Habibollah Ansari-Toroghy • Shokoufeh Habibi

The annihilating-submodule graph of modules over commutative rings II

Received: 9 March 2016 / Accepted: 4 September 2016 / Published online: 20 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

Let M be a module over a commutative ring R. The annihilating-submodule graph of M, denoted by $\mathrm{AG}(M)$, is a simple graph in which a non-zero submodule N of M is a vertex if and only if there exists a non-zero proper submodule K of M such that $N K=(0)$, where $N K$, the product of N and K, is denoted by $(N: M)(K: M) M$ and two distinct vertices N and K are adjacent if and only if $N K=(0)$. This graph is a submodule version of the annihilating-ideal graph. We prove that if $\mathrm{AG}(M)$ is a tree, then either $\mathrm{AG}(M)$ is a star graph or a path of order 4 and in the latter case $M \cong F \times S$, where F is a simple module and S is a module with a unique non-trivial submodule. Moreover, we prove that if M is a cyclic module with at least three minimal prime submodules, then $\operatorname{gr}(\mathrm{AG}(M))=3$ and for every cyclic module $M, \operatorname{cl}(\mathrm{AG}(M)) \geq|\operatorname{Min}(M)|$.

Mathematics Subject Classification 05C75 • 13C13

 (N:M)(K:M)M

1 Introduction

Throughout this paper, R is a commutative ring with a non-zero identity and M is a unital R-module. By $N \leq M$ (resp., $N<M$) we mean that N is a submodule (resp., proper submodule) of M.

Define $\left(N:_{R} M\right)$ or simply $(N: M)=\{r \in R \mid r M \subseteq N\}$ for any $N \leq M$. We denote ($\left.(0): M\right)$ by $\operatorname{Ann}_{R}(M)$ or simply $\operatorname{Ann}(M) . M$ is said to be faithful if $\operatorname{Ann}(M)=(0)$.

Let $N, K \leq M$. Then, the product of N and K, denoted by $N K$, is defined by $(N: M)(K: M) M$ (see [6]).

There are many papers on assigning graphs to rings or modules (see, for example, $[4,7,10,11]$). The annihilating-ideal graph $\mathrm{AG}(R)$ was introduced and studied in [11]. $\mathrm{AG}(R)$ is a graph whose vertices are

[^0]
ideals of R with non-zero annihilators and in which two vertices I and J are adjacent if and only if $I J=(0)$. Later, it was modified and further studied by many authors (see [1-3]).

In $[7,8]$, we generalized the above idea to submodules of M and defined the (undirected) graph $\mathrm{AG}(M)$, called the annihilating-submodule graph, with vertices $V(\mathrm{AG}(M))=\{N \leq M \mid$ there exists $(0) \neq K<M$ with $N K=(0)\}$. In this graph, distinct vertices $N, L \in V(\mathrm{AG}(M))$ are adjacent if and only if $N L=(0)$. Let $\mathrm{AG}(M)^{*}$ be the subgraph of $\mathrm{AG}(M)$ with vertices $V\left(\mathrm{AG}(M)^{*}\right)=\{N<M$ with $(N: M) \neq \operatorname{Ann}(M) \mid$ there exists a submodule $K<M$ with $(K: M) \neq \operatorname{Ann}(M)$ and $N K=(0)\}$. Note that M is a vertex of $\operatorname{AG}(M)$ if and only if there exists a non-zero proper submodule N of M with $(N: M)=\operatorname{Ann}(M)$ if and only if every non-zero submodule of M is a vertex of $\mathrm{AG}(M)$.

In this work, we continue our study in $[7,8]$ and we generalize some results related to annihilating-ideal graph obtained in [1-3] for annihilating-submodule graph.

A prime submodule of M is a submodule $P \neq M$, such that whenever $r e \in P$ for some $r \in R$ and $e \in M$, we have $r \in(P: M)$ or $e \in P$ [14].

The prime radical $\operatorname{rad}_{M}(N)$ or simply $\operatorname{rad}(N)$ is defined to be the intersection of all prime submodules of M containing N, and in case N is not contained in any prime submodule, $\operatorname{rad}_{M}(N)$ is defined to be M [14].

The notations $Z(R), \operatorname{Nil}(R)$, and $\operatorname{Min}(M)$ will denote the set of all zero-divisors, the set of all nilpotent elements of R, and the set of all minimal prime submodules of M, respectively. In addition, $Z_{R}(M)$ or simply $Z(M)$, the set of zero divisors on M, is the set $\{r \in R \mid r m=0$ for some $0 \neq m \in M\}$.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G, denoted by $c l(G)$, is called the clique number of G. Let $\chi(G)$ denote the chromatic number of the graph G, that is, the minimal number of colors needed to color the vertices of G, so that no two adjacent vertices have the same color. Obviously $\chi(G) \geq \operatorname{cl}(G)$.

In Sect. 2, we prove that if $\mathrm{AG}(M)$ is a tree, then either $\mathrm{AG}(M)$ is a star graph or is the path P_{4} and in this case, $M \cong F \times S$, where F is a simple module and S is a module with a unique non-trivial submodule (see Theorem 2.7). Next, we study the bipartite annihilating-submodule graphs of modules over Artinian rings (see Theorem 2.8). In Sect. 3, we study coloring of the annihilating-submodule graph and investigate the interplay between $\chi(\mathrm{AG}(M)), c l(\mathrm{AG}(M))$, and $\operatorname{Min}(M)$ (see Theorems 3.5 and 3.8). In Corollary 3.7, we prove that if M is a cyclic module with at least three minimal prime submodules, then $\operatorname{gr}(\mathrm{AG}(M))=3$ and for every cyclic module $M, \operatorname{cl}(\mathrm{AG}(M)) \geq|\operatorname{Min}(M)|$.

