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Abstract The class of stretch metrics contains the class of Landsberg metrics and the class of R-quadratic
metrics. In this paper, we show that a regular non-Randers type (α, β)-metric with vanishing S-curvature is
stretchian if and only if it is Berwaldian. Let F be an almost regular non-Randers type (α, β)-metric. Suppose
that F is not a Berwald metric. Then, we find a family of stretch (α, β)-metrics which is not Landsbergian. By
presenting an example, we show that the mentioned facts do not hold for the Randers-type metrics. It follows
that every regular (α, β)-metric with isotropic S-curvature is R-quadratic if and only if it is a Berwald metric.

Mathematics Subject Classification 53C60 · 53C25

1 Introduction

It is a long-existing open problem in Finsler geometry to finding unicorns, i.e., Landsberg metrics which are
not Berwaldian [2,21]. In [1], Asanov found a special family of unicorns in the class of non-regular (α, β)-
metrics. In [13], Shen proved that unicorn does not exist in the class of regular (α, β)-metrics. He found a
more complicated family of unicorns in the class of non-regular (α, β)-metrics which contains the Asanov’s
metrics. Let us explain some details about the obtained unicorns. Let F = αφ(s), s = β/α, be an almost
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regular (α, β)-metric on a manifold M defined:

φ(s) = exp

[ ∫ s

0

kt + q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
, (1)

where q > 0 and k are real constants. Suppose that β satisfies

ri j = c(b2ai j − bib j ), si j = 0, (2)

where c = c(x) is a scalar function on M . If c �= 0, then F is a Landsberg metric which is not a Berwald
metric. In this case, F is a unicorn [16]. If c = 0, then F reduces to a Berwald metric. If k = 0 and c �= 0,
then we get the family of unicorns obtained by Asanov in [1].

The class of Finsler metrics (1) appeared in other studies of almost regular (α, β)-metrics which are not
related to unicorns. Let F = αφ(s), s = β/α, be an almost regular non-Berwaldian (α, β)-metric on a
manifold M of dimension n ≥ 3. Suppose that F is not a Finsler metric of Randers-type. In [20], it is proved
that F is a generalized Douglas-Weyl metric with vanishing S-curvature if and only if φ is given by (1).

Let (M, F) be a Finsler manifold. The third-order derivatives of 1
2 F

2
x at y ∈ TxM0 is a symmetric trilinear

formCy on TxM which is calledCartan torsion. The rate of change of Cartan torsionC along geodesics is called
the Landsberg curvatureL. A Finsler metric satisfiesL = 0 is called a Landsbergmetric. As a generalization of
Landsberg curvature, Berwald introduced a non-Riemannian curvature so-called stretch curvature and denoted
it by�y [3]. F is said to be stretch metric if� = 0. From the geometric point of view, it is proved that a stretch
curvature vanishes if and only if the length of a vector remains unchanged under the parallel displacement
along an infinitesimal parallelogram [9]. This curvature has been investigated by Matsumoto and Shibata in
[7,8,15].

In order to find explicit examples of stretch metrics, we consider the class of (α, β)-metrics. An (α, β)-
metric is a Finsler metric of the form F := αφ(s), s = β/α, where φ = φ(s) is a C∞ function on (−b0, b0),

α =
√
ai j (x)yi y j is a Riemannian metric and β = bi (x)yi is a 1-form on a manifold M . For example,

φ = c1
√
1 + c2s2 + c3s is called a Randers type metric, where c1 > 0, c2, and c3 are real constants [10,19].

In [13], Shen proved that every regular Landsberg (α, β)-metric is a Berwald metric. Every Landsberg metric
is a stretch metric. Then, it is natural to study the class of stretch (α, β)-metrics. In this paper, we characterize
the stretch (α, β)-metrics with vanishing S-curvature.

Theorem 1.1 Let F = αφ(s), s = β/α, be a non-Randers type (α, β)-metric with vanishing S-curvature on
a manifold M of dimension n ≥ 3. Suppose that F is a stretch metric. Then one of the following holds:

(i) If F is a regular metric, then it reduces to a Berwald metric;
(ii) If F is an almost regular metric which is not Berwaldian, then φ is given by

φ = c exp

[ ∫ s

0

kt + q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
, (3)

where c > 0, q > 0 and k are real constants. In this case, F is not a Landsberg metric.

