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Abstract Let M be a module over a commutative ring R. The annihilating-submodule graph of M , denoted
by AG(M), is a simple graph in which a non-zero submodule N of M is a vertex if and only if there exists a
non-zero proper submodule K of M such that NK = (0), where NK , the product of N and K , is denoted by
(N : M)(K : M)M and two distinct vertices N and K are adjacent if and only if NK = (0). This graph is a
submodule version of the annihilating-ideal graph. We prove that if AG(M) is a tree, then either AG(M) is a
star graph or a path of order 4 and in the latter case M ∼= F × S, where F is a simple module and S is a module
with a unique non-trivial submodule. Moreover, we prove that if M is a cyclic module with at least three
minimal prime submodules, then gr(AG(M)) = 3 and for every cyclic module M , cl(AG(M)) ≥ |Min(M)|.
Mathematics Subject Classification 05C75 · 13C13

1 Introduction

Throughout this paper, R is a commutative ring with a non-zero identity and M is a unital R-module. By
N ≤ M (resp., N < M) we mean that N is a submodule (resp., proper submodule) of M .

Define (N :R M) or simply (N : M) = {r ∈ R| rM ⊆ N } for any N ≤ M . We denote ((0) : M) by
AnnR(M) or simply Ann(M). M is said to be faithful if Ann(M) = (0).

Let N , K ≤ M . Then, the product of N and K , denoted by NK , is defined by (N : M)(K : M)M (see
[6]).

There are many papers on assigning graphs to rings or modules (see, for example, [4,7,10,11]). The
annihilating-ideal graph AG(R) was introduced and studied in [11]. AG(R) is a graph whose vertices are
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ideals of R with non-zero annihilators and in which two vertices I and J are adjacent if and only if I J = (0).
Later, it was modified and further studied by many authors (see [1–3]).

In [7,8], we generalized the above idea to submodules of M and defined the (undirected) graph AG(M),
called the annihilating-submodule graph, with vertices V (AG(M)) = {N ≤ M| there exists (0) �= K < M
with NK = (0)}. In this graph, distinct vertices N , L ∈ V (AG(M)) are adjacent if and only if NL = (0). Let
AG(M)∗ be the subgraph of AG(M) with vertices V (AG(M)∗) = {N < M with (N : M) �= Ann(M)| there
exists a submodule K < M with (K : M) �= Ann(M) and NK = (0)}. Note that M is a vertex of AG(M) if
and only if there exists a non-zero proper submodule N of M with (N : M) = Ann(M) if and only if every
non-zero submodule of M is a vertex of AG(M).

In this work, we continue our study in [7,8] and we generalize some results related to annihilating-ideal
graph obtained in [1–3] for annihilating-submodule graph.

A prime submodule of M is a submodule P �= M , such that whenever re ∈ P for some r ∈ R and e ∈ M ,
we have r ∈ (P : M) or e ∈ P [14].

The prime radical radM (N ) or simply rad(N ) is defined to be the intersection of all prime submodules of
M containing N , and in case N is not contained in any prime submodule, radM (N ) is defined to be M [14].

The notations Z(R), Nil(R), and Min(M) will denote the set of all zero-divisors, the set of all nilpotent
elements of R, and the set of all minimal prime submodules of M , respectively. In addition, ZR(M) or simply
Z(M), the set of zero divisors on M , is the set {r ∈ R| rm = 0 for some 0 �= m ∈ M}.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G, denoted by
cl(G), is called the clique number of G. Let χ(G) denote the chromatic number of the graph G, that is, the
minimal number of colors needed to color the vertices of G, so that no two adjacent vertices have the same
color. Obviously χ(G) ≥ cl(G).

In Sect. 2, we prove that if AG(M) is a tree, then either AG(M) is a star graph or is the path P4 and in this
case, M ∼= F × S, where F is a simple module and S is a module with a unique non-trivial submodule (see
Theorem 2.7). Next, we study the bipartite annihilating-submodule graphs of modules over Artinian rings (see
Theorem 2.8). In Sect. 3, we study coloring of the annihilating-submodule graph and investigate the interplay
between χ(AG(M)), cl(AG(M)), and Min(M) (see Theorems 3.5 and 3.8). In Corollary 3.7, we prove that
if M is a cyclic module with at least three minimal prime submodules, then gr(AG(M)) = 3 and for every
cyclic module M , cl(AG(M)) ≥ |Min(M)|.