Let us introduce some graphical notions and denotations that are used in what follows: a graph G is an ordered triple $\left(V(G), E(G), \psi_{G}\right)$ consisting of a non-empty set of vertices, $V(G)$, a set $E(G)$ of edges, and an incident function ψ_{G} that associates an unordered pair of distinct vertices with each edge. The edge e joins x and y if $\psi_{G}(e)=\{x, y\}$, and we say x and y are adjacent. A path in graph G is a finite sequence of vertices $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, where x_{i-1} and x_{i} are adjacent for each $1 \leq i \leq n$ and we denote $x_{i-1}-x_{i}$ for existing an edge between x_{i-1} and x_{i}.

A graph H is a subgraph of G, if $V(H) \subseteq V(G), E(H) \subseteq E(G)$, and ψ_{H} is the restriction of ψ_{G} to $E(H)$. A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V, such that every edge connects a vertex in U to one in V; that is, U and V are each independent sets and complete bipartite graph on n and m vertices, denoted by $K_{n, m}$, where V and U are of size n and m, respectively, and $E(G)$ connects every vertex in V with all vertices in U. Note that a graph $K_{1, m}$ is called a star graph and the vertex in the singleton partition is called the center of the graph. For some $U \subseteq V(G)$, we denote by $V(U)$, the set of all vertices of $G \backslash U$ adjacent to at least one vertex of U. For every vertex $v \in V(G)$, the size of $V(v)$ is denoted by $d(v)$. If all the vertices of G have the same degree k, then G is called k-regular, or simply regular. An independent set is a subset of the vertices of a graph, such that no vertices are adjacent. We denote by P_{n} and C_{n}, a path and a cycle of order n, respectively. Let G and G^{\prime} be two graphs. A graph homomorphism from G to G^{\prime} is a mapping $\phi: V(G) \longrightarrow V\left(G^{\prime}\right)$, such that for every edge $\{u, v\}$ of $G,\{\phi(u), \phi(v)\}$ is an edge of G^{\prime}. A retract of G is a subgraph H of G, such that there exists a homomorphism $\phi: G \longrightarrow H$ such that $\phi(x)=x$, for every vertex x of H. The homomorphism ϕ is called the retract (graph) homomorphism (see [12]).

2 Cycles in the annihilating-submodule graphs

An ideal $I \leq R$ is said to be nil if I consist of nilpotent elements.
Proposition 2.1 Suppose that e is an idempotent element of R. We have the following statements.
(a) $R=R_{1} \times R_{2}$, where $R_{1}=e R$ and $R_{2}=(1-e) R$.
(b) $M=M_{1} \times M_{2}$, where $M_{1}=e M$ and $M_{2}=(1-e) M$.
(c) For every submodule N of $M, N=N_{1} \times N_{2}$ such that N_{1} is an R_{1}-submodule M_{1}, N_{2} is an R_{2}-submodule M_{2}, and $\left(N:_{R} M\right)=\left(N_{1}:_{R_{1}} M_{1}\right) \times\left(N_{2}:_{R_{2}} M_{2}\right)$.
(d) For submodules N and K of $M, N K=N_{1} K_{1} \times N_{2} K_{2}$ such that $N=N_{1} \times N_{2}$ and $K=K_{1} \times K_{2}$.
(e) Prime submodules of M are $P \times M_{2}$ and $M_{1} \times Q$, where P and Q are prime submodules of M_{1} and M_{2}, respectively.

Proof This is clear.
We need the following lemmas.
Lemma 2.2 [5, Proposition 7.6] Let $R_{1}, R_{2}, \ldots, R_{n}$ be non-zero ideals of R. Then, the following statements are equivalent:
(a) $R=R_{1} \times \cdots \times R_{n}$;
(b) As an abelian group, R is the direct sum of R_{1}, \ldots, R_{n};
(c) There exist pairwise orthogonal idempotents e_{1}, \ldots, e_{n} with $1=e_{1}+\cdots+e_{n}$, and $R_{i}=R e_{i}, i=$ $1, \ldots, n$.
Lemma 2.3 [13, Theorem 21.28] Let I be a nil ideal in R and $u \in R$ be such that $u+I$ is an idempotent in R / I. Then, there exists an idempotent e in $u R$ such that $e-u \in I$.

Lemma 2.4 [8, Lemma 2.4] Let N be a minimal submodule of M and let $\operatorname{Ann}(M)$ be a nil ideal. Then, we have $N^{2}=(0)$ or $N=e M$ for some idempotent $e \in R$.
Proposition 2.5 Let M be a finitely generated R-module such that $R / \operatorname{Ann}(M)$ is Artinian. Then, every non-zero proper submodule N of M is a vertex in $\mathrm{AG}(M)$.
Proof Let N be a non-zero submodule of M. Therefore, there exists a maximal submodule K of M, such that $N \subseteq K$. Hence, we have $\left(0:_{M}(K: M)\right) \subseteq\left(0:_{M}(N: M)\right)$. Since $R / \operatorname{Ann}(M)$ is an Artinian ring, $(K: M)$ is a minimal prime ideal containing $\operatorname{Ann}(M)$. Thus, $(K: M) \in \operatorname{Ass}(M)$. It follows that $(K: M)=(0: m)$ for some $0 \neq m \in M$. Therefore, $N(R m)=(0)$, as desired.
Lemma 2.6 Let $M=M_{1} \times M_{2}$, where $M_{1}=e M, M_{2}=(1-e) M$, and $e(e \neq 0,1)$ is an idempotent element of R. If $\mathrm{AG}(M)$ is a triangle-free graph, then one of the following statements holds.
(a) Both M_{1} and M_{2} are prime R-modules.
(b) One M_{i} is a prime module for $i=1,2$ and the other one is a module with a unique non-trivial submodule.

