.1 and the statement of Theorem 0.2 are true for $\left(d_{1}, d\right)$ if and only if $d \geq 2 d_{1}-1$ ([12, Theorem 1.40]).

We prove the following result concerning $\operatorname{dim} \eta\left(n, d ; d_{1}, \ldots, d_{n}\right)$.
Theorem 0.5 Assume char $(\mathbb{K}) \neq 2$. Fix integers $d \geq 2 b \geq 4$. Then, $\eta(2, d ; b, b)$ has the expected dimension $b^{2}+\binom{b+2}{2}-3$.

Suppose you may write the given homogenous degree d polynomial f as a sum

$$
\begin{equation*}
f=g_{1}+\cdots+g_{k} \tag{1}
\end{equation*}
$$

with k very low, and the homogeneous polynomials g_{1}, \ldots, g_{k} " simple", but not d-powers of linear forms, or at least not all d-powers of linear forms. Our idea is that perhaps it helps even if we only find very different addenda g_{1}, \ldots, g_{k}, in the sense that each g_{i} is simple for a very different reason and some of them may be given by a complete intersection, even with different multidegrees.

Concerning an additive decomposition like (1), we stress again that the addenda g_{i} may be simple for very different reasons. In $[4,5]$, all addenda except one are d-powers of a linear forms, while the other one is of the form $L^{d-1} M$ with L and M non-proportional linear forms. The polynomial $L^{d-1} M$ is in the linear span of $v_{d, n}(Z)$, where Z is a connected complete intersection of multidegree $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1}=\cdots=a_{n-1}=1$, $a_{n}=2$, but Z is assumed to be connected. We have $L^{d-1} M \in \eta(n, d ; 1, \ldots, 1,2)$. E. Carlini fixed a positive integer $s \leq n$ and considered the case in which each g_{i} only depends on s homogeneous coordinates (each g_{i} with respect to a different set of s linearly independent linear forms). Starting with R. Fröberg, G. Ottaviani and B. Shapiro ([10]) there is a lot of work in the case in which (for a fixed proper divisor k of d) each g_{i} is a k-power of a homogeneous form of degree $d / k([3,6,8,9,15,17])$.

Now assume $g_{1} \in\left\langle v_{d, n}(S)\right\rangle$ with S a complete intersection of multidegree $\left(d_{1}, \ldots, d_{n}\right)$, say $S=\left\{f_{1}=\right.$ $\left.\cdots=f_{n}=0\right\}$ with $\operatorname{deg}\left(f_{i}\right)=d_{i}$. The set S depends with continuity on the coefficients of f_{1}, \ldots, f_{n} and so if we only know approximatively g_{1} (but we are assured that $g_{1} \in \check{\eta}\left(n, d ; d_{1}, \ldots, d_{n}\right)$) there is hope to recover a good approximation of f_{1}, \ldots, f_{n} and of S. For different g_{i} in (1) we may use different multidegrees.

1 Proof of Theorem 0.2

Proof of Theorem 0.2 Since A is a finite set, the scheme $A \cap B$ is a finite set contained in A. Since $\operatorname{deg}(A)=$ $\operatorname{deg}(B)$, either $A=B$ or $A \cap B \subsetneq A$. Assume $q \notin\left\langle v_{n, d}(A \cap B)\right\rangle$. Since $q \notin\left\langle v_{n, d}(A \cap B)\right\rangle$, the existence of q implies $h^{1}\left(\mathcal{I}_{A \cup B}(d)\right)>0$. Since $d_{1} \leq \cdots \leq d_{n}$ and B is a complete intersection of hypersurfaces of degree $d_{1}, \ldots, d_{n}, \mathcal{I}_{B}\left(d_{n}\right)$ is globally generated. Since $A \neq B$ and A is a finite set, there is $Y \in\left|\mathcal{I}_{B}\left(d_{n}\right)\right|$ such that $Y \cap A=A \cap B$. Consider the residual exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{A \backslash A \cap B}\left(d-d_{n}\right) \rightarrow \mathcal{I}_{A \cup B}(d) \rightarrow \mathcal{I}_{B, Y}(d) \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $d \geq d_{1}+\cdots+d_{n}-n$, we have $h^{1}\left(\mathcal{I}_{B}(d)\right)=0$. Hence $h^{1}\left(Y, \mathcal{I}_{B, Y}(d)\right)=0$. Since $d-d_{n} \geq d_{1}+\cdots+d_{n}-n$, we have $h^{1}\left(\mathcal{I}_{A}\left(d-d_{n}\right)\right)=0$. Hence, $h^{1}\left(\mathcal{I}_{A \backslash A \cap Y}\left(d-d_{n}\right)\right)=0$. The exact sequence (2) gives $h^{1}\left(\mathcal{I}_{A \cup B}(d)\right)=0$, a contradiction.