Let us introduce some graphical notions and denotations that are used in what follows: a graph G is an
ordered triple (V (G), E(G), ψG) consisting of a non-empty set of vertices, V (G), a set E(G) of edges, and
an incident function ψG that associates an unordered pair of distinct vertices with each edge. The edge e joins
x and y if ψG(e) = {x, y}, and we say x and y are adjacent. A path in graph G is a finite sequence of vertices
{x0, x1, . . . , xn}, where xi−1 and xi are adjacent for each 1 ≤ i ≤ n and we denote xi−1 − xi for existing an
edge between xi−1 and xi .

A graph H is a subgraph ofG, if V (H) ⊆ V (G), E(H) ⊆ E(G), andψH is the restriction ofψG to E(H).
A bipartite graph is a graph whose vertices can be divided into two disjoint setsU and V , such that every edge
connects a vertex inU to one in V ; that is,U and V are each independent sets and complete bipartite graph on
n andm vertices, denoted by Kn,m , where V andU are of size n andm, respectively, and E(G) connects every
vertex in V with all vertices in U . Note that a graph K1,m is called a star graph and the vertex in the singleton
partition is called the center of the graph. For some U ⊆ V (G), we denote by V (U ), the set of all vertices of
G\U adjacent to at least one vertex of U . For every vertex v ∈ V (G), the size of V (v) is denoted by d(v).
If all the vertices of G have the same degree k, then G is called k-regular, or simply regular. An independent
set is a subset of the vertices of a graph, such that no vertices are adjacent. We denote by Pn and Cn , a path
and a cycle of order n, respectively. Let G and G ′ be two graphs. A graph homomorphism from G to G ′ is a
mapping φ : V (G) −→ V (G ′), such that for every edge {u, v} of G, {φ(u), φ(v)} is an edge of G ′. A retract
of G is a subgraph H of G, such that there exists a homomorphism φ : G −→ H such that φ(x) = x , for
every vertex x of H . The homomorphism φ is called the retract (graph) homomorphism (see [12]).

2 Cycles in the annihilating-submodule graphs

An ideal I ≤ R is said to be nil if I consist of nilpotent elements.

Proposition 2.1 Suppose that e is an idempotent element of R. We have the following statements.

(a) R = R1 × R2, where R1 = eR and R2 = (1 − e)R.
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(b) M = M1 × M2, where M1 = eM and M2 = (1 − e)M.
(c) For every submodule N of M, N = N1×N2 such that N1 is an R1-submodule M1, N2 is an R2-submodule

M2, and (N :R M) = (N1 :R1 M1) × (N2 :R2 M2).
(d) For submodules N and K of M, NK = N1K1 × N2K2 such that N = N1 × N2 and K = K1 × K2.
(e) Prime submodules of M are P × M2 and M1 × Q, where P and Q are prime submodules of M1 and M2,

respectively.

Proof This is clear. ��
We need the following lemmas.

Lemma 2.2 [5, Proposition 7.6] Let R1, R2, . . . , Rn be non-zero ideals of R. Then, the following statements
are equivalent:

(a) R = R1 × · · · × Rn;
(b) As an abelian group, R is the direct sum of R1, . . . , Rn;
(c) There exist pairwise orthogonal idempotents e1, . . . , en with 1 = e1 + · · · + en, and Ri = Rei , i =

1, . . . , n.

Lemma 2.3 [13, Theorem 21.28] Let I be a nil ideal in R and u ∈ R be such that u + I is an idempotent in
R/I . Then, there exists an idempotent e in uR such that e − u ∈ I .

Lemma 2.4 [8, Lemma 2.4] Let N be a minimal submodule of M and let Ann(M) be a nil ideal. Then, we
have N 2 = (0) or N = eM for some idempotent e ∈ R.

Proposition 2.5 LetMbe a finitely generated R-module such that R/Ann(M) is Artinian. Then, every non-zero
proper submodule N of M is a vertex in AG(M).