The condition of vanishing of S-curvature in Theorem 1.1 can not be dropped—See the following:

Example 1.2 Let us consider the following Finsler metric on the unit ball Bn

F :=
(√

(1 − |x |2)|y|2 + 〈x, y〉2 + 〈x, y〉)2
(1 − |x |2)2√(1 − |x |2)|y|2 + 〈x, y〉2 ,

where |.| and <,> denote the Euclidean norm and the inner product in Rn , respectively. F is a stretch metric
that satisfies S �= 0 which is not Berwaldian.

In [22], it is proved that every Douglas-Randers metric (equivalently, Randers metric with closed 1-form)
with vanishing stretch curvature is a Berwald metric. But Theorem 1.1 does not hold for Finsler metrics of
Randers-type, generally as shown in the following example:
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Example 1.3 Let us consider the well-known Shen’s fish tank metric as follows. Let X = (x, y, z) ∈ B
3(1) ⊂

R
3 and Y = (u, v, w) ∈ TxB3(1). Put

F =
√

(−yu + xv)2 + (u2 + v2 + w2)(1 − x2 − y2)

1 − x2 − y2
+ xv − yu

1 − x2 − y2
.

The Shen’s fish tank metric F is a stretch metric with vanishing S-curvature while it is not a Berwald metric
[14].

For a Finsler manifold (M, F), the Riemann curvature is a family of linear transformations Ry : TxM →
TxM , where y ∈ TxM , with homogeneity Rλy = λ2Ry , ∀λ > 0. F is said to be R-quadratic if its Riemann
curvature Ry is quadratic in y ∈ TxM [11].

Corollary 1.4 Let F = αφ(s), s = β/α, be a regular non-Randers type (α, β)-metric on a manifold M of
dimension n ≥ 3. Suppose that F is of isotropic S-curvature. Then F is an R-quadratic metric if and only if it
is a Berwald metric.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a Finsler tensor
field are denoted by “ | ” and “, ” respectively.

2 Preliminary

Let M be an n-dimensional C∞ manifold, T M = ⋃
x∈M TxM the tangent bundle and T M0 := T M − {0} the

slit tangent bundle. Let (M, F) be a Finsler manifold. The following quadratic form gy : TxM ⊗ TxM → R

is called a fundamental tensor:

gy(u, v) = 1

2

∂2

∂s∂t

[
F2(y + su + tv)

]
s=t=0

, u, v ∈ TxM.

Let x ∈ M and Fx := F |Tx M . To measure the non-Euclidean feature of Fx , define Cy : TxM ⊗ TxM ⊗
TxM → R by

Cy(u, v, w) := 1

2

d

dt

[
gy+tw(u, v)

]
t=0

= 1

4

∂3

∂r∂s∂t

[
F2(y + ru + sv + tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on TxM . The family C := {Cy}y∈T M0

is called the Cartan torsion [18]. It is well known that C = 0 if and only if F is Riemannian.
For y ∈ TxM0, define Ly : TxM ⊗ TxM ⊗ TxM → R by Ly(u, v, w) := Li jk(y)uiv jwk , where

Li jk := Ci jk|s ys . The family L := {Ly}y∈T M0 is called the Landsberg curvature. A Finsler metric is called a
Landsberg metric if L = 0.

For y ∈ TxM0, define �y : TxM ⊗ TxM ⊗ TxM ⊗ TxM → R by �y(q, u, v, w) := � i jkl(y)qiu jvkwl ,
where

�i jkl := Li jk|l − Li jl|k . (4)

The family � := {�y}y∈T M0 is called the stretch curvature. F is called a stretch metric if � = 0 [3]. By
definition, every Landsberg metric is a stretch metric.

