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Abstract In this paper, the unsteady laminar three-dimensional flow of an incompressible viscous fluid in the
neighbourhood of a stagnation point is studied. The magnetic field is applied normal to the surface and the
effects of viscous dissipation and Ohmic heating are taken into account. The unsteadiness in the flow is caused
by the external free stream varying arbitrarily with time. The governing equations are solved both analytically
and numerically. An approximate analytical solution has been obtained for flow and heat transfer in the form
of series solution using Homotopy Analysis Method while the numerical solutions are computed using the
Runge–Kutta–Fehlberg Method with a shooting technique. The influence of various parameters such as the
viscous dissipation, unsteadiness, ratio of the velocity gradient and magnetic field effects on flow and heat
transfer parameters are studied. A detailed error analysis is done to compute the averaged square residual errors
for velocity and temperature. The optimal values of the convergence control parameter are computed for the
flow which is used for obtaining all the other results presented.

Mathematics Subject Classification 74G10 · 76N20 · 76W05 · 76D05

1 Introduction

The study of laminar boundary layers to variations in the external free stream with time has many practical
applications in flowover helicopters;missile aerodynamics; turbo-machines and in flutter phenomena involving
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wings. The unsteadiness increases the complexities of the problem because the dimension of the problem is
increased. During recent years, the subject of unsteady boundary layer studies near stagnation region has
received considerable attention.

The three-dimensional laminar incompressible boundary-layer flow in the neighbourhood of the nodal
point region (i.e., 0 ≤ c ≤ 1) was first studied by Howarth [1]. The corresponding flow near the saddle point
region (i.e., −1 ≤ c < 0) was considered by Davey [2] where he has observed the appreciable changes in the
similarity solution of boundary layer equations compared to the solution near the nodal point region. The heat
transfer in the three-dimensional stagnation flow at nodal point region has been analysed by Cheng et al. [3]
and a self-similar solution has been obtained.

The unsteady incompressible flow of a viscous fluid near the stagnation region of a three-dimensional body
was investigated by Kumari and Nath [4]. The unsteady heat flux at a general three-dimensional body when
the velocity is varying as a linear function of time was considered by Teipel [5]. A stagnation point solution
near nodal and saddle point regions of an incompressible micro polar fluid was studied by Guram et al. [6].
The effect of the magnetic field on the stagnation point flow and heat transfer of a viscous fluid was studied
by Kumari et al. [7]. The unsteady stagnation point flow of a stretching surface in a three-dimensional flow
was studied by Rajeswari et al. [8]. Various aspects of this problem were studied by the authors [9,10]. The
unsteady laminar MHD flow of a viscous fluid with variation of Ohmic heating and viscous dissipation was
studied by Osalusi et al. [11], as well as [12,13].

The importance of studying the unsteady boundary layer flow near stagnation region is that the heat transfer
is maximum near the stagnation point. When the free stream velocity varies arbitrarily with time, unsteadiness
is caused in the flow field. This unsteadiness influences the flow and heat transfer to a great extent. Most of the
studies cited above present the numerical solutions of flow and heat transfer near the stagnation point. Our aim
is to obtain an approximate analytical solution for the flow velocity and the temperature in the form of a power
series solution. Since the approximate analytical solution for the three-dimensional stagnation point boundary
layer flow has not been studied, we obtain the same using Homotopy Analysis Method (HAM). Since this
method is described in detail in [14,15], it is not explained here for the sake of brevity.

Generally, HAM solutions are always represented as a power series form in which the coefficients contain
the study parameters. In our analysis the various study parameters considered are magnetic field strength (M);
unsteadiness in the flow (λ); Prandtl number (Pr); the ratio of the velocity gradient c and the viscous dissipation
parameters α and β. We have also computed the numerical solutions for our governing equations using the
Runge–Kutta–Fehlberg (RKF) method with shooting technique.