Proof Let N be a non-zero submodule of M . Therefore, there exists a maximal submodule K of M , such that
N ⊆ K . Hence, we have (0 :M (K : M)) ⊆ (0 :M (N : M)). Since R/Ann(M) is an Artinian ring, (K : M)
is a minimal prime ideal containing Ann(M). Thus, (K : M) ∈ Ass(M). It follows that (K : M) = (0 : m)
for some 0 �= m ∈ M . Therefore, N (Rm) = (0), as desired. ��
Lemma 2.6 Let M = M1 × M2, where M1 = eM, M2 = (1 − e)M, and e (e �= 0, 1) is an idempotent
element of R. If AG(M) is a triangle-free graph, then one of the following statements holds.

(a) Both M1 and M2 are prime R-modules.
(b) One Mi is a prime module for i = 1, 2 and the other one is a module with a unique non-trivial submodule.

Moreover, AG(M) has no cycle if and only if either M = F × S or M = F × D, where F is a simple module,
S is a module with a unique non-trivial submodule, and D is a prime module.

Proof If none of M1 and M2 is a prime module, then there exist r ∈ Ri (R1 = Re and R2 = R(1 − e)),
0 �= mi ∈ Mi with rimi = 0, and ri /∈ AnnRi (Mi ) for i = 1, 2. Therefore, r1M1 × (0), (0) × r2M2, and
R1m1× R2m2 form a triangle in AG(M), a contradiction. Thus, without loss of generality, one can assume that
M1 is a prime module. We prove that AG(M2) has at most one vertex. On the contrary suppose that {N , K } is
an edge of AG(M2). Therefore, M1 × (0), (0) × N , and (0) × K form a triangle, a contradiction. If AG(M2)
has no vertex, then M2 is a prime module and so part (a) occurs. If AG(M2) has exactly one vertex, then by
[7, Theorem 3.6] and Proposition 2.5, we obtain part (b). Now, suppose that AG(M) has no cycle. If none of
M1 and M2 is a simple module, then choose non-trivial submodules Ni in Mi for some i = 1, 2. Therefore,
N1 × (0), (0) × N2, M1 × (0), and (0) × M2 form a cycle, a contradiction. The converse is trivial. ��
Theorem 2.7 IfAG(M) is a tree, then eitherAG(M) is a star graph orAG(M) ∼= P4.Moreover,AG(M) ∼= P4
if and only if M = F × S, where F is a simple module and S is a module with a unique non-trivial submodule.

Proof If M is a vertex of AG(M), then there exists only one vertex N such that Ann(M) = (N : M) and
since AG(M)∗ is an empty subgraph, AG(M) is a star graph. Therefore, we may assume that M is not a
vertex of AG(M). Suppose that AG(M) is not a star graph. Then, AG(M) has at least four vertices. Obviously,
there are two adjacent vertices N and K of AG(M), such that |V (N )\{K }| ≥ 1 and |V (K )\{N }| ≥ 1. Let
V (N )\{K } = {Ni }i∈� and V (K )\{N } = {K j } j∈� . Since AG(M) is a tree, we have V (N ) ∩ V (K ) = ∅. By
[7, Theorem 3.4], diam(AG(M)) ≤ 3. So every edge of AG(M) is of the form {N , K }, {N , Ni } or {K , K j },
for some i ∈ � and j ∈ �. Now, consider the following claims:

Claim 1 Either N 2 = (0) or K 2 = (0). Pick p ∈ � and q ∈ �. Since AG(M) is a tree, NpKq is a vertex of
AG(M). If NpKq = Nu , for some u ∈ �, then K Nu = (0), a contradiction. If NpKq = Kv , for some v ∈ �,
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then NKv = (0), a contradiction. If NpKq = N or NpKq = K , then N 2 = (0) or K 2 = (0), respectively,
and the claim is proved.
Here, without loss of generality, we suppose that N 2 = (0). Clearly, (N : M)M � K and (K : M)M � N .

Claim 2 Our claim is to show that N is a minimal submodule of M and K 2 �= (0). To see that, first, we show
that for every 0 �= m ∈ N , Rm = N . Assume that 0 �= m ∈ N and Rm �= N . If Rm = K , then K ⊆ N , a
contradiction. Thus Rm �= K , and the induced subgraph of AG(M) on N , K , and Rm is K3, a contradiction.
Therefore, Rm = N . This implies that N is a minimal submodule of M . Now, if K 2 = (0), then we obtain the
induced subgraph on N , K , and (N : M)M + (K : M)M is K3, a contradiction. Thus, K 2 �= (0), as desired.