Given a Finsler manifold (M, F), then a global vector fieldG is induced by F on T M0, which in a standard
coordinate (xi , yi ) for T M0 is given by G = yi ∂

∂xi
− 2Gi (x, y) ∂

∂yi
, where Gi (x, y) are local functions on

T M0 satisfying Gi (x, λy) = λ2Gi (x, y), λ > 0, and given by

Gi = 1

4
gil

[ ∂2F2

∂xk∂yl
yk − ∂F2

∂xl

]
.

G is called the associated spray to (M, F). The projection of an integral curve of the sprayG is called a geodesic
of F . F is called a Berwald metric if Gi are quadratic in y ∈ TxM for any x ∈ M . Equivalently, for a non-zero
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vector y ∈ TxM0, let us define By : TxM ⊗ TxM ⊗ TxM → TxM by By(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi

|x ,
where

Bi
jkl := ∂3Gi

∂y j∂yk∂yl
.

B is called the Berwald curvature. Then F is called a Berwald metric if B = 0 (see [6]).
For a Finsler metric F on an n-dimensional manifold M , the Busemann–Hausdorff volume form dVF =

σF (x)dx1 · · · dxn is defined by

σF (x) := Vol(Bn(1))

Vol
{
(yi ) ∈ Rn

∣∣∣ F(
yi ∂

∂xi
|x

)
< 1

} ,

where Bn(1) denotes the unit ball in R
n . Let Gi (x, y) denote the geodesic coefficients of F in the same local

coordinate system. The S-curvature is defined by

S(y) := ∂Gi

∂yi
(x, y) − yi

∂

∂xi

[
ln σF (x)

]
,

where y = yi ∂
∂xi

|x ∈ TxM . F is called of isotropic S-curvature if S = (n + 1)cF , where c = c(x) is a scalar
function on M . If F is a Berwald metric then S = 0 (see [17]).

Given a Riemannian metric α =
√
ai j yi y j , a 1-form β = bi yi on a manifold M , and a C∞ function

φ = φ(s) on [−bo, bo], where bo := supx∈M ‖β‖x , one can define a function on T M by F := αφ(s),
s = β/α. If φ and bo satisfy (5) and (6) below, then F is a Finsler metric on M . Finsler metrics in this form
are called (α, β)-metrics. Let bo > 0. Then, F = αφ(β/α) is a Finsler metric on a manifold M for any pair
{α, β} with supx∈M ‖β‖x ≤ bo if and only if φ = φ(s) satisfies the following conditions:

φ(s) > 0, (|s| ≤ bo) (5)

φ(s) − sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b ≤ bo). (6)

Let φ = φ(s) satisfy (5) and (6), where |s| ≤ b ≤ bo. A function F = αφ(s) is called an almost regular
(α, β)-metric if β satisfies ||βx ||α ≤ b0, ∀x ∈ M [13]. An almost regular (α, β)-metric F = αφ(s) might be
singular (even not defined) in the two extremal directions y ∈ TxM with β(x, y) = ±b0α(x, y).

For an (α, β)-metric F = αφ(s), s = β/α, let us represent

ri j := 1
2

(
bi; j + b j;i

)
, si j := 1

2

(
bi; j − b j;i

)
,

r j := biri j , r := bib jri j , s j := bi si j , r0 := r j y j , s0 := s j y j ,

ri0 := ri j y j , r00 := ri j yi y j , si0 := si j y j , si j := aimsmj , r i j := aimrmj , si0 := si j y
j .

LetGi = Gi (x, y) and Ḡi
α = Ḡi

α(x, y) denote the coefficients of F and α, respectively, in the same coordinate
system. Then, we have

Gi = Gi
α + αQsi0 + (−2Qαs0 + r00)

(
	
yi

α
+ 
bi

)
, (7)

where

Q := φ′

φ − sφ′ , � := 1 + sQ + (b2 − s2)Q′, 	 := Q − sQ′

2�
, 
 := Q′

2�
.

Now, let φ = φ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0), let
� := −(Q − sQ′)(n� + 1 + sQ) − (b2 − s2)(1 + sQ)Q′′.