2 Problem formulation and governing equation

We consider the unsteady incompressible viscous flow of an electrically conducting fluid in the neighbourhood
of a stagnation point of a three-dimensional surface. Let us consider the orthogonal set of coordinates (x, y, z)
with the origin "O" at the forward stagnation region, with x and y coordinates along the body surface and z
is the coordinate perpendicular to the body surface at origin as shown in Fig. 1. The unsteadiness in the flow
field is imparted by the free stream varying arbitrarily with time.

Uniform magnetic field of strength B is applied normal to the surface in the positive z direction. Since the
magnetic Reynolds number is considered to be small, the induced magnetic field can be neglected. The effects
of viscous dissipation and Ohmic heating are taken into account. The Navier–Stokes equations governing the
three dimensional flow and heat transfer are given by

ux + vy + wz = 0 (1)

ut + uux + vuy + wuz = − (
px − νρ∇2u + σ B2u

)
/ρ (2)

vt + uvx + vvy + wvz = − (
py − νρ∇2v + σ B2v

)
/ρ (3)

wt + uwx + vwy + wwz = − (
pz − νρ∇2w

)
/ρ (4)

ρCρ

(
Tt + uTx + vTy + wTz

) = κ∇2T + μ
(
u2z + v2z

) + σ B2 (
u2 + v2

)
(5)

The initial conditions when t = 0 are

u = ui ; v = vi ; w = wi ; p = pi ; T = Ti (6)
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Fig. 1 Coordinate system of velocity components and external streamlines

The boundary conditions are

u = v = w = 0, p = p0, T = Tw at z = 0, x ≥ 0 and y ≥ 0

u → U, v → V, w → W, T → T∞ at z → ∞, x ≥ 0 and y ≥ 0

u = U, v = V, w = W, T = T∞ at x = 0, y ≥ 0 and z ≥ 0

u = U, v = V, w = W, T = T∞ at y = 0, x ≥ 0 and z ≥ 0. (7)

Here T is the temperature; κ is the thermal conductivity; p is the static pressure; ρ is the density; ν is the
kinematic viscosity; Cρ is the specific heat at a constant pressure; p0 is the stagnation pressure; B is the
magnetic field; U , V and W are the components of velocity in the potential flow; the subscripts t , x , y and z
denote the derivatives with respect to t , x , y and z, respectively.

The velocity components in x- and y-directions in the potential flow vary directly as a linear function of
distance and inversely as a linear function time.

U = (ax)/(1 − λt), V = (by)/(1 − λt) where λt < 1 (8)

The velocity components in z-direction is obtained from Eq. (1) so that the continuity equation is satisfied
exactly.

W = −az(1 + c)/(1 − λt)

The magnetic field B for the unsteady flow and the wall temperature Tw varies as

B = B0/
√

(1 − λt) and (Tw − T∞) = (Tw0 − T∞)/(1 − λt)2, (9)

where Tw0 is the value of Tw when t = 0.
The expression of pressure p can be obtained from Bernoulli equation as

p0 − p = (ρa2)/2(1 − λt)2
[
(1 + λ + M) x2 + c (c + λ + M) y2 + (1 + c) (1 + c − λ) z2

]
(10)

Since the governing equations are a system of partial differential Eqs. (1–5) with four independent variables
(x, y, z, t), we apply a suitable similarity transformation by which the partial differential equations can be
converted into a system of nonlinear ordinary differential equations.
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The similarity transformations are

η = (a/ν)1/2 (1 − λt)−1/2z, u = ax(1 − λt)−1 f ′(η), v = by(1 − λt)−1g′(η) (11a)

and w = − (aν)1/2 (1 − λt)−1/2[ f (η) + cg(η)], (11b)

T − T∞ = (Tw − T∞)[s(η) + (x/L)2 
(η) + (y/L)2 θ(η)] = (Tw − T∞)s(η) (11c)

p0 − p = (ρa2)/2(1 − λt)2
[
(1 + λ + M) x2 + c (c + λ + M) y2 + (2ν/a) (1 − λt) P(η)