Claim 3 For every i ∈ � and every j ∈ �, Ni ∩ K j = N . Let i ∈ � and j ∈ �. Since Ni ∩ K j is a vertex and
N (Ni ∩ K j ) = K (Ni ∩ K j ) = (0), either Ni ∩ K j = N or Ni ∩ K j = K . If Ni ∩ K j = K , then K 2 = (0), a
contradiction. Hence, Ni ∩ K j = N and the claim is proved.

Claim 4 We complete the claim by showing that M has exactly two minimal submodules N and K . Let L be
a non-zero submodule properly contained in K . Since NL ⊆ NK = (0), either L = N or L = Ni for some
i ∈ �. Thus, by Claim 3, N ⊆ L ⊆ K , a contradiction. Hence, K is a minimal submodule of M . Suppose
that L ′ is another minimal submodule of M . Since N and K both are minimal submodules, we deduce that
NL ′ = K L ′ = (0), a contradiction. Therefore, the claim is proved.

Now by Claims 2 and 4, K 2 �= (0) and K is a minimal submodule of M . Then, by Lemma 2.4, K = eM for
some idempotent e ∈ R. Now, we haveM ∼= eM×(1−e)M . By Lemma 2.6, we deduce that eitherM = F×S
and AG(M) ∼= P4 or R = F × D and AG(M) is a star graph. Conversely, we assume that M = F × S. Then,
AG(M) has exactly four vertices (0)× S, F × (0), (0)× N , and F × N . Thus, AG(M) ∼= P4 with the vertices
(0) × S, F × (0), (0) × N , and F × N . ��
Theorem 2.8 Let R be an Artinian ring and AG(M) is a bipartite graph. Then, either AG(M) is a star graph
or AG(M) ∼= P4. Moreover, AG(M) ∼= P4 if and only if M = F × S, where F is a simple module and S is a
module with a unique non-trivial submodule.

Proof First, suppose that R is not a local ring. Hence, by [9, Theorem 8.9], R = R1 × · · · × Rn , where Ri is
an Artinian local ring for i = 1, . . . , n. By Lemma 2.2 and Proposition 2.1, since AG(M) is a bipartite graph,
we have n = 2 and M ∼= M1 × M2. If M1 is a prime module, then it is easy to see that M1 is a vector space
over R/Ann(M1) and so is a semisimple R-module. Hence, by Lemma 2.6 and Theorem 2.7, we deduce that
either AG(M) is isomorphic to P2 or P4. Now, we assume that R is an Artinian local ring. Letm be the unique
maximal ideal of R and k be a natural number such that mkM = (0) and mk−1M �= (0). Clearly, mk−1M is
adjacent to every other vertex of AG(M) and, therefore, AG(M) is a star graph. ��
Proposition 2.9 Assume that Ann(M) is a nil ideal of R.

(a) If AG(M) is a finite bipartite graph, then either AG(M) is a star graph or AG(M) ∼= P4.
(b) If AG(M) is a regular graph of finite degree, then AG(M) is a complete graph.

Proof (a) If M is a vertex of AG(M), then AG(M) has only one vertex N , such that Ann(M) = (N : M)
and since AG(M)∗ is an empty subgraph, AG(M) is a star graph. Thus, we may assume that M is not a
vertex of AG(M), and hence, by [7, Theorem 3.3], M is not a prime module. Therefore, [7, Theorem 3.6]
follows that R/Ann(M) is an Artinian ring. If (R/Ann(M),m/Ann(M)) is a local ring, then there exists
a natural number k, such that mkM = (0) and mk−1M �= (0). Clearly, mk−1M is adjacent to every other
vertex of AG(M) and, therefore, AG(M) is a star graph. Otherwise, by [9, Theorem 8.9] and Lemma
2.2, there exist pairwise orthogonal idempotents modulo Ann(M). By Lemma 2.3, it is easy to see that
M ∼= eM × (1 − e)M , where e is an idempotent element of R and Lemma 2.6 implies that AG(M) is a
star graph or AG(M) ∼= P4.

