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Abstract Let R be a prime ring with the extended centroid C and symmetric Martindale quotient ring Qs(R).
In this paper we prove the following result. Let F : R → R be a generalized derivation associated with a
non-zero derivation d on R and let h be an additive map of R such that F(x)x = xh(x) for all x ∈ R. Then
either R is commutative or F(x) = xp and h(x) = px where p ∈ Qs(R).

Mathematics Subject Classification 16N60 · 16W25

1 Introduction

Throughout the paper, R will be an associative ring with center Z . Recall that R is prime if for any a, b ∈ R,
aRb = 0 implies that a = 0 or b = 0. By Ql(R) and Qr (R) we denote the left Martindale ring of quotients
of R and the right Martindale ring of quotients of R, respectively. Further, we denote by Qs(R) the symmetric
Martindale quotients ring of ring R. The center C of Qs(R) is a field and it is the center of both Ql(R) and
Qr (R). It is called the extended centroid of R. Also it is easily seen that C is the centralizer of R in both
Qr (R) and Ql(R). In particular, Z ⊆ C . The subring of Qr (R) (or Ql(R)) generated by R and C is called
the central closure of R and will be denoted by RC . Another subring of Qr (R) is Qs(R) = {q ∈ Qr |I q ⊆ R
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for some nonzero ideal I of R}. It is called the symmetric Martindale ring of quotients. We point out that
R ⊆ RC ⊆ Qs(R) ⊆ Qr (R). Note that q1Rq2 = 0, where q1, q2 ∈ Ql(R) or q1, q2 ∈ Qr (R) implies that
q1 = 0 or q2 = 0. In particular, this shows that all RC , Qs(R), Ql(R), and Qr (R) are prime rings, so that
one can construct (left, right, symmetric) Martindale ring of quotients and the central closure of each of these
rings.

Let RC ∗C C{X} be the free product over C of RC and the free algebra over C on an infinite set X of
indeterminates. A typical element in RC ∗C C{X} is a sum of monomials of the form λai0x j1ai1x j2 . . . x jn ain
where λ ∈ C, aik ∈ RC and x jk ∈ X . R satisfy a generalized polynomial identity over C (simply R is a GPI
ring) if there exists a nonzero polynomial p(x1, x2, . . . , xn) ∈ RC ∗C C{X} such that p(r1, r2, . . . , rn) = 0
for all r1, r2, . . . , rn ∈ R. We refer the reader to [2,3] for more details.

An additive map d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. In
particular, for a fixed a ∈ R, the map Ia : R → R given by Ia(x) = [x, a] is a derivation called an inner
derivation. Let S be a non-empty subset of R. Amap f : R → R is said to be centralizing on S if [ f (x), x] ∈ Z
for every x ∈ S. In special case where [ f (x), x] = 0 for every x ∈ S, the map f is called commuting on S.
The study of centralizing maps was initiated by a well-known theorem of Posner [15] which states that the
existence of a nonzero centralizing derivation on a prime ring R implies that R is commutative. A number of
authors have extended Posner’s theorem in several ways. They have showed that nonzero derivations cannot be
centralizing on various subsets of noncommutative prime rings (see [12] for probably the most general results
of the kind), and similar conclusion hold for some other maps. In [5] Brešar studied maps that are centralizing
and additive, and no further assumption was required. The main result of [5] characterizes commuting additive
maps on prime rings R: every such map is of the form x �→ λx + h(x) where λ ∈ C , and h is an additive
map of R into C . Later, Lanski [13] dealt with the situation where a nonzero derivation d of a prime ring
R satisfies c1xd(y) + c2d(x)y + c3yd(x) + c4d(y)x ∈ C for some ci ∈ C and all x, y ∈ S, where S is a
subset of R. Neglecting rings of characteristic 2, the conclusion was: either all ci = 0 or R satisfies S4, the
standard identity of degree 4 (however, the exact statements are much more precise). The condition considered
by Lanski clearly covers the case of centralizing derivations, namely a linearization of [d(x), x] ∈ Z gives
xd(y)−d(x)y+yd(x)−d(y)x ∈ Z . The same is true for the case skew-centralizing on S if f (x)x+x f (x) ∈ Z
for all x ∈ S. In the special case where f (x)x + x f (x) = 0 for all x ∈ S, the map f is called skew-commuting
on S. In [6] Brešar proved that there is no nonzero additive maps that are skew-commuting on ideals of prime
rings of characteristic not 2.

An additive map F : R → R is called a generalized inner derivation if F(x) = ax + xb for fixed a, b ∈ R.
For such a map F , it is easy to see that F(xy) = F(x)y + x[y, b] = F(x)y + x Ib(y) for all x, y ∈ R. This
observation leads to the following definition, given in [4] and [9]; an additive map F : R → R is called a
generalized derivation with associated derivation d if F(xy) = F(x)y + xd(y) holds for all x, y ∈ R.