Moreover, $\mathrm{AG}(M)$ has no cycle if and only if either $M=F \times S$ or $M=F \times D$, where F is a simple module, S is a module with a unique non-trivial submodule, and D is a prime module.
Proof If none of M_{1} and M_{2} is a prime module, then there exist $r \in R_{i}\left(R_{1}=R e\right.$ and $\left.R_{2}=R(1-e)\right)$, $0 \neq m_{i} \in M_{i}$ with $r_{i} m_{i}=0$, and $r_{i} \notin \operatorname{Ann}_{R_{i}}\left(M_{i}\right)$ for $i=1$, 2 . Therefore, $r_{1} M_{1} \times(0),(0) \times r_{2} M_{2}$, and $R_{1} m_{1} \times R_{2} m_{2}$ form a triangle in $\mathrm{AG}(M)$, a contradiction. Thus, without loss of generality, one can assume that M_{1} is a prime module. We prove that $\mathrm{AG}\left(M_{2}\right)$ has at most one vertex. On the contrary suppose that $\{N, K\}$ is an edge of $\mathrm{AG}\left(M_{2}\right)$. Therefore, $M_{1} \times(0),(0) \times N$, and $(0) \times K$ form a triangle, a contradiction. If AG $\left(M_{2}\right)$ has no vertex, then M_{2} is a prime module and so part (a) occurs. If $\mathrm{AG}\left(M_{2}\right)$ has exactly one vertex, then by [7, Theorem 3.6] and Proposition 2.5, we obtain part (b). Now, suppose that $A G(M)$ has no cycle. If none of M_{1} and M_{2} is a simple module, then choose non-trivial submodules N_{i} in M_{i} for some $i=1,2$. Therefore, $N_{1} \times(0),(0) \times N_{2}, M_{1} \times(0)$, and $(0) \times M_{2}$ form a cycle, a contradiction. The converse is trivial.
Theorem 2.7 If $\mathrm{AG}(M)$ is a tree, then either $\mathrm{AG}(M)$ is a star graph or $\mathrm{AG}(M) \cong P_{4}$. Moreover, $\mathrm{AG}(M) \cong P_{4}$ if and only if $M=F \times S$, where F is a simple module and S is a module with a unique non-trivial submodule.
Proof If M is a vertex of $\operatorname{AG}(M)$, then there exists only one vertex N such that $\operatorname{Ann}(M)=(N: M)$ and since $\mathrm{AG}(M)^{*}$ is an empty subgraph, $\mathrm{AG}(M)$ is a star graph. Therefore, we may assume that M is not a vertex of $\mathrm{AG}(M)$. Suppose that $\mathrm{AG}(M)$ is not a star graph. Then, $\mathrm{AG}(M)$ has at least four vertices. Obviously, there are two adjacent vertices N and K of $\mathrm{AG}(M)$, such that $|V(N) \backslash\{K\}| \geq 1$ and $|V(K) \backslash\{N\}| \geq 1$. Let $V(N) \backslash\{K\}=\left\{N_{i}\right\}_{i \in \Lambda}$ and $V(K) \backslash\{N\}=\left\{K_{j}\right\}_{j \in \Gamma}$. Since $\mathrm{AG}(M)$ is a tree, we have $V(N) \cap V(K)=\emptyset$. By [7, Theorem 3.4], diam $(\mathrm{AG}(M)) \leq 3$. So every edge of $\mathrm{AG}(M)$ is of the form $\{N, K\},\left\{N, N_{i}\right\}$ or $\left\{K, K_{j}\right\}$, for some $i \in \Lambda$ and $j \in \Gamma$. Now, consider the following claims:

Claim 1 Either $N^{2}=(0)$ or $K^{2}=(0)$. Pick $p \in \Lambda$ and $q \in \Gamma$. Since $\mathrm{AG}(M)$ is a tree, $N_{p} K_{q}$ is a vertex of $\mathrm{AG}(M)$. If $N_{p} K_{q}=N_{u}$, for some $u \in \Lambda$, then $K N_{u}=(0)$, a contradiction. If $N_{p} K_{q}=K_{v}$, for some $v \in \Gamma$,
then $N K_{v}=(0)$, a contradiction. If $N_{p} K_{q}=N$ or $N_{p} K_{q}=K$, then $N^{2}=(0)$ or $K^{2}=(0)$, respectively, and the claim is proved.
Here, without loss of generality, we suppose that $N^{2}=(0)$. Clearly, $(N: M) M \nsubseteq K$ and $(K: M) M \nsubseteq N$.
Claim 2 Our claim is to show that N is a minimal submodule of M and $K^{2} \neq(0)$. To see that, first, we show that for every $0 \neq m \in N, R m=N$. Assume that $0 \neq m \in N$ and $R m \neq N$. If $R m=K$, then $K \subseteq N$, a contradiction. Thus $R m \neq K$, and the induced subgraph of $\mathrm{AG}(M)$ on N, K, and $R m$ is K_{3}, a contradiction. Therefore, $R m=N$. This implies that N is a minimal submodule of M. Now, if $K^{2}=(0)$, then we obtain the induced subgraph on N, K, and $(N: M) M+(K: M) M$ is K_{3}, a contradiction. Thus, $K^{2} \neq(0)$, as desired.

Claim 3 For every $i \in \Lambda$ and every $j \in \Gamma, N_{i} \cap K_{j}=N$. Let $i \in \Lambda$ and $j \in \Gamma$. Since $N_{i} \cap K_{j}$ is a vertex and $N\left(N_{i} \cap K_{j}\right)=K\left(N_{i} \cap K_{j}\right)=(0)$, either $N_{i} \cap K_{j}=N$ or $N_{i} \cap K_{j}=K$. If $N_{i} \cap K_{j}=K$, then $K^{2}=(0)$, a contradiction. Hence, $N_{i} \cap K_{j}=N$ and the claim is proved.
Claim 4 We complete the claim by showing that M has exactly two minimal submodules N and K. Let L be a non-zero submodule properly contained in K. Since $N L \subseteq N K=(0)$, either $L=N$ or $L=N_{i}$ for some $i \in \Lambda$. Thus, by Claim 3, $N \subseteq L \subseteq K$, a contradiction. Hence, K is a minimal submodule of M. Suppose that L^{\prime} is another minimal submodule of M. Since N and K both are minimal submodules, we deduce that $N L^{\prime}=K L^{\prime}=(0)$, a contradiction. Therefore, the claim is proved.