(b) If M is a vertex of AG(M), since AG(M) is a regular graph, AG(M) is a complete graph. Hence, we
may assume that M is not a vertex of AG(M). Thus, M is not a prime module, and hence, rm = 0, such
that 0 �= m ∈ M , r /∈ Ann(M). It is easy to see that (rM)(0 :M r) = (0). If the set of R-submodules
of rM (resp., (0 :M r))) is infinite, then (0 :M r) (resp., rM) has infinite degree, a contradiction. Thus,
rM and (0 :M r) have finite length. Since rM ∼= M/(0 :M r), M has finite length, so that R/Ann(M)
is an Artinian ring. As in the proof of part (a), M ∼= M1 × M2. If M1 has one non-trivial submodule
N , then deg((0) × M2) > deg(N × M2) and this contradicts the regularity of AG(M). Hence, M1
is a simple module. Similarly, M2 is a simple module. Therefore, AG(M) ∼= K2. Now, suppose that
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(R/Ann(M),m/Ann(M)) is an Artinian local ring. Now, as we have seen in part (a), there exists a
natural number k, such that mk−1M is adjacent to all other vertices and we deduce that AG(M) is a
complete graph.

��
Let S be a multiplicatively closed subset of R. A non-empty subset S∗ of M is said to be S-closed if se ∈ S∗

for every s ∈ S and e ∈ S∗. An S-closed subset S∗ is said to be saturated if the following condition is satisfied:
whenever ae ∈ S∗ for a ∈ R and e ∈ M , then a ∈ S and e ∈ S∗.

We need the following result due to Chin-Pi Lu.

Theorem 2.10 [16, Theorem 4.7] Let M = Rm be a cyclic module. Let S∗ be an S-closed subset of M relative
to a multiplicatively closed subset S of R, and N a submodule of M maximal in M\S∗. If S∗ is saturated, the
ideal (N : M) is maximal in R\S, so that N is prime in M.

Theorem 2.11 If M is a cyclic module, Ann(M) is a nil ideal, and |Min(M)| ≥ 3, then AG(M) contains a
cycle.

Proof If AG(M) is a tree, then byTheorem2.7, eitherAG(M) is a star graph orM ∼= F×S, where F is a simple
module and S has a unique non-trivial submodule. The latter case is impossible, because |Min(F × S)| = 2.
Suppose that AG(M) is a star graph and N is the center of star. Clearly, one can assume that N is a minimal
submodule ofM . If N 2 �= (0), then by Lemma 2.4, there exists an idempotent e ∈ R such that N = eM , so that
M ∼= eM×(1−e)M . Now, byProposition 2.1 andLemma2.6,we conclude that |Min(M)| = 2, a contradiction.
Hence, N 2 = 0. Thus, one may assume that N = Rm and (Rm)2 = (0). Suppose that P1 and P2 are two
distinct minimal prime submodules of M . Since (Rm)2 = (0), we have (Rm : M)2 ⊆ Ann(M) ⊆ (Pi : M),
i = 1, 2. So (Rm : M)M = Rm ⊆ Pi , i = 1, 2. Hence, m ∈ Pi , i = 1, 2. Choose z ∈ (P1 : M)\(P2 : M)
and set S1 = {1, z, z2, . . .}, S2 = M\P1, and S∗ = S1S2. If 0 /∈ S∗, then � = {N < M| N ∩ S∗ = ∅} is not
empty. Then, � has a maximal element, say N . Hence, by Theorem 2.10, N is a prime submodule of M . Since
N ⊆ P1, we have N = P1, a contradiction because z /∈ (N : M). So 0 ∈ S∗. Therefore, there exists positive
integer k and m′ ∈ S2, such that zkm′ = 0. Now, consider the submodules (m), (m′), and zkM . It is clear that
(m) �= (m′) and (m) �= zkM . If (m) = zkM , then z ∈ (P2 : M), a contradiction. Thus (m), (m′), and zkM
form a triangle in AG(M), a contradiction. Hence, AG(M) contains a cycle. ��
Theorem 2.12 Suppose that M is a cyclicmodule, radM (0) �= (0), andAnn(M) is a nil ideal. If |Min(M)| = 2,
then either AG(M) contains a cycle or AG(M) ∼= P4.