]
, (11d)

where M = σ B2
0/ρa. Here s, 
 and θ used in temperature represent the dimensionless temperatures without

viscous dissipation, with viscous dissipation and with Ohmic heating, respectively.
Substituting Eqs. (11a–11d) into Eqs. (1–5), we find that Eq. (1) is identically satisfied and Eqs. (2–5)

reduce to a system of coupled non-linear ordinary differential equations given by

f ′′′ + ( f + cg) f ′′ + 1 − (
f ′)2 + M

(
1 − f ′) + λ

(
1 − f ′ − η f ′′/2

) = 0 (12)

g′′′ + ( f + cg) g′′ + c
(
1 − (

g′)2) + M
(
1 − g′) + λ

(
1 − g′ − ηg′′/2

) = 0 (13)

Pr−1s′′ + ( f + cg) s′ − 2−1ηs′ − 2λs = 0 (14)

Pr−1
′′ + ( f + cg) 
′ − 2 f ′
 − 2λ
 − 2−1ηλ
′ + α
[(

f ′′)2 + M
(
f ′)2] = 0 (15)

Pr−1θ ′′ + ( f + cg) θ ′ − 2cg′θ − 2λθ − 2−1ηλθ ′ + β
[(
g′′)2 + M

(
g′)2] = 0 (16)

P = 2−1 ( f + cg)2 − (λ/2) η ( f + cg). (17)

Equation (17) has been written after integration satisfying the condition on pressure.
The boundary conditions are

f (0) = 0, f ′(0) = 0, f ′(∞) = 1; g(0) = 0, g′(0) = 0, g′(∞) = 1

s(0) = 1, s(∞) = 0; 
(0) = 0, 
(∞) = 0; θ(0) = 0, θ(∞) = 0. (18)

Here f ′ and g′ are the dimensionless velocity components in x- and y-directions, respectively; λ is the
unsteadiness parameter; η is the similarity variable; M is the magnetic parameter; Pr is the Prandtl number; a
and b are the velocity gradient along x- and y-directions in the potential flow; c = b/a is ratio of the velocity
gradient; α and β are the viscous dissipation parameters; L = (ν/a)1/2 is the characteristic length and prime
denotes derivative with respect to η.

Equations (12–16) with λ = 0 (steady-state case) and without Ohmic heating (i.e., magnetic parameter
M = 0) are the same as those of [1] for the flow in the nodal point region (0 ≤ c ≤ 1) and to those of [2] in
the saddle point region (−1 ≤ c < 0). Further may be noted that Eqs. (12–16) without the last term in (14)
for M = 0 are same to those of [5].

The heat transfer coefficient in terms of Nusselt number and local Skin friction coefficients in x and y
directions are expressed as

C f x = 2μ(∂u/∂z)z=0/ρU
2 = 2(Re)−1/2 f ′′(0)

C f y = 2μ(∂v/∂z)z=0/ρU
2 = 2(V/U )(Re)−1/2g′′(0)

Nux = −x(∂T/∂z)z=0/(Tw − T∞) = −(Rex )
1/2 [

s′(0) + (x/L)2
′(0) + (y/L)2θ ′(0)
] = −(Rex )

1/2s′(0)

where Rex = Ux/ν.
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3 HAM solution

Themain features of theHAMprocedure are selecting suitable initial profiles satisfying the boundary conditions
of the problem concerned; choosing an appropriate linear operator so that its solutions are simpler to evaluate
analytically. The initial profiles that satisfy the initial and boundary conditions of the flow are

f0(η) = η + 1 − e−η, g0(η) = η + 1 − e−η, s0(η) = 1 − e−η, 
0(η) = ηe−η, θ0(η) = ηe−η. (19)

L f = d3 f

dη3
− d f

dη
, Lg = d3g

dη3
− dg

dη
, Ls = d2s

dη2
− s, L
 = d2


dη2
− 
, Lθ = d2θ

dη2
− θ, (20)

The Linear Operator chosen for this set of equations are

L f
[
C1 + C2eη + C3e−η

] = 0, Lg
[
C4 + C5eη + C6e−η

] = 0, Ls
[
C7eη + C8e−η

] = 0,

L


[
C9eη + C10e−η

] = 0, Lθ

[
C11eη + C12e−η

] = 0, (21)

in which Ci are the arbitrary constants.
The nonlinear operator is directly written from the governing equation of the problem. We choose the set

of base functions and initial guesses, auxiliary linear operators as follows:
{(

ηke−nη
)

, k ≥ 0, n ≥ 0
}

Then, we can write

X (η) = A0
0,0 +

∞∑

n=0

∞∑

k=0

[
Ak

,nη
ke−nη

]
, (22)

where X here denotes our study variables and X = f, g, s, 
, θ and Ak
,n are the coefficients.