Now by Claims 2 and $4, K^{2} \neq(0)$ and K is a minimal submodule of M. Then, by Lemma 2.4, $K=e M$ for some idempotent $e \in R$. Now, we have $M \cong e M \times(1-e) M$. By Lemma 2.6, we deduce that either $M=F \times S$ and $\mathrm{AG}(M) \cong P_{4}$ or $R=F \times D$ and $\mathrm{AG}(M)$ is a star graph. Conversely, we assume that $M=F \times S$. Then, $\mathrm{AG}(M)$ has exactly four vertices $(0) \times S, F \times(0),(0) \times N$, and $F \times N$. Thus, $\mathrm{AG}(M) \cong P_{4}$ with the vertices $(0) \times S, F \times(0),(0) \times N$, and $F \times N$.

Theorem 2.8 Let R be an Artinian ring and $\mathrm{AG}(M)$ is a bipartite graph. Then, either $\mathrm{AG}(M)$ is a star graph or $\mathrm{AG}(M) \cong P_{4}$. Moreover, $\mathrm{AG}(M) \cong P_{4}$ if and only if $M=F \times S$, where F is a simple module and S is a module with a unique non-trivial submodule.

Proof First, suppose that R is not a local ring. Hence, by [9, Theorem 8.9], $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is an Artinian local ring for $i=1, \ldots, n$. By Lemma 2.2 and Proposition 2.1, since $\mathrm{AG}(M)$ is a bipartite graph, we have $n=2$ and $M \cong M_{1} \times M_{2}$. If M_{1} is a prime module, then it is easy to see that M_{1} is a vector space over $R / \operatorname{Ann}\left(M_{1}\right)$ and so is a semisimple R-module. Hence, by Lemma 2.6 and Theorem 2.7, we deduce that either $\mathrm{AG}(M)$ is isomorphic to P_{2} or P_{4}. Now, we assume that R is an Artinian local ring. Let m be the unique maximal ideal of R and k be a natural number such that $m^{k} M=(0)$ and $m^{k-1} M \neq(0)$. Clearly, $m^{k-1} M$ is adjacent to every other vertex of $\mathrm{AG}(M)$ and, therefore, $\mathrm{AG}(M)$ is a star graph.

Proposition 2.9 Assume that $\operatorname{Ann}(M)$ is a nil ideal of R.
(a) If $\mathrm{AG}(M)$ is a finite bipartite graph, then either $\mathrm{AG}(M)$ is a star graph or $\mathrm{AG}(M) \cong P_{4}$.
(b) If $\mathrm{AG}(M)$ is a regular graph of finite degree, then $\mathrm{AG}(M)$ is a complete graph.

Proof (a) If M is a vertex of $\operatorname{AG}(M)$, then $\mathrm{AG}(M)$ has only one vertex N, such that $\operatorname{Ann}(M)=(N: M)$ and since $\mathrm{AG}(M)^{*}$ is an empty subgraph, $\mathrm{AG}(M)$ is a star graph. Thus, we may assume that M is not a vertex of $\mathrm{AG}(M)$, and hence, by [7, Theorem 3.3], M is not a prime module. Therefore, [7, Theorem 3.6] follows that $R / \operatorname{Ann}(M)$ is an Artinian ring. If $(R / \operatorname{Ann}(M), m / \operatorname{Ann}(M))$ is a local ring, then there exists a natural number k, such that $m^{k} M=(0)$ and $m^{k-1} M \neq(0)$. Clearly, $m^{k-1} M$ is adjacent to every other vertex of $\mathrm{AG}(M)$ and, therefore, $\mathrm{AG}(M)$ is a star graph. Otherwise, by [9, Theorem 8.9] and Lemma 2.2, there exist pairwise orthogonal idempotents modulo $\operatorname{Ann}(M)$. By Lemma 2.3, it is easy to see that $M \cong e M \times(1-e) M$, where e is an idempotent element of R and Lemma 2.6 implies that $\mathrm{AG}(M)$ is a star graph or $\mathrm{AG}(M) \cong P_{4}$.
(b) If M is a vertex of $\mathrm{AG}(M)$, since $\mathrm{AG}(M)$ is a regular graph, $\mathrm{AG}(M)$ is a complete graph. Hence, we may assume that M is not a vertex of $\mathrm{AG}(M)$. Thus, M is not a prime module, and hence, $r m=0$, such that $0 \neq m \in M, r \notin \operatorname{Ann}(M)$. It is easy to see that $(r M)\left(0:_{M} r\right)=(0)$. If the set of R-submodules of $r M$ (resp., $\left(0:_{M} r\right)$)) is infinite, then $\left(0:_{M} r\right)$ (resp., $r M$) has infinite degree, a contradiction. Thus, $r M$ and $\left(0:_{M} r\right)$ have finite length. Since $r M \cong M /\left(0:_{M} r\right), M$ has finite length, so that $R / \operatorname{Ann}(M)$ is an Artinian ring. As in the proof of part (a), $M \cong M_{1} \times M_{2}$. If M_{1} has one non-trivial submodule N, then $\operatorname{deg}\left((0) \times M_{2}\right)>\operatorname{deg}\left(N \times M_{2}\right)$ and this contradicts the regularity of $\mathrm{AG}(M)$. Hence, M_{1} is a simple module. Similarly, M_{2} is a simple module. Therefore, $\mathrm{AG}(M) \cong K_{2}$. Now, suppose that
$(R / \operatorname{Ann}(M), m / \operatorname{Ann}(M))$ is an Artinian local ring. Now, as we have seen in part (a), there exists a natural number k, such that $m^{k-1} M$ is adjacent to all other vertices and we deduce that $\operatorname{AG}(M)$ is a complete graph.

Let S be a multiplicatively closed subset of R. A non-empty subset S^{*} of M is said to be S-closed if $s e \in S^{*}$ for every $s \in S$ and $e \in S^{*}$. An S-closed subset S^{*} is said to be saturated if the following condition is satisfied: whenever $a e \in S^{*}$ for $a \in R$ and $e \in M$, then $a \in S$ and $e \in S^{*}$.