Proof A similar argument to the proof of Theorem 2.11 shows that either AG(M) contains a cycle or M ∼=
F × S, where F is a simple module and S is a module with a unique non-trivial submodule. The latter case
implies that AG(M) ∼= P4 (note that radF×D(0) = (0), where F is a simple module and D is a prime
module). ��

The radical of I , defined as the intersection of all prime ideals containing I , is denoted by
√
I . Before

stating the next theorem, we recall that if M is a finitely generated module, then
√

(Q : M) = (rad(Q) : M),
where Q < M (see [18, Theorem 4.4]). In addition, we know that if M is a finitely generated module, then for
every prime ideal p of R with p ⊇ Ann(M), there exists a prime submodule P of M , such that (P : M) = p
(see [15, Theorem 2]).

Theorem 2.13 Assume that M is a finitely generated module, Ann(M) is a nil ideal, and |Min(M)| = 1. If
AG(M) is a triangle-free graph, then AG(M) is a star graph.

Proof Suppose first that P is the unique minimal prime submodule of M . Since M is not a vertex of AG(M),
Z(M) �= (0). Therefore, there exist non-zero elements r ∈ R and m ∈ M , such that rm = 0. It is easy to see
that rM and Rm are vertices of AG(M), because (rM)(Rm) = (0). Since AG(M) is triangle-free, Rm or rM
is aminimal submodule ofM .Without loss of generality, we can assume that Rm is aminimal submodule ofM ,
so that (Rm)2 = (0) (if rM is a minimal submodule ofM , then there exists 0 �= m′ ∈ M such that rM = Rm′).
We claim that Rm is the unique minimal submodule of M . On the contrary, suppose that K is another minimal
submodule of M . So either K 2 = K or K 2 = (0). If K 2 = K , then by Lemma 2.4, K = eM for some
idempotent element e ∈ R and hence, M ∼= eM × (1− e)M . This implies that |Min(M)| > 1, a contradiction.
If K 2 = (0), then we have C3 = K − (K : M)M + (Rm : M)M − Rm − K , a contradiction. Therefore, Rm
is the unique minimal submodule of M . Let V1 = V (Rm), V2 = V (AG(M))\V1, A = {K ∈ V1|Rm ⊆ K },
B = V1\A, andC = V2\{Rm}.We prove that AG(M) is a bipartite graphwith parts V1 and V2.Wemay assume
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that V1 is an independent set because AG(M) is triangle-free. We claim that one end of every edge of AG(M)
is adjacent to Rm and another end contains Rm. To prove this, suppose that {N , K } is an edge of AG(M) and
Rm �= N , Rm �= K . Since N (Rm) ⊆ Rm, by the minimality of Rm, either N (Rm) = (0) or Rm ⊆ N . The
latter case follows that K (Rm) = (0). If N (Rm) = (0), then K (Rm) �= (0) and hence Rm ⊆ K . So, our
plain is proved. This gives that V2 is an independent set and V (C) ⊆ V1. Since every vertex of A contains Rm
and AG(M) is triangle-free, all vertices in A are just adjacent to Rm and so by [7, Theorem 3.4], V (C) ⊆ B.
Since one end of every edge is adjacent to Rm and another end contains Rm, we also deduce that every vertex
of C contains Rm and so every vertex of A ∪ V2 contains Rm. Note that if Rm = P , then one end of each
edge of AG(M) is contained in Rm, and since Rm is a minimal submodule of M , AG(M) is a star graph with
center Rm = P . Now, suppose that P �= Rm. We claim that P ∈ A. Since Rm ⊆ P , it suffices to show
that (Rm)P = (0). To see this, let r ∈ (P : M). We prove that rm = 0. Clearly, (Rrm) ⊆ Rm. If rm = 0,
then we are done. Thus Rrm = Rm and so m = rsm for some s ∈ R. We have m(1 − rs) = 0. By [15,
Theorem 2], we have Nil(R) = (P : M) (note that