3.1 Zeroth and higher-order deformation problems

To obtain the HAM solution for the governing Eqs. (12–16), let τ ∈ [0, 1] be an embedding parameter and
c f , cg and cs , c
, cθ be the basic convergence control parameters. Then the zeroth order deformation equation
and the non-linear operators take the following form:

(1 − τ)LX [X (η, τ ) − X0(η)] = τcXNX [X (η, τ )], (23)

where X = f , g, s, 
 and θ ; X0 = f0, g0, s0, 
0 and θ0.

N f [ f (η, τ )] = ∂3 f (η, τ )

∂η3
+ ( f (η, τ ) + cg(η, τ ))

(
∂2 f (η, τ )

∂η2

)
+

(

1 −
(

∂ f (η, τ )

∂η

)2
)

+M

(
1 −

(
∂ f (η, τ )

∂η

))
+ λ

(
1 −

(
∂ f (η, τ )

∂η

)
−

(η

2

) (
∂2 f (η, τ )

∂η2

))

(24)

Ng[g(η, τ ), f (η, τ )] = ∂3g(η, τ )

∂η3
+( f (η, τ )+cg(η, τ ))

(
∂2g(η, τ )

∂η2

)
+c

(

1−
(

∂g(η, τ )

∂η

)2
)

+M

(
1 −

(
∂g(η, τ )

∂η

))
+ λ

(
1 −

(
∂g(η, τ )

∂η

)
−

(η

2

)(
∂2g(η, τ )

∂η2

))

(25)

Ns[s(η, τ ), g(η, τ ), f (η, τ )] = Pr−1
(

∂2s(η, τ )

∂η2

)
+( f (η, τ )+cg(η, τ ))

(
∂s(η, τ )

∂η

)
−

(η

2

)(
∂s(η, τ )

∂η

)

−2λs(η, τ ) (26)
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N
[
(η, τ), g(η, τ ), f (η, τ )] = Pr−1
(

∂2
(η, τ)

∂η2

)
+ ( f (η, τ )

+cg(η, τ ))

(
∂
(η, τ)

∂η

)
− 2

(
∂ f (η, τ )

∂η

)

(η, τ) (27)

−λ
(η, τ) −
(η

2

)
λ
(η, τ) + α

[(
∂2 f (η, τ )

∂η2

)2

+ M

(
∂ f (η, τ )

∂η

)2
]

(28)

Nθ [θ(η, τ ), g(η, τ ), f (η, τ )] = Pr−1
(

∂2θ(η, τ )

∂η2

)
+ ( f (η, τ ) + cg(η, τ ))

(
∂θ(η, τ )

∂η

)
(29)

−2c

(
∂g(η, τ )

∂η

)
θ(η, τ ) − 2λθ(η, τ ) −

(η

2

)
λθ(η, τ )

+β

[(
∂2g(η, τ )

∂η2

)2

+ M

(
∂g(η, τ )

∂η

)2
]

(30)

with appropriate boundary conditions from Eq. (18) we have

f (η; τ)|η=0= g(η; τ)|η=0= 0,
∂ f (η; τ)

∂η

∣∣
∣∣
η=0

= ∂g(η; τ)

∂η

∣∣
∣∣
η=0

= 0,
∂ f (η; τ)

∂η

∣∣
∣∣
η=∞

= ∂g(η; τ)