In [5], Cheng–Shen characterize (α, β)-metrics with isotropic S-curvature as follows:
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Lemma 2.1 ([5]) Let F = αφ(s) , s = β/α, be a non-Riemannian (α, β)-metric on a manifold of dimension
n ≥ 3 and b := ‖βx‖α . Suppose that F is not a Finsler metric of Randers type. Then F is of isotropic
S-curvature, S = (n + 1)cF, if and only if β satisfies one of the following:

(a)

ri j = ε(b2ai j − bib j ), s j = 0, (8)

where ε = ε(x) is a scalar function, and φ = φ(s) satisfies

� = −2(n + 1)k
φ�2

b2 − s2
, (9)

where k is a constant. In this case, S = (n + 1)cF with c = kε.
(b)

ri j = 0, s j = 0. (10)

In this case, S = 0, regardless of choices of a particular φ.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. For this aim, we need the following:

Lemma 3.1 Let F = αφ(s), s = β/α, be a regular non-Randers type (α, β)-metric on a manifold M of
dimension n ≥ 3. Suppose that F has vanishing S-curvature. Then the following holds:

yi s
i
0 = 0, yi s

i
0|0 = 0, yib

j si j |0 = φ(φ − sφ′)s j0s j0, (11)

where yi := gi j y j .

Proof For an (α, β)-metric F = αφ(s) , s = β/α, the following holds:

gi j = ρai j + ρ0bib j + ρ1(biα j + b jαi ) + ρ2αiα j , (12)

where αi := α−1ai j y j and

ρ := φ(φ − sφ′), ρ0 := φφ′′ + φ′φ′

ρ1 := −
[
s(φφ′′ + φ′φ′) − φφ′], ρ2 := s

[
s(φφ′′ + φ′φ′) − φφ′].

Then, we get

yi := ρ ȳi + ρ0biβ + ρ1(biα + βαi ) + ρ2ααi , (13)

where ȳi := ai j y j . By (10), we have bi si0 = 0. Since ȳi si0 = 0, from (13) it follows that

yi s
i
0 = 0. (14)

By considering yi |0 = 0, from (14) we get

yi s
i
0|0 = 0.

Taking a horizontal derivation of s j = b j si j = 0 implies that

0 = (b j si j )|0 = b j
|0s

i
j + b j si j |0 = (r j

0 + s j0)s
i
j + b j si j |0. (15)

Since r j
0 = 0, (15) reduces to the following:

b j si j |0 = −s j0s
i
j . (16)
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By (13) and (16), we get

yib
j si j |0 = −(ρ + ρ1s + ρ2)s

j
0s

0
j = (ρ + ρ1s + ρ2)s

j
0s j0. (17)

Since ρ1s + ρ2 = 0, we have

yib
j si j |0 = ρs j0s j0 = φ(φ − sφ′)s j0s j0. (18)

This completes the proof. ��
Proof of Theorem 1.1 Since F has vanishing S-curvature, by (10) we have ri j = s j = 0. Plugging these
relations in (7) yields

Gi = Gi
α + αQsi0. (19)

Taking third-order vertical derivations of (19) with respect to y j , yk , and yl implies that

Bi
jkl = sil

[
Qα jk + Qkα j + Q jαk + αQ jk

]
+ si j

[
Qαlk + Qkαl + Qlαk + αQlk

]

+ sik

[
Qα jl + Q jαl + Qlα j + αQ jl

]
+ si0

[
α jkl Q + α jk Ql + αlk Q j

+ αl j Qk + αQ jkl + αl Q jk + α j Qlk + αk Q jl

]
. (20)

By assumption, F is stretch metric. Then contracting (4) with yl yields

L jkl|s ys = −1

2
yi B

i
jkl|s y

s = 0.