Familiar examples of generalized derivations are derivations and generalized inner derivations and the later
includes left multiplier, i.e., an additive map F : R −→ R satisfying F(xy) = F(x)y for all x, y ∈ R. In
[11], Lee extended the definition of a generalized derivation as follows: by a generalized derivation wemean an
additive mapping F : I → U such that F(xy) = F(x)y+ xd(y) holds for all x, y ∈ I , where I is a dense left
ideal of R, U is the Utumi quotient ring (i.e., the maximal right quotient ring) of R and d is a derivation from
I toU . Moreover, Lee also proved that every generalized derivation can be uniquely extended to a generalized
derivation of U , and thus all generalized derivations of R will implicitly assumed to be defined on the whole
of U . Lee obtained the following: every generalized derivation F on a dense left ideal of R can be extended
to U and assumes the form F(x) = ax + d(x) for some a ∈ U and a derivation d on U .

Motivated by the work of Brešar [5] and Lanski [13], in this paper we consider F as a generalized derivation
and h as an additive map of R such that F(x)x = xh(x) for all x ∈ R. In fact, our result extends Posner’s
Theorem [15], Brešar’s Theorem [5] and Ashraf et al. [1].

2 Main result

In this section we shall prove our main theorem. Before that we need some known results:

Lemma 2.1 [14, Theorem 3] A prime ring R satisfies a GPI if and only if RC is a primitive ring with nonzero
socle and eRCe is a finite-dimensional division algebra over C for each primitive idempotent e in RC .

Lemma 2.2 [7, Main Theorem] Let R be prime ring and let n,m, k, l be positive integers. Suppose that

�n
i=1Fi (y)xai + �m

i=1Gi (x)ybi + �k
i=1ci yHi (x) + �l

i=1di xKi (y) = 0
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for all x, y ∈ R, where Fi ,Gi , Hi , Ki : R → RC are additive maps and {a1, . . . , an}, {b1, . . . , bm}, {c1, . . . ,
ck}, {d1, . . . , dl} are C-independent subsets of R. Then one of the two possibilities holds:

(i) RC is a primitive ring with nonzero socle and eRCe is a finite-dimensional division algebra over C for
each primitive idempotent e in RC( that is, R is a GPI ring),

(ii) There exists elements qi j ∈ Qs(RC ), i = 1, . . . , l, j = 1, . . . ,m, pi j ∈ Qs(RC ), i = 1, . . . , k, j =
1, . . . , n and additive maps λi j : R → C, i = 1, . . . , l, j = 1, . . . , n, μi j : R → C, i = 1, . . . ,m, j =
1, . . . , k, such that

Fi (y) = �k
j=1c j yp ji + �l

j=1λ j i (y)d j , for all y ∈ R, i = 1, . . . , n,

Gi (x) = �l
j=1d j xq ji − �k

j=1μi j (x)c j , for all x ∈ R, i = 1, . . . ,m,

Hi (x) = −�n
j=1 pi j xa j + �m

j=1μ j i (x)b j , for all x ∈ R, i = 1, . . . , k,

Ki (y) = −�m
j=1qi j yb j − �l

j=1λ j i (y)a j , for all y ∈ R, i = 1, . . . , l.

Lemma 2.3 [10, Theorem 2] Let R be a prime ring, U its maximal right quotient ring and IR a dense
R-submodule of UR. Then I and U satisfy the same differential identities

Now we are well equipped to prove our theorem:

Theorem 2.4 Let R be a prime ring and F : R → R be a generalized derivation associated with a non-zero
derivation d. Further let h be an additive map of R such that F(x)x = xh(x) for all x ∈ R. Then either R is
commutative or F(x) = xp and h(x) = px where p ∈ U.

Proof We have F(x)x = xh(x) for all x ∈ R. Linearizing this relation we have

F(y)x + F(x)y − yh(x) − xh(y) = 0 (1)

for all x, y ∈ R. We solve this functional identity in two different cases.

Case I: R is not a GPI ring. Using Lemma 2.2, we get from (1)

F(y) = yp + λ(y), (2)

F(x) = xq + μ(x), (3)

h(x) = px + μ(x), (4)

h(y) = qy + λ(y), (5)

where λ,μ : R → C additive maps. From (2), we have F(y) − yp = λ(y) ∈ C . Let G be the additive map
defined as G(y) = F(y) − yp for any element y ∈ R. Since F is a generalized derivation with associated
derivation d , first we prove that G is a generalized derivation of R.

G(xy) = F(xy) − xyp = F(x)y + xd(y) − xyp
= F(x)y + xd(y) − xyp + (xpy − xpy)
= (F(x) − xp)y + x(d(y) + [p, y])
= G(x)y + xg(y),

where g(x) = d(x) + [p, x] is the associated derivation of G. Hence G is a generalized derivation. Thus, by
(2) G(y) is central in R, for any element y ∈ R. Hence by Hvala [9, Lemma 3] either R is commutative or
G = 0, which imply F(y) − yp = 0 and hence F(y) = yp for any y ∈ R. Similarly from (3), we find that
either R is commutative or F(x) = xq . These two relations imply that p = q and λ = μ = 0 and hence
h(x) = px where p ∈ U .