∂η

∣∣
∣∣
η=∞

= 1,

s(η; τ)|η=0 = 1, 
(η; τ)|η=0 = θ(η; τ)|η=0 = 0, s(η; τ)|η=∞ = 
(η; τ)|η=∞ = θ(η; τ)|η=∞ = 0,
(31)

For th-order deformation equations, we first differentiate Eq. (23) - times with respect to τ, dividing
them by ! and then set τ = 0. Following this we have

LX [X(η) − �X−1(η)] = cXRX
 (η) (32)

with boundary conditions

f(0) = g(0) = 0, f ′
(0) = g′

(0) = 0, f ′
(∞) = g′

(∞) = 1

s(0) = 1,
(0) = θ(0) = 0, s(∞) = 
(∞) = θ(∞) = 0 (33)

where the remainder term RX
 (η) are expanded and rewritten from the governing Eqs. (12–16) as follows:

R f
 (η) = f ′′′

−1(η) +
−1∑

j=0

[
f−1− j f

′′
j − f ′

−1− j f
′
j

]
+ c

−1∑

j=0

[
g−1− j f

′′
j

]
+ (

1 + M
[
1 − f ′

−1(η)
])

+ λ
[
1 − f ′

−1(η) −
(η

2

)
f ′′
−1(η)

]
(34)

Rg
 (η) = g′′′

−1(η) +
−1∑

j=0

[ f−1− j g
′′
j ] + c

−1∑

j=0

[
g−1− j g

′′
j − g′

−1− j g
′
j

]
+ (

c + M
[
1 − g′

−1(η)
])

+ λ
[
1 − g′

−1(η) −
(η

2

)
g′′
−1(η)

]
(35)

Rs
(η) = Pr−1s′′

−1(η) +
−1∑

j=0

[ f−1− j s
′
j (η)] + c

−1∑

j=0

[g−1− j s
′
j (η)] −

(η

2

)
s′
−1(η) − 2λs−1(η) (36)

R

 (η) = Pr−1
′′

−1(η) +
−1∑

j=0

[ f−1− j 
′
j (η)] + c

−1∑

j=0

[g−1− j 
′
j (η)] − 2

−1∑

j=0

[ f ′
−1− j 
 j (η)]

−λ
−1(η) −
(

λη

2

)

−1(η) + α

⎡

⎣
−1∑

j=0

[ f ′′
−1− j f

′′
j + M f ′

−1− j f
′
j ]

⎤

⎦ (37)
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Rθ
(η) = Pr−1θ ′′

−1(η) +
−1∑

j=0

[ f−1− j θ ′
j (η)] + c

−1∑

j=0

[g−1− j θ ′
j (η)] − 2c

−1∑

j=0

[g′
−1− j θ j (η)]

−2λθ−1(η) −
(

λη

2

)
θ−1(η) + β

⎡

⎣
−1∑

j=0

[g′′
−1− j g

′′
j + Mg′

−1− j g
′
j ]

⎤

⎦ , (38)

where � defines as

� =
{
0 if  ≤ 1
1 if  > 1. (39)

Using Taylor’s series, X (η; τ) can be expanded in terms of τ as follows:

X (η; τ) = X0(η) +
∞∑

=1

X(η)τ , where X(η) = 1

!
∂X (η; τ)

∂τ 

∣
∣∣∣
τ=0

. (40)

The auxiliary parameters are selected as τ = 0 and τ = 1 from Eq. (23), one may write

X (η; 0) = X0(η), X (η; 1) = X (η). (41)

Thus as τ increases from 0 to 1 and X (η; τ) varies from the initial guess X0(η) to the solution X (η) of the
governing equations respectively. The auxiliary parameters are selected so that the series solutions converge
for τ = 1 and the particular solution is

X (η) = X0(η) +
∞∑

=1

X(η), (42)

where X = f , g, s, 
 and θ ; X0 = f0, g0, s0, 
0 and θ0.
Therefore,weget the general approximate analytical solutions f, g, s, 
, θ in termsof special solutions

f ∗
 , g∗

 , s∗
 , 
∗

, θ
∗
 as

f(η) = f ∗
 (η) + C1 + C2e

η + C3e
−η, g(η) = g∗

 (η) + C4 + C5e
η + C6e

−η (43)

s(η) = s∗
 (η)+C7e

η +C8e
−η, 
(η) = 
∗

(η)+C9e
η +C10e

−η, θ(η) = θ∗
 (η)+C11e

η +C12e
−η (44)