We need the following result due to Chin-Pi Lu.
Theorem 2.10 [16, Theorem 4.7] Let $M=R m$ be a cyclic module. Let S^{*} be an S-closed subset of M relative to a multiplicatively closed subset S of R, and N a submodule of M maximal in $M \backslash S^{*}$. If S^{*} is saturated, the ideal $(N: M)$ is maximal in $R \backslash S$, so that N is prime in M.

Theorem 2.11 If M is a cyclic module, $\operatorname{Ann}(M)$ is a nil ideal, and $|\operatorname{Min}(M)| \geq 3$, then $\operatorname{AG}(M)$ contains a cycle.

Proof If AG (M) is a tree, then by Theorem 2.7, either $\mathrm{AG}(M)$ is a star graph or $M \cong F \times S$, where F is a simple module and S has a unique non-trivial submodule. The latter case is impossible, because $|\operatorname{Min}(F \times S)|=2$. Suppose that $\mathrm{AG}(M)$ is a star graph and N is the center of star. Clearly, one can assume that N is a minimal submodule of M. If $N^{2} \neq(0)$, then by Lemma 2.4, there exists an idempotent $e \in R$ such that $N=e M$, so that $M \cong e M \times(1-e) M$. Now, by Proposition 2.1 and Lemma 2.6, we conclude that $|\operatorname{Min}(M)|=2$, a contradiction. Hence, $N^{2}=0$. Thus, one may assume that $N=R m$ and $(R m)^{2}=(0)$. Suppose that P_{1} and P_{2} are two distinct minimal prime submodules of M. Since $(R m)^{2}=(0)$, we have $(R m: M)^{2} \subseteq \operatorname{Ann}(M) \subseteq\left(P_{i}: M\right)$, $i=1$, 2. So $(R m: M) M=R m \subseteq P_{i}, i=1,2$. Hence, $m \in P_{i}, i=1,2$. Choose $z \in\left(P_{1}: M\right) \backslash\left(P_{2}: M\right)$ and set $S_{1}=\left\{1, z, z^{2}, \ldots\right\}, S_{2}=M \backslash P_{1}$, and $S^{*}=S_{1} S_{2}$. If $0 \notin S^{*}$, then $\Sigma=\left\{N<M \mid N \cap S^{*}=\emptyset\right\}$ is not empty. Then, Σ has a maximal element, say N. Hence, by Theorem $2.10, N$ is a prime submodule of M. Since $N \subseteq P_{1}$, we have $N=P_{1}$, a contradiction because $z \notin(N: M)$. So $0 \in S^{*}$. Therefore, there exists positive integer k and $m^{\prime} \in S_{2}$, such that $z^{k} m^{\prime}=0$. Now, consider the submodules $(m),\left(m^{\prime}\right)$, and $z^{k} M$. It is clear that $(m) \neq\left(m^{\prime}\right)$ and $(m) \neq z^{k} M$. If $(m)=z^{k} M$, then $z \in\left(P_{2}: M\right)$, a contradiction. Thus $(m),\left(m^{\prime}\right)$, and $z^{k} M$ form a triangle in $\mathrm{AG}(M)$, a contradiction. Hence, $\mathrm{AG}(M)$ contains a cycle.

Theorem 2.12 Suppose that M is a cyclic module, $\operatorname{rad}_{M}(0) \neq(0)$, and $\operatorname{Ann}(M)$ is a nil ideal. $I f|\operatorname{Min}(M)|=2$, then either $\mathrm{AG}(M)$ contains a cycle or $\mathrm{AG}(M) \cong P_{4}$.

Proof A similar argument to the proof of Theorem 2.11 shows that either $\mathrm{AG}(M)$ contains a cycle or $M \cong$ $F \times S$, where F is a simple module and S is a module with a unique non-trivial submodule. The latter case implies that $\mathrm{AG}(M) \cong P_{4}$ (note that $\operatorname{rad}_{F \times D}(0)=(0)$, where F is a simple module and D is a prime module).

The radical of I, defined as the intersection of all prime ideals containing I, is denoted by \sqrt{I}. Before stating the next theorem, we recall that if M is a finitely generated module, then $\sqrt{(Q: M)}=(\operatorname{rad}(Q): M)$, where $Q<M$ (see [18, Theorem 4.4]). In addition, we know that if M is a finitely generated module, then for every prime ideal p of R with $p \supseteq \operatorname{Ann}(M)$, there exists a prime submodule P of M, such that $(P: M)=p$ (see [15, Theorem 2]).

Theorem 2.13 Assume that M is a finitely generated module, $\operatorname{Ann}(M)$ is a nil ideal, and $|\operatorname{Min}(M)|=1$. If $\mathrm{AG}(M)$ is a triangle-free graph, then $\mathrm{AG}(M)$ is a star graph.

Proof Suppose first that P is the unique minimal prime submodule of M. Since M is not a vertex of $\mathrm{AG}(M)$, $Z(M) \neq(0)$. Therefore, there exist non-zero elements $r \in R$ and $m \in M$, such that $r m=0$. It is easy to see that $r M$ and $R m$ are vertices of $\mathrm{AG}(M)$, because $(r M)(R m)=(0)$. Since $\mathrm{AG}(M)$ is triangle-free, $R m$ or $r M$ is a minimal submodule of M. Without loss of generality, we can assume that $R m$ is a minimal submodule of M, so that $(R m)^{2}=(0)\left(\right.$ if $r M$ is a minimal submodule of M, then there exists $0 \neq m^{\prime} \in M$ such that $\left.r M=R m^{\prime}\right)$. We claim that $R m$ is the unique minimal submodule of M. On the contrary, suppose that K is another minimal submodule of M. So either $K^{2}=K$ or $K^{2}=(0)$. If $K^{2}=K$, then by Lemma $2.4, K=e M$ for some idempotent element $e \in R$ and hence, $M \cong e M \times(1-e) M$. This implies that $|\operatorname{Min}(M)|>1$, a contradiction. If $K^{2}=(0)$, then we have $C_{3}=K-(K: M) M+(R m: M) M-R m-K$, a contradiction. Therefore, $R m$ is the unique minimal submodule of M. Let $V_{1}=V(R m), V_{2}=V(\mathrm{AG}(M)) \backslash V_{1}, A=\left\{K \in V_{1} \mid R m \subseteq K\right\}$, $B=V_{1} \backslash A$, and $C=V_{2} \backslash\{R m\}$. We prove that $\mathrm{AG}(M)$ is a bipartite graph with parts V_{1} and V_{2}. We may assume