√
Ann(M) = (rad(0) : M) = (P : M)). Therefore, 1− rs

is unit, a contradiction, as required. Since N (C) ⊆ B, if B = ∅, then C = ∅ and, therefore, AG(M) is a star
graph with center Rm. It remains to show that B = ∅. Suppose that K ∈ B and consider the vertex K ∩ P
of AG(M). Since every vertex of A ∪ V2 contains Rm, yields K ∩ P ∈ B. Pick 0 �= m′ ∈ K ∩ P . Since
AG(M) is triangle-free, one can find an element m′′ ∈ Rm′ such that Rm′′ is a minimal submodule of M
and (Rm′′)2 = (0). Since Rm is the unique minimal submodule of M , we have Rm = Rm′′ ⊆ Rm′. Thus
Rm ⊆ K ∩ P , a contradiction. So B = ∅ and we are done. Hence, AG(M) is a star graph whose center is Rm,
as desired. ��
Corollary 2.14 Assume that M is a finitely generated module, Ann(M) is a nil ideal, and |Min(M)| = 1. If
AG(M) is a bipartite graph, then AG(M) is a star graph.

3 On the coloring of the annihilating-submodule graphs

We recall that N < M is said to be a semiprime submodule of M if for every ideal I of R and every submodule
K of M , I 2K ⊆ N implies that I K ⊆ N . Furthermore, M is called a semiprime module if (0) ⊆ M is a
semiprime submodule. Every intersection of prime submodules is a semiprime submodule (see [20]).

Theorem 3.1 Let S be a multiplicatively closed subset of R containing no zero-divisors on finitely generated
module M. Then, cl(AG(MS)) ≤ cl(AG(M)). Moreover, AG(MS) is a retract of AG(M) if M is a semiprime
module. In particular, cl(AG(MS)) = cl(AG(M)), whenever M is a semiprime module.

Proof Consider a vertex map φ : V (AG(M)) −→ V (AG(MS)), N −→ NS . Clearly, NS �= KS implies N �=
K and NK = (0) if and only if NSKS = (0). Thus, φ is surjective, and hence, cl(AG(MS)) ≤ cl(AG(M)). In
what follows, we assume that M a semiprime module. If N �= K and NK = (0), then we show that NS �= KS .
Without loss of generality, we can assume that M is not a vertex of AG(M), and On the contrary, suppose that
NS = KS . Then, N 2

S = NSKS = (NK )S = (0) and so N 2 = (0), a contradiction. This shows that the map φ
is a graph homomorphism. Now, for any vertex NS of AG(MS), we can choice the fixed vertex N of AG(M).
Then, φ is a retract (graph) homomorphism which clearly implies that cl(AG(MS)) = cl(AG(M)) under the
assumption. ��
Corollary 3.2 If M is a finitely generated semiprime module, then cl(AG(T (M)) = cl(AG(M)), where
T = R\Z(M).

Since the chromatic number χ(G) of a graph G is the least positive integer r , such that there exists a retract
homomorphism ψ : G −→ Kr , the following corollaries follow directly from the proof of Theorem 3.1.

Corollary 3.3 Let S be a multiplicatively closed subset of R containing no zero-divisors on finitely generated
module M. Then, χ(AG(MS)) ≤ χ(AG(M)). Moreover, if M is a semiprime module, then χ(AG(MS)) =
χ(AG(M)).

Corollary 3.4 If M is a finitely generated semiprime module, then χ(AG(T (M)) = χ(AG(M)), where
T = R\Z(M).

Eben Matlis in [17, Proposition 1.5] proved that if {p1, . . . , pn} is a finite set of distinct minimal prime
ideals of R and S = R\ ∪n

i=1 pi , then Rp1 × · · · × Rpn
∼= RS . In [19], this result was generalized to finitely

generated multiplication modules. In Theorem 3.6, we use this generalization for a cyclic module.
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Theorem 3.5 [19, Theorem 3.11] Let {P1, . . . , Pn} be a finite set of distinct minimal prime submodules of
finitely generated multiplication module M and S = R\∪n

i=1 (Pi : M). Then, Mp1 ×· · ·× Mpn
∼= MS, where

pi = (Pi : M) for 1 ≤ i ≤ n.

Theorem 3.6 Let M be a cyclic module and {P1, . . . , Pn} be a finite set of distinct minimal prime submodules
of M. Then, there exists a clique of size n.