Example 1.1 Assume $n \geq 2$ and fix integers $2 \leq d_{1} \leq \cdots \leq d_{n}$ and an integer d such that $d_{1}+\cdots+d_{n}-n \leq$ $d \leq d_{1}+\cdots+d_{n-1}+2 d_{n}-n-1$. Take an integral $D \in\left|\mathcal{O}_{\mathbb{P}^{n}}\left(d_{n}\right)\right|$ and call A, B the complete intersection of D with general hypersurfaces of degree d_{1}, \ldots, d_{n-1}. Since these hypersurfaces are general, we have $A, B \in W\left(n ; d_{1}, \ldots, d_{n}\right)$ and $A \cap B=\emptyset$. Since $d \geq d_{1}+\cdots+d_{n}-n$, we have $\operatorname{dim}\left\langle v_{d, n}(B)\right\rangle=\operatorname{dim}\left\langle v_{d, n}(A)\right\rangle=$ $\operatorname{deg}(A)-1$, i.e. $h^{1}\left(\mathcal{I}_{A}(d)\right)=h^{1}\left(\mathcal{I}_{B}(d)\right)=0$. To prove that Theorem 0.2 cannot be extended to the data d, d_{1}, \ldots, d_{n} it is sufficient to find A, B such that $\left\langle v_{d, n}(A)\right\rangle \cap\left\langle v_{d, n}(B)\right\rangle \neq \emptyset$, i.e., (since $A \cap B=\emptyset$ and $\left.h^{1}\left(\mathcal{I}_{A}(d)\right)=h^{1}\left(\mathcal{I}_{B}(d)\right)=0\right)$ it is sufficient to find A, B such that $h^{1}\left(\mathcal{I}_{A \cup B}(d)\right) \neq 0$. Since $A \cup B \subset D$, we have the residual exact sequence of D in \mathbb{P}^{n} :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}\left(d-d_{n}\right) \rightarrow \mathcal{I}_{A \cup B}(d) \rightarrow \mathcal{I}_{A \cup B, D}(d) \rightarrow 0 \tag{3}
\end{equation*}
$$

Since $d-d_{n} \geq 0$, we have $h^{1}\left(\mathcal{O}_{\mathcal{O}_{\mathbb{P}^{n}}}\left(d-d_{n}\right)\right)=h^{2}\left(\mathcal{O}_{\mathcal{O}_{\mathbb{P}^{n}}}\left(d-d_{n}\right)\right)=0$. Thus by (3) it is sufficient to find A, B such that $h^{1}\left(D, \mathcal{I}_{A \cup B, D}(d)\right) \neq 0$. Take $n=2, d_{1}=2, D$ smooth and $d=d_{1}+2 d_{2}-3=2 d_{2}-1$. We have $D \cong \mathbb{P}^{1}$ and $\operatorname{deg}\left(\mathcal{O}_{D}(d)\right)=4 d_{2}-2$. Thus, $h^{0}\left(\mathcal{O}_{D}(d)\right)=4 d_{2}-1$. Since $\operatorname{deg}(A \cup B)=4 d_{2}$, we have $h^{1}\left(D, \mathcal{I}_{A \cup B, D}(d)\right) \neq 0$.