that V_{1} is an independent set because $\mathrm{AG}(M)$ is triangle-free. We claim that one end of every edge of $\mathrm{AG}(M)$ is adjacent to $R m$ and another end contains $R m$. To prove this, suppose that $\{N, K\}$ is an edge of $A G(M)$ and $R m \neq N, R m \neq K$. Since $N(R m) \subseteq R m$, by the minimality of $R m$, either $N(R m)=(0)$ or $R m \subseteq N$. The latter case follows that $K(R m)=(0)$. If $N(R m)=(0)$, then $K(R m) \neq(0)$ and hence $R m \subseteq K$. So, our plain is proved. This gives that V_{2} is an independent set and $V(C) \subseteq V_{1}$. Since every vertex of A contains $R m$ and $\mathrm{AG}(M)$ is triangle-free, all vertices in A are just adjacent to $R m$ and so by [7, Theorem 3.4], $V(C) \subseteq B$. Since one end of every edge is adjacent to $R m$ and another end contains $R m$, we also deduce that every vertex of C contains $R m$ and so every vertex of $A \cup V_{2}$ contains $R m$. Note that if $R m=P$, then one end of each edge of $\mathrm{AG}(M)$ is contained in $R m$, and since $R m$ is a minimal submodule of $M, \mathrm{AG}(M)$ is a star graph with center $R m=P$. Now, suppose that $P \neq R m$. We claim that $P \in A$. Since $R m \subseteq P$, it suffices to show that $(R m) P=(0)$. To see this, let $r \in(P: M)$. We prove that $r m=0$. Clearly, $(R r m) \subseteq R m$. If $r m=0$, then we are done. Thus $R r m=R m$ and so $m=r s m$ for some $s \in R$. We have $m(1-r s)=0$. By [15, Theorem 2], we have $\operatorname{Nil}(R)=(P: M)($ note that $\sqrt{\operatorname{Ann}(M)}=(\operatorname{rad}(0): M)=(P: M))$. Therefore, $1-r s$ is unit, a contradiction, as required. Since $N(C) \subseteq B$, if $B=\emptyset$, then $C=\emptyset$ and, therefore, $\mathrm{AG}(M)$ is a star graph with center $R m$. It remains to show that $B=\emptyset$. Suppose that $K \in B$ and consider the vertex $K \cap P$ of $\mathrm{AG}(M)$. Since every vertex of $A \cup V_{2}$ contains $R m$, yields $K \cap P \in B$. Pick $0 \neq m^{\prime} \in K \cap P$. Since $\mathrm{AG}(M)$ is triangle-free, one can find an element $m^{\prime \prime} \in R m^{\prime}$ such that $R m^{\prime \prime}$ is a minimal submodule of M and $\left(R m^{\prime \prime}\right)^{2}=(0)$. Since $R m$ is the unique minimal submodule of M, we have $R m=R m^{\prime \prime} \subseteq R m^{\prime}$. Thus $R m \subseteq K \cap P$, a contradiction. So $B=\emptyset$ and we are done. Hence, $A G(M)$ is a star graph whose center is $R m$, as desired.

Corollary 2.14 Assume that M is a finitely generated module, $\operatorname{Ann}(M)$ is a nil ideal, and $|\operatorname{Min}(M)|=1$. If $\mathrm{AG}(M)$ is a bipartite graph, then $\mathrm{AG}(M)$ is a star graph.

3 On the coloring of the annihilating-submodule graphs

We recall that $N<M$ is said to be a semiprime submodule of M if for every ideal I of R and every submodule K of $M, I^{2} K \subseteq N$ implies that $I K \subseteq N$. Furthermore, M is called a semiprime module if (0) $\subseteq M$ is a semiprime submodule. Every intersection of prime submodules is a semiprime submodule (see [20]).

Theorem 3.1 Let S be a multiplicatively closed subset of R containing no zero-divisors on finitely generated module M. Then, $\operatorname{cl}\left(\mathrm{AG}\left(M_{S}\right)\right) \leq \operatorname{cl}(\mathrm{AG}(M))$. Moreover, $\mathrm{AG}\left(M_{S}\right)$ is a retract of $\mathrm{AG}(M)$ if M is a semiprime module. In particular, $\operatorname{cl}\left(\mathrm{AG}\left(M_{S}\right)\right)=\operatorname{cl}(\mathrm{AG}(M))$, whenever M is a semiprime module.

Proof Consider a vertex map $\phi: V(\mathrm{AG}(M)) \longrightarrow V\left(\mathrm{AG}\left(M_{S}\right)\right), N \longrightarrow N_{S}$. Clearly, $N_{S} \neq K_{S}$ implies $N \neq$ K and $N K=(0)$ if and only if $N_{S} K_{S}=(0)$. Thus, ϕ is surjective, and hence, $\operatorname{cl}\left(\operatorname{AG}\left(M_{S}\right)\right) \leq c l(\operatorname{AG}(M))$. In what follows, we assume that M a semiprime module. If $N \neq K$ and $N K=(0)$, then we show that $N_{S} \neq K_{S}$. Without loss of generality, we can assume that M is not a vertex of $\mathrm{AG}(M)$, and On the contrary, suppose that $N_{S}=K_{S}$. Then, $N_{S}^{2}=N_{S} K_{S}=(N K)_{S}=(0)$ and so $N^{2}=(0)$, a contradiction. This shows that the map ϕ is a graph homomorphism. Now, for any vertex N_{S} of $\mathrm{AG}\left(M_{S}\right)$, we can choice the fixed vertex N of $\mathrm{AG}(M)$. Then, ϕ is a retract (graph) homomorphism which clearly implies that $\operatorname{cl}\left(\mathrm{AG}\left(M_{S}\right)\right)=\operatorname{cl}(\mathrm{AG}(M))$ under the assumption.
Corollary 3.2 If M is a finitely generated semiprime module, then $\operatorname{cl}(\mathrm{AG}(T(M))=\operatorname{cl}(\mathrm{AG}(M))$, where $T=R \backslash Z(M)$.