Case II: R is a GPI ring. If there exists a nonzero idempotent e in RC . If there exists e2 = e �= {0, 1} in
Qs(R). Therefore, we can find a nonzero ideal I of R satisfying eI + I e ⊆ R. Then from (1), we get

F(ey)ex + F(ex)ey = exh(ey) + eyh(ex), for all x, y ∈ I.

Thus

F(ey)ex + F(ex)ey = e{F(ey)ex + F(ex)ey}, for all x, y ∈ I.
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This implies that

(1 − e)F(ey)ex + (1 − e)F(ex)ey = 0, for all x, y ∈ I.

By Lemma 2.3, Qs(R) and I satisfy the same differential identity. Thus we have

(1 − e)F(ey)ex + (1 − e)F(ex)ey = 0, for all x, y ∈ Qs(R).

This can be written as

H(x)y + H(y)x = 0, (6)

where H(x) = (1 − e)F(ex)e. Replacing x by xz in (6), we get

H(xz)y + H(y)xz = 0. (7)

Multiplying (6) by z from the right, we find that

H(x)yz + H(y)xz = 0. (8)

Comparing (7) and (8), we find that

H(xz)y = H(x)yz. (9)

Replacing y by yu in (9), we get

H(xz)yu = H(x)yuz. (10)

Right multiplication of (9) by u, we get

H(xz)yu = H(x)yzu. (11)

Comparing (10) and (11), we get H(x)y[z, u] = 0 for all x, y, z, u ∈ Qs(R). Since R is prime and Qs(R) is
also prime, we get from the last relation either R is commutative or H(x) = 0 for all x ∈ Qs(R). If H(x) = 0,
we get (1 − e)F(ex)e = 0 and considering F(x) = ax + d(x) for a ∈ U , we find that

(1 − e)[aex + d(ex)]e = 0.

This implies

(1 − e)aexe + (1 − e)d(e)xe = 0.

Since R is prime and e is non-trivial, we get (1 − e)ae + (1 − e)d(e) = 0 for all non-trivial idempotents
e ∈ Qs(R). Replacing e by 1 − e we get ea(1 − e) + ed(−e) = 0. Combining these two relations we get
d(e)+[a, e] = 0. Let E be an additive subgroup generated by idempotents in Qs(R). Therefore, d(u)+[a, u] =
0 for all u ∈ E . Now, for all u, v ∈ E , we get d(uv) + [a, uv] = 0 = (d(u) + [a, u])v + u(d(v) + [a, v]).
That is, d(u) + [a, u] = 0 for all u ∈ E = [E, E]. Now [E, E] �= 0, since [e, e + ex(1 − e)] �= 0 for some
x ∈ Qs(R). By Herstein’s arguments [8, page 4] 0 �= Qs[E, E]Qs ⊆ E,W = Qs[E, E]Qs is a nonzero
ideal of Qs . Therefore, d(u) + [a, u] = 0 for all u ∈ W and hence d(x) + [a, x] = 0 for all x ∈ Qs(R) by
Lemma 2.3. Thus F(x) = ax + d(x) = ax − [a, x] = xa.

By Martindale’s theorem [14, Theorem 3] we know that RC is a primitive ring and H = soc(RC ) �= 0 and
eRCe is a finite dimensional for any minimal idempotent e. If H contains no non-trivial idempotent, then H
is a finite-dimensional division algebra over C . If soc (RC ) contains no nontrivial idempotent, then soc (RC )
must be a finite-dimensional division algebra over C , by [14, Theorem 3]. Since soc (RC ) is a nonzero ideal
of RC , it follows RC = soc (RC ) is a division algebra. Then for x �= 0 ∈ R we have from the given condition
h(x) = x−1F(x)x in RC . For any x, y �= 0 ∈ R we get from (1)

F(x)y + F(y)x = xy−1F(y)y + yx−1F(x)x . (12)

Let xy−1 = u in (12), we get

F(uy)y + F(y)uy = uF(y)y + u−1F(uy)uy for all u, y(�= 0) ∈ R,
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and this implies that

uF(uy)y + uF(y)uy = u2F(y)y + F(uy)uy for all 0 �= u, y ∈ R.

This can be written as

uF(uy) + uF(y)u = u2F(y) + F(uy)u for all u, y ∈ R.

Since F(x) = ax + d(x) for a ∈ Qs(R), we get from the last relation

uauy + ud(uy) + uayu + ud(y)u = u2ay + u2d(y) + auyu + d(uy)u.

The above relation for y = 1 gives us uau + ud(u) + uau = u2a + au2 + d(u)u. This implies that
[u, d(u)] = [u, [u, a]], hence d(u) = [u, a]; now we get F(x) = ax + xa − ax = xa and by our assumption
that F(x)x = xh(x), we get h(x) = ax , which completes the proof. �	
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
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