2 Proof of Theorem 0.5

We are only able to do the case $d_{n}=d_{1}$. We set $b:=d_{1}$. Thus b is a positive integer and (taking a minimal n) we may assume $b \geq 2$. We also assume $n \geq 2$, because Remark 0.4 covers the case $n=1$.

For any positive integer k let $\sigma_{k}\left(v_{d, n}\left(\mathbb{P}^{n}\right)\right) \subseteq \mathbb{P}^{r}$ denote the k-secant variety of the Veronese variety $v_{d, n}\left(\mathbb{P}^{n}\right)$, i.e., the closure in \mathbb{P}^{r} of the union of all linear spaces $\left\langle v_{d, n}(S)\right\rangle$ with S a finite subset of \mathbb{P}^{n} with cardinality k. All integers $\operatorname{dim} \sigma_{k}\left(v_{d, n}\left(\mathbb{P}^{n}\right)\right)$ are known by the Alexander-Hirschowitz theorem $([2,6])$.
Remark 2.1 For any $Z \in W(n ; b, \ldots, b)$, we have $\operatorname{deg}(Z)=b^{n}$ and $h^{0}\left(\mathcal{I}_{Z}(b)\right)=n$, i.e., $h^{1}\left(\mathcal{I}_{Z}(b)\right)=$ $b^{n}+n-\binom{n+b}{n}$. Since Z is a finite set, there is $Z^{\prime} \subset Z$ such that $\left|Z^{\prime}\right|=\binom{n+b}{n}-n, h^{0}\left(\mathcal{I}_{Z^{\prime}}(b)\right)=n$ and $h^{1}\left(\mathcal{I}_{Z^{\prime}}(b)\right)=0$. Let $S \subset \mathbb{P}^{n}$ be a general set with $|S|=\binom{n+b}{n}-n$. Since S is general, we have $h^{0}\left(\mathcal{I}_{S}(b)\right)=n$, i.e. $h^{1}\left(\mathcal{I}_{S}(b)\right)=0$. Let \mathcal{E} be the scheme-theoretic base locus of $\left|\mathcal{I}_{S}(b)\right|$. The case of Z just discussed shows that \mathcal{E} is a finite set with cardinality b^{n}.

For any $q \in \mathbb{P}^{n}$ let $2 q$ denote the first infinitesimal neighborhood of q in \mathbb{P}^{n}, i.e., the closed subscheme of \mathbb{P}^{n} with $\left(\mathcal{I}_{q}\right)^{2}$ as its ideal sheaf. The scheme $2 q$ is a zero-dimensional scheme with $\operatorname{deg}(2 q)=n+1$ and $(2 q)_{\text {red }}=\{q\}$.
Proposition 2.2 Take $d \geq b \geq 2$ and $n \geq 2$. Set $a:=\binom{n+b}{n}-n$. Take a general $S \subset \mathbb{P}^{n}$ such that $|S|=a$. Let $S \cup A$ with $A \cap S=\emptyset$ and $|A|=b^{n}+n-\binom{n+b}{n}$ be the scheme-theoretic base locus of $\left|\mathcal{I}_{S}(b)\right|$ (Remark 2.1). Set $E:=\cup_{q \in S} 2 q$ and $F:=A \cup E$. Then, $\operatorname{dim} \eta(n, d ; b, \ldots, b) \geq \operatorname{dim}\left\langle v_{d, n}(F)\right\rangle$.