By (20) we get

L jkl|s ys = −1

2
yi s

i
0|0

[
α jkl Q + α jk Ql + αlk Q j + αl j Qk + αQ jkl + αl Q jk + α j Qlk

+ αk Q jl

]
− 1

2
yi s

i
0

[
α jkl Q|0 + α jk Ql|0 + αlk Q j |0 + αl j Qk|0 + αQ jkl|0

+ αl Q jk|0 + α j Qlk|0 + αk Q jl|0
]

− 1

2
yi s

i
l

[
Q|0α jk + Qk|0α j + Q j |0αk

+ αQ jk|0
]

− 1

2
yi s

i
j

[
Q|0αlk + Qk|0αl + Ql|0αk + αQlk|0

]

− 1

2
yi s

i
k

[
Q|0α jl + Q j |0αl + Ql|0α j + αQ jl|0

]

− 1

2
yi s

i
l|0

[
Qα jk + Qkα j + Q jαk + αQ jk

]

− 1

2
yi s

i
j |0

[
Qαlk + Qkαl + Qlαk + αQlk

]

− 1

2
yi s

i
k|0

[
Qα jl + Q jαl + Qlα j + αQ jl

]
. (21)

Contracting (21) with b jbkbl and using (11) implies that

φ(φ − sφ′)(Qα2 + 2α1Q1 + αQ2)s
m
0sm0 = 0, (22)

where

α1 := biαyi , α2 := bib jαyi y j , Q1 := bi Qyi , Q2 := bib j Qyi y j .

Since φ(φ − sφ′) �= 0, (22) reduces to the following:

(Qα2 + 2α1Q1 + αQ2)s
m
0sm0 = 0. (23)
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By (23), we have two main cases as follows:
Case (i): Let sm0sm0 = 0. Since α is a positive-definite metric, it implies that si j = 0. Therefore, β is a

closed 1-form. Since F is a regular (α, β)-metric, (20) implies that F is a Berwald metric.
Case (ii): Let the following hold

2α1Q1 + αQ2 + Qα2 = 0. (24)

We have

αyi = α−1yi , αy j yk = α−3A jk,

where

A jk := α2a jk − y j yk .

So we get

α1 = s, (25)

α2 = (b2 − s2)α−1, (26)

Q1 = Q′(b2 − s2)α−1, (27)

Q2 = (b2 − s2)
[
(b2 − s2)Q′′ − 3sQ′]α−2. (28)

Plugging (25), (26), (27), and (28) into (24) implies that

(b2 − s2)Q′′ − sQ′ + Q = 0. (29)

By solving (29), we get

Q = ks + q
√
b2 − s2,

where k and q are real constants. It results the following:

φ = c exp

[ ∫ s

0

kt + q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
, (30)

where c > 0, q > 0, and k are real constants. (30) is an almost regular (α, β)-metric (for more details, see
[13]). Since si j �= 0, by Theorem 1.2 in [13], it follows that F is not a Landsberg metric. ��

The notion of Riemann curvature for Riemann metrics can be extended to Finsler metrics. For a non-zero
vector y ∈ TxM0, the Riemann curvature Ry : TxM → TxM is defined by Ry(u) := Ri

k(y)u
k ∂

∂xi
, where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂x j∂yk
y j + 2G j ∂2Gi

∂y j∂yk
− ∂Gi

∂y j

∂G j

∂yk
.

The family R := {Ry}y∈T M0 is called the Riemann curvature.
In [4], Cheng considers regular (α, β)-metrics with isotropic S-curvature and proves the following:

Theorem 3.2 ([4])A regular (α, β)-metric F := αφ(β/α), of non-Randers type on an n-dimensionalmanifold
M is of isotropic S-curvature, S = (n+1)σ F, if and only if β satisfies ri j = 0 and s j = 0. In this case, S = 0,
regardless of the choice of a particular φ = φ(s).

Proof of Corollary 1.4 The following Bianchi identity holds:

Bi
jkl|m − Bi

jmk|l = Ri
jml,k, (31)

where

Ri
jkl = 1

3

{ ∂2Ri
k

∂y j∂yl
− ∂2Ri

l

∂y j∂yk

}
.
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For more details, see page 136 in [12]. Multiplying (31) with yi implies that

yi R
i
jkl,m = yi B

i
jml|k − yi B

i
jkm|l

= −2L jml|k + 2L jkm|l
= 2� jkml . (32)

By (32), it follows that every R-quadratic metric is a stretch metric. Then by Theorems 1.1 and 3.2, the proof
follows. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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