Since the chromatic number $\chi(G)$ of a graph G is the least positive integer r, such that there exists a retract homomorphism $\psi: G \longrightarrow K_{r}$, the following corollaries follow directly from the proof of Theorem 3.1.

Corollary 3.3 Let S be a multiplicatively closed subset of R containing no zero-divisors on finitely generated module M. Then, $\chi\left(\operatorname{AG}\left(M_{S}\right)\right) \leq \chi(\mathrm{AG}(M))$. Moreover, if M is a semiprime module, then $\chi\left(\operatorname{AG}\left(M_{S}\right)\right)=$ $\chi(\mathrm{AG}(M))$.
Corollary 3.4 If M is a finitely generated semiprime module, then $\chi(\mathrm{AG}(T(M))=\chi(\mathrm{AG}(M))$, where $T=R \backslash Z(M)$.

Eben Matlis in [17, Proposition 1.5] proved that if $\left\{p_{1}, \ldots, p_{n}\right\}$ is a finite set of distinct minimal prime ideals of R and $S=R \backslash \cup_{i=1}^{n} p_{i}$, then $R_{p_{1}} \times \cdots \times R_{p_{n}} \cong R_{S}$. In [19], this result was generalized to finitely generated multiplication modules. In Theorem 3.6, we use this generalization for a cyclic module.

Theorem 3.5 [19, Theorem 3.11] Let $\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite set of distinct minimal prime submodules of finitely generated multiplication module M and $S=R \backslash \cup_{i=1}^{n}\left(P_{i}: M\right)$. Then, $M_{p_{1}} \times \cdots \times M_{p_{n}} \cong M_{S}$, where $p_{i}=\left(P_{i}: M\right)$ for $1 \leq i \leq n$.
Theorem 3.6 Let M be a cyclic module and $\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite set of distinct minimal prime submodules of M. Then, there exists a clique of size n.

Proof Let M be a cyclic module and $S=R \backslash \cup_{i=1}^{n} p_{i}$, where $p_{i}=\left(P_{i}: M\right)$ for $1 \leq i \leq n$. Then, since M is a multiplication module, by Theorem 3.5, there exists an isomorphism $\phi: M_{p_{1}} \times \cdots \times M_{p_{n}} \longrightarrow M_{S}$. Let $M=R m, e_{i}=(0, \ldots, 0, m / 1, \ldots, 0, \ldots, 0)$ and $\phi\left(e_{i}\right)=n_{i} / t_{i}$, where $m \in M, 1 \leq i \leq n$, and $m / 1$ is in the i th position of e_{i}. Consider the principal submodules $N_{i}=\left(n_{i} / t_{i}\right)=\left(n_{i} / 1\right)$ in the module M_{S}. By Lemma 2.2 and Proposition 2.1, the product of submodules $(0) \times \cdots \times(0) \times(m / 1) R_{p_{i}} \times(0) \times \cdots \times(0)$ and $(0) \times \cdots \times(0) \times(m / 1) R_{p_{j}} \times(0) \times \cdots \times(0)$ are zero, $i \neq j$. Since ϕ is an isomorphism, there exists $t_{i j} \in S$, such that $t_{i j} r_{i} n_{j}=0$, for every $i, j, 1 \leq i<j \leq n$, where $n_{i}=r_{i} m$ for some $r_{i} \in R$. Let $t=\Pi_{1 \leq i<j \leq n} t_{i j}$. We show that $\left\{\left(\operatorname{tn}_{1}\right), \ldots,\left(\operatorname{tn}_{n}\right)\right\}$ is a clique of size n in $\mathrm{AG}(M)$. For every $i, j, 1 \leq i<j \leq n$, $\left(R_{t n_{i}}\right)\left(R_{t n_{j}}\right)=\left(\right.$ Rtn $\left._{j}: M\right) R t n_{i}=\left(R_{t n_{j}}: M\right) t r_{i} M=t r_{i} R t n_{j}=(0)$. Since $\left(t n_{i}\right)_{S}=\left(n_{i} / 1\right)=N_{i}$, we deduce that $\left(t n_{i}\right)$ are distinct non-trivial submodules of M.

Corollary 3.7 For every cyclic module $M, \operatorname{cl}(\mathrm{AG}(M)) \geq|\operatorname{Min}(M)|$ and $\operatorname{fi}|\operatorname{Min}(M)| \geq 3$, then $\operatorname{gr}(\mathrm{AG}(M))=$ 3.