Proof Set $a:=\binom{n+b}{n}-n$. Fix a general $q \in \check{\eta}(n, d ; b, \ldots, b)$ and take $Z \in W(n ; b, \ldots, b)$ such that $q \in\left\langle v_{d, n}(Z)\right\rangle$. By the generality of q, we may assume that Z is a general element of $W(n ; b, \ldots, b)$ and that q is a general element of $\left\langle v_{d, n}(Z)\right\rangle$. Take $S \subset Z$ such that $|S|=a$ and $h^{1}\left(\mathcal{I}_{S}(b)\right)=0$ (Remark 2.1). Set $A:=Z \backslash S$. Take a maximal $A^{\prime} \subseteq A$ such that $v_{d, n}\left(S \cup A^{\prime}\right)$ is linearly independent, i.e., a minimal $A^{\prime} \subseteq A$ such that $\left\langle v_{d, n}\left(S \cup A^{\prime}\right)\right\rangle=\left\langle v_{d, n}(Z)\right\rangle$. Take an ordering of the points of S and then an ordering of the points of A with the points of A^{\prime} coming first. Call $q_{1}, \ldots, q_{|Z|}$ the points of Z in this order. For $i \in\{1, \ldots,|Z|\}$ take regular systems of parameters $z_{i j}, 1 \leq i \leq|Z|, 1 \leq j \leq n$, of the local ring $\mathcal{O}_{\mathbb{P}^{n}, q_{i}}$. Set $m:=$ $\left|S \cup A^{\prime}\right|$. Instead of $\mathbb{I}\left(n, d ; d_{1}, \ldots, d_{n}\right) \subseteq W\left(n ; d_{1}, \ldots, d_{n}\right) \times \mathbb{P}^{r}$, we consider the map $u:\left(\mathbb{P}^{n}\right)^{a} \times G(m, r+$ 1) $\rightarrow \eta(n, d ; b, \ldots, b)$ defined in a neighborhood of $\left(q_{1}, \ldots, q_{a},\left\langle v_{d, n}(Z)\right\rangle\right)$ identifying the points in this neighborhood with the points $\left(q_{1}(\lambda), \ldots, q_{a}(\lambda),\left\langle v_{d, n}\left(\cup_{i=1}^{a+\left|A^{\prime}\right|} q_{i}(\lambda)\right)\right\rangle\right)$ with $q_{i}(\lambda)$ varying near q_{i} (essentially, we use the ordering of the points of Z and use the product $\left(\mathbb{P}^{n}\right)^{a}$ instead of the symmetric product of $\left.\mathbb{P}^{n}\right)$. It is sufficient to prove that the Jacobian matrix M of u at $\left(q_{1}, \ldots, q_{a},\left\langle v_{d, n}(Z)\right\rangle\right)$ has rank at least $\operatorname{dim}\left\langle v_{d, n}(F)\right\rangle$.