Proof Let M be a cyclic module and S = R\ ∪n
i=1 pi , where pi = (Pi : M) for 1 ≤ i ≤ n. Then, since

M is a multiplication module, by Theorem 3.5, there exists an isomorphism φ : Mp1 × · · · × Mpn −→ MS .
Let M = Rm, ei = (0, . . . , 0,m/1, . . . , 0, . . . , 0) and φ(ei ) = ni/ti , where m ∈ M , 1 ≤ i ≤ n, and m/1
is in the i th position of ei . Consider the principal submodules Ni = (ni/ti ) = (ni/1) in the module MS . By
Lemma 2.2 and Proposition 2.1, the product of submodules (0) × · · · × (0) × (m/1)Rpi × (0) × · · · × (0)
and (0) × · · · × (0) × (m/1)Rpj × (0) × · · · × (0) are zero, i �= j . Since φ is an isomorphism, there
exists ti j ∈ S, such that ti j ri n j = 0, for every i, j, 1 ≤ i < j ≤ n, where ni = rim for some ri ∈ R. Let
t = �1≤i< j≤nti j .We show that {(tn1), . . . , (tnn)} is a clique of sizen inAG(M). For every i, j, 1 ≤ i < j ≤ n,
(Rtni )(Rtn j ) = (Rtn j : M)Rtni = (Rtn j : M)tri M = tri Rtn j = (0). Since (tni )S = (ni/1) = Ni , we
deduce that (tni ) are distinct non-trivial submodules of M . ��
Corollary 3.7 For every cyclicmodule M, cl(AG(M)) ≥ |Min(M)| and if |Min(M)| ≥ 3, then gr(AG(M)) =
3.

Theorem 3.8 Let M be a cyclic module and radM (0) = (0). Then, χ(AG(M)) = cl(AG(M)) = |Min(M)|.
Proof If |Min(M)| = ∞, then by Corollary 3.7, there is nothing to prove. Thus, suppose that |Min(M)| =
{P1, . . . , Pn}, for some positive integer n. Let pi = (Pi : M) and S = R\ ∪n

i=1 pi . By Theorem 3.5, we
have Mp1 × · · · × Mpn

∼= MS . Clearly, cl(AG(MS)) ≥ n. Now, we show that χ(AG(MS)) ≤ n. By [15,
Corollary 3], Pi Rpi is the only prime submodule of M and since radM (0) = (0), every Mpi is a simple
Rpi -module. Define the map C : V (AG(MS)) −→ {1, 2, . . . , n} by C(N1 × · · · × Nn) = min{i | Ni �= (0)}.
Since each Mpi is a simple module, C is a proper vertex coloring of AG(MS). Thus χ(AG(MS)) ≤ n and
so χ(AG(MS)) = cl(AG(MS)) = n. Since radM (0) = (0), it is easy to see that S ∩ Z(M) = ∅. Now, by
Theorem 3.1 and Corollary 3.3, we obtain the desired. ��
Theorem 3.9 For every module M, cl(AG(M)) = 2 if and only if χ(AG(M)) = 2. In particular, AG(M) is
bipartite if and only if AG(M) is triangle-free.

Proof For the first assertion, we use the same technique in [3, Theorem 13]. Let cl(AG(M)) = 2. On the
contrary assume that AG(M) is not bipartite. Therefore, AG(M) contains an odd cycle. Suppose that C :=
N1−N2−· · ·−N2k+1−N1 be a shortest odd cycle in AG(M) for some natural number k. Clearly, k ≥ 2. Since
C is a shortest odd cycle in AG(M), N3N2k+1 is a vertex. Now, consider the vertices N1, N2, and N3N2k+1.
If N1 = N3N2k+1, then N4N1 = (0). This implies that N1 − N4 − · · · − N2k+1 − N1 is an odd cycle, a
contradiction. Thus, N1 �= N3N2k+1. If N2 = N3N2k+1, then we have C3 = N2 − N3 − N4 − N2, again a
contradiction. Hence, N2 �= N3N2k+1. It is easy to check N1, N2, and N3N2k+1 form a triangle in AG(M),
a contradiction. The converse is clear. In particular, we note that empty graphs and the isolated vertex graphs
are bipartite graphs. ��
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