Theorem 3.8 Let M be a cyclic module and $\operatorname{rad}_{M}(0)=(0)$. Then, $\chi(\operatorname{AG}(M))=\operatorname{cl}(\mathrm{AG}(M))=|\operatorname{Min}(M)|$.
Proof If $|\operatorname{Min}(M)|=\infty$, then by Corollary 3.7, there is nothing to prove. Thus, suppose that $|\operatorname{Min}(M)|=$ $\left\{P_{1}, \ldots, P_{n}\right\}$, for some positive integer n. Let $p_{i}=\left(P_{i}: M\right)$ and $S=R \backslash \cup_{i=1}^{n} p_{i}$. By Theorem 3.5, we have $M_{p_{1}} \times \cdots \times M_{p_{n}} \cong M_{S}$. Clearly, $c l\left(\operatorname{AG}\left(M_{S}\right)\right) \geq n$. Now, we show that $\chi\left(\mathrm{AG}\left(M_{S}\right)\right) \leq n$. By [15, Corollary 3], $P_{i} R_{p_{i}}$ is the only prime submodule of M and since $\operatorname{rad}_{M}(0)=(0)$, every $M_{p_{i}}$ is a simple $R_{p_{i}}$-module. Define the map $C: V\left(\mathrm{AG}\left(M_{S}\right)\right) \longrightarrow\{1,2, \ldots, n\}$ by $C\left(N_{1} \times \cdots \times N_{n}\right)=\min \left\{i \mid N_{i} \neq(0)\right\}$. Since each $M_{p_{i}}$ is a simple module, C is a proper vertex coloring of $\operatorname{AG}\left(M_{S}\right)$. Thus $\chi\left(\operatorname{AG}\left(M_{S}\right)\right) \leq n$ and so $\chi\left(\mathrm{AG}\left(M_{S}\right)\right)=\operatorname{cl}\left(\mathrm{AG}\left(M_{S}\right)\right)=n$. Since $\operatorname{rad}_{M}(0)=(0)$, it is easy to see that $S \cap Z(M)=\emptyset$. Now, by Theorem 3.1 and Corollary 3.3, we obtain the desired.

Theorem 3.9 For every module $M, \operatorname{cl}(\mathrm{AG}(M))=2$ if and only if $\chi(\mathrm{AG}(M))=2$. In particular, $\mathrm{AG}(M)$ is bipartite if and only if $\mathrm{AG}(M)$ is triangle-free.

Proof For the first assertion, we use the same technique in [3, Theorem 13]. Let $\operatorname{cl}(\mathrm{AG}(M))=2$. On the contrary assume that $\mathrm{AG}(M)$ is not bipartite. Therefore, $\mathrm{AG}(M)$ contains an odd cycle. Suppose that $C:=$ $N_{1}-N_{2}-\cdots-N_{2 k+1}-N_{1}$ be a shortest odd cycle in $\operatorname{AG}(M)$ for some natural number k. Clearly, $k \geq 2$. Since C is a shortest odd cycle in $\mathrm{AG}(M), N_{3} N_{2 k+1}$ is a vertex. Now, consider the vertices N_{1}, N_{2}, and $N_{3} N_{2 k+1}$. If $N_{1}=N_{3} N_{2 k+1}$, then $N_{4} N_{1}=(0)$. This implies that $N_{1}-N_{4}-\cdots-N_{2 k+1}-N_{1}$ is an odd cycle, a contradiction. Thus, $N_{1} \neq N_{3} N_{2 k+1}$. If $N_{2}=N_{3} N_{2 k+1}$, then we have $C_{3}=N_{2}-N_{3}-N_{4}-N_{2}$, again a contradiction. Hence, $N_{2} \neq N_{3} N_{2 k+1}$. It is easy to check N_{1}, N_{2}, and $N_{3} N_{2 k+1}$ form a triangle in $\operatorname{AG}(M)$, a contradiction. The converse is clear. In particular, we note that empty graphs and the isolated vertex graphs are bipartite graphs.

Acknowledgments We would like to thank the referee for valuable comments and the careful reading of our manuscript.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aalipour, G.; Akbari, S.; Nikandish, R.; Nikmehr, M.J.; Shaveisi, F.: On the coloring of the annihilating-ideal graph of a commutative ring. Discret. Math. 312, 2620-2626 (2012)
2. Aalipour, G.; Akbari, S.; Nikandish, R.; Nikmehr, M.J.; Shaveisi, F.: Minimal prime ideals and cycles in annihilating-ideal graphs. Rocky Mt. J. Math. 43(5), 1415-1425 (2013)
3. Aalipour, G.; Akbari, S.; Behboodi, M.; Nikandish, R.; Nikmehr M.J.; Shaveisi, F.: The classification of the annihilating-ideal graphs of commutative rings. Algebra Colloq. 21(2), 249-256 (2014)
4. Anderson, D.F.; Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434-447 (1999)
5. Anderson, W.; Fuller, K.R.: Rings and Categories of Modules. Springer, New York (1974)
6. Ansari-Toroghy, H.; Farshadifar, F.: Product and dual product of submodules. Far East J. Math. Sci. 25(3), 447-455 (2007)
7. Ansari-Toroghy, H.; Habibi, S.: The Zariski topology-graph of modules over commutative rings. Commun. Algebra 42, 3283-3296 (2014)
8. Ansari-Toroghy, H.; Habibi, S.: The annihilating-submodule graph of modules over commutative rings. arXiv:1601.00916v1 (submitted)
9. Atiyah, M.F.; Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Boston (1969)
10. Beck, I.: Coloring of commutative rings. J. Algebra 116, 208-226 (1988)
11. Behboodi, M.; Rakeei, Z.: The annihilating-ideal graph of commutative rings I. J. Algebra Appl. 10(4), 727-739 (2011)
12. Diestel, R.: Graph Theory, Graduate Texts in Mathematics. Springer, New Jersey (2005)
13. Lam, T.Y.: A First Course in Non-Commutative Rings. Springer, New York (1991)
14. Lu, C.-P.: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33(1), 61-69 (1984)
15. Lu, C.-P.: Spectra of modules. Commun. Algebra 23 (10), 3741-3752 (1995)
16. Lu, C.-P.: Unions of prime submodules. Houst. J. Math. 23(2), 203-213 (1997)
17. Matlis, E.: The minimal prime spectrum of a reduced ring. Ill. J. Math. 27(3), 353-391 (1983)
18. McCasland, R.L.; Moor, M.E.: Prime submodules. Commun. Algebra 20(6), 1803-1817 (1992)
19. Samei, K.: Reduced multiplication modules. Math. Sci. 121(2), 121-132 (2011)
20. Tavallaee, H.A.; Varmazyar, R.: Semi-radicals of submodules in modules. IUST Int. J. Eng. Sci. 19, 21-27 (2008)

[^0]: H. Ansari-Toroghy (\boxtimes) • S. Habibi

 Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran
 E-mail: ansari@guilan.ac.ir
 S. Habibi

 E-mail: sh.habibi@phd.guilan.ac.ir