Since q is general in $\left\langle v_{d, n}\left(S \cup A^{\prime}\right)\right\rangle$ and $v_{d, n}\left(S \cup A^{\prime}\right)$ is a linearly independent set, there is a unique $o \in\left\langle v_{d, n}(S)\right\rangle$ such that $q \in\left\langle\{o\} \cup\left\langle v_{n, d}\left(A^{\prime}\right)\right\rangle\right.$. By Terracini’s lemma ([1, Corollary 1.10]), the top $n a \times n a$ principal minor of the Jacobian matrix M of u has rank $n a-h^{1}\left(\mathcal{I}_{E}(d)\right)$. The restriction of u to $\left\langle v_{d, n}(Z)\right\rangle$ is essentially the identity matrix (or use that the Zariski tangent space of $\check{\eta}(n, d ; b, \ldots, b$) at q contains every linear subspace contained in $\eta(n, d ; b, \ldots, b)$ and containing q and in particular it contains $\left.\left\langle v_{d, n}\left(A^{\prime}\right)\right\rangle\right)$. Thus, the first $n a+\left|A^{\prime}\right|$ columns of M have rank $\operatorname{dim}\left\langle v_{n, d}\left(E \cup A^{\prime}\right)\right\rangle$. Since, $\left\langle v_{d, n}\left(S \cup A^{\prime}\right)\right\rangle=\left\langle v_{d, n}(S \cup A)\right\rangle$ and $E \supset S$, we have $\left\langle v_{d, n}\left(E \cup A^{\prime}\right)\right\rangle=\left\langle v_{d, n}(E \cup A)\right\rangle$.
Lemma 2.3 Assume $\operatorname{char}(\mathbb{K}) \neq 2$. Fix a general $Z \in W(n, d ; b, \ldots, b)$. Then, $h^{1}\left(\mathcal{I}_{A}(b)\right)=0$ for all $A \subset Z$ such that $|A|=\binom{n+d}{n}-n$.
Proof Since Z is general, the complete intersection of $n-1$ different elements of $\left|\mathcal{I}_{A}(b)\right|$ is an integral curve, C. It is sufficient to prove the lemma for a general effective divisor Z^{\prime} of C, which is the complete intersection of C and a degree b hypersurface. Call $V \subseteq H^{0}\left(\mathcal{O}_{C}(b)\right)$ the image of the restriction map. Since $\mathcal{O}_{\mathbb{P}^{n}}(b)$ is very ample, in characteristic 0 it is easy to see that the monodromy group of the embedding j of C induced by V is the full symmetric group. In characteristic $\neq 2$ we use [16, Corollary 2.2] and that $b \geq 2$ to see the reflexivity of the curve $j(C)$.
Proof of Theorem 0.5 Fix a general $Z \in W(2 ; b, b)$, take $S \subset Z$ with $|S|=\binom{b+2}{2}-2$ and with $h^{1}\left(\mathcal{I}_{S}(b)\right)=0$ and set $A:=Z \backslash S, E:=\cup_{q \in S} 2 q$ and $F:=A \cup E$. By proposition 2.2, it is sufficient to prove that $h^{1}\left(\mathcal{I}_{F}(d)\right)=$ 0 . Take a general $C \in\left|\mathcal{I}_{Z}(b)\right|$. Since Z is general, C is irreducible (take the complete intersection of two general members of $\left|\mathcal{O}_{\mathbb{P}^{2}}(b)\right|$. We have $\operatorname{Res}_{C}(F)=S$. Since Z is general, we may assume that S is a general subset of C with cardinality $\binom{b+2}{2}-2$. Since $d \geq 2 b$, we have $h^{0}\left(\mathcal{O}_{C}(d-b)\right) \geq h^{0}\left(\mathcal{O}_{C}(b)\right)=\binom{b+2}{2}>|S|$ and S is general in C, we have $h^{1}\left(C, \mathcal{I}_{S, C}(d-b)\right)=0$. Since the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(d-b)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}(d-b)\right)$ is surjective, we get $h^{1}\left(\mathcal{I}_{S}(d-b)\right)=0$. By the residual exact sequence

$$
0 \rightarrow \mathcal{I}_{S}(d-b) \rightarrow \mathcal{I}_{F} \rightarrow \mathcal{I}_{F \cap C, C}(d) \rightarrow 0
$$

it is sufficient to prove that $h^{1}\left(C, \mathcal{I}_{F \cap C, C}(d)\right)=0$. Since $d \geq 2 b$, it is sufficient to prove that $h^{1}\left(C, \mathcal{I}_{F \cap C, C}(2 b)\right)=0$. Let G be the degree $2 b^{2}$ divisors $2 Z$ of C (each point of Z counts with multiplicity 2). Since $Z \in\left|\mathcal{O}_{C}(b)\right|$, we have $G \in\left|\mathcal{O}_{C}(2 b)\right|$. Thus, $h^{0}\left(C, \mathcal{I}_{G, C}(2 b)\right)=1$. Recall that $h^{0}\left(\mathcal{O}_{C}(2 b)\right)=\binom{2 b+2}{2}-\binom{b+2}{2}=\left(3 b^{2}+3 b\right) / 2$. Since $Z \in\left|\mathcal{O}_{C}(b)\right|$, we have $\mathcal{I}_{Z, C}(2 b) \cong \mathcal{O}_{C}(b)$. Since $\omega_{C} \cong \mathcal{O}_{C}(b-3)$, we have $h^{1}\left(C, \mathcal{I}_{Z, C}(2 b)\right)=0$, i.e. $h^{0}\left(C, \mathcal{I}_{Z, C}(2 b)\right)=\left(b^{2}+3 b\right) / 2$. Since $h^{0}\left(C, \mathcal{I}_{G, C}(2 b)\right)=1$, and $\binom{b+2}{2}-2=\left(b^{2}+3 b-2\right) / 2$, there is a divisor G^{\prime} with $Z \subset G^{\prime} \subset F$ with $\operatorname{deg}\left(G^{\prime}\right)=\binom{b+2}{2}-2+\operatorname{deg}(Z)$ (i.e., in G^{\prime} exactly $\binom{b+2}{2}-2$ of the points of Z appear with multiplicity 2) and $h^{1}\left(C, \mathcal{I}_{G^{\prime}, C}(2 b)\right)=0$. Lemma 2.3 says that we may take G^{\prime} as F.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ådlandsvik, B.: Joins and higher secant varieties. Math. Scand. 61, 213-222 (1987)
2. Alexander, J.; Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebra Geom. 4(2), 201-222 (1995)
3. Backelin, J.; Oneto, A.: On a class of power ideals. J. Pure Appl. Algebra 219(8), 3158-3180 (2015)
4. Ballico, E.; Bernardi, A.: Symmetric tensor rank with a tangent vector: a generic uniqueness theorem. Proc. Am. Math. Soc. 140(10), 3377-3384 (2012)
5. Ballico, E.; Bernardi, A.: Minimal decomposition of binary forms with respect to tangential projections. J. Algebra Appl. 12(6), 1350010, 8 pp. (2013)
6. Brambilla, M.C.; Ottaviani, G.: On the Alexander-Hirschowitz Theorem. J. Pure Appl. Algebra 212(5), 1229-1251 (2008)
7. Buczyński, J.; Ginensky, A.; Landsberg, J.M.: Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture. J. Lond. Math. Soc. 88, 1-24 (2013)
8. Carlini, E.: Beyond Waring's problem for forms: the binary decomposition. Rend. Sem. Mat. Univ. Pol. Torino 1 Polynom. Interp. Proceed. 63, 87-90 (2005)
9. Carlini, E.; Oneto, A.: Monomials as sums of k-th-powers of forms. Commun. Algebra 43(2), 650-658 (2015)
10. Fröberg, R.; Ottaviani, G.; Shapiro, B.: On the Waring problem for polynomial rings. Proc. Natl. Acad. Sci. USA 109(15), 5600-5602 (2012)
11. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)
12. Iarrobino, A.; Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci, vol. 1721. Lecture Notes in Mathematics. Springer, Berlin (1999) (Appendix C by Iarrobino and Steven L. Kleiman)
13. Landsberg, J.M.: Tensors: Geometry and Applications Graduate Studies in Mathematics. Am. Math. Soc. Providence, 128 (2012)
14. Libgober, A.S.; Woo, J.W.: Remarks on moduli spaces of complete intersections, The Lefschetz Centennial Conference, Part I: Proceedings on Algebraic Geometry, Contemporary Mathematics, 58, pp. 183-194. American Mathematical Society, Providence, RI (1986)
15. Lundqvist, S.; Oneto, A.; Reznik, B.; Shapiro, B.: On Generic and Maximal k-Ranks of Binary Forms. arXiv: 1711.05014.
16. Rathmann, J.: The uniform position principle for curves in characteristic p. Math. Ann. 276(4), 565-579 (1987)
17. Scheiderer, C.: Sum of squares length of real forms. Math. Z. 286(1-2), 559-570 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
(2) Springer