We solve Eqs. (43, 44) one after the other in the order  = 1, 2, 3, . . . by means of the symbolic computation
softwareMathematica. It is shown that the solution for the velocity profile can be expressed as an infinite series
of any desired order. It is customary in HAM analysis to draw cX -curves to identify the interval of optimal
convergence control parameter (i.e., c f and cg , cs , c
 and cθ ) inside which any suitable values can be chosen.
In Fig. 2 it is shown that choosing unique value from the ranges of c f ∈ [−1.6,−0.2], cg ∈ [−1.4,−0.1]
does not affect the values of surface shear stress rates and it is cs ∈ [−1.5,−0.3], c
 ∈ [−2.1,−0.4] and
cθ ∈ [−1.9,−0.5] for surface heat transfer rates. The cX curves have been drawn for 20th order of HAM
solution. In all of the figures, we use Pr = 0.72, λ = −1.0 and c = −0.5, M = 0.5 and α = β = 0.2 unless
it is mentioned otherwise.

4 Convergence control parameters

In order to choose the optimal values of the convergence control parameters cX , where X = f , g, s, 
 and θ ,
we compute the averaged residual errors suggested by Liao [15].

EX 
 1



i∑

j=0

(

N

[
∑

i=0

Xi ( j�x)

])2

, (45)
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Fig. 2 c f , cg , cs , c
 and cθ -curves

Table 1 The averaged squared residual error EX with the CPU time at different orders of approximations in HAM analysis

l CPU minimum of averaged squared residual errors

Time (S) E f Eg EG E
 Eθ

2 1.0 2.08642 × 10−2 2.21558 × 10−3 6.42071 × 10−3 1.00611 × 10−6 1.18235 × 10−4

4 5.8 1.25201 × 10−4 1.24501 × 10−5 2.49866 × 10−5 3.29999 × 10−7 2.09782 × 10−7

6 31.1 2.97143 × 10−7 3.20537 × 10−8 1.31442 × 10−8 1.07162 × 10−9 5.19336 × 10−10

8 51.9 4.00527 × 10−9 4.71582 × 10−10 2.52719 × 10−11 2.77611 × 10−11 4.00001 × 10−13

10 323.7 9.32769 × 10−12 5.90002 × 10−13 9.14281 × 10−14 6.10022 × 10−13 3.71102 × 10−14

12 1281.8 2.62319 × 10−14 6.00222 × 10−15 1.71058 × 10−16 8.29371 × 10−17 7.33333 × 10−18

14 1446.1 7.90133 × 10−15 6.67216 × 10−16 7.39669 × 10−17 4.00222 × 10−18 1.02761 × 10−20

16 1582.8 2.83001 × 10−17 5.07803 × 10−19 1.40772 × 10−20 7.76201 × 10−21 6.99728 × 10−21

where �x = 10

and  = 20. At the th order, the optimal values of cX are computed by the minimum of the

squared residual EX of the governing equations, corresponding to

dEX

dcX
= 0 (46)

The HAM-based Mathematica package BVPh 2.01 has been used to compute the averaged residual errors of
Eqs. (12–16). We use Eq. (45) to find the convergence control parameters and this optimal values obtained are
used for the entire computations of flow variables for various values parameters.

The averaged squared residual errors EX , with the CPU time (S) at different orders of the HAM approxi-
mations  are shown in Table 1. The averaged squared residual error decreases rapidly and the optimal values
of the convergence control parameters are found to be c f = −0.609214, cg = −0.59523 and cs = −0.86576,
c
 = −1.31155 and cθ = −0.71554. Thus the convergence control parameter used in HAM can greatly
accelerate the convergence of series solution.

5 Numerical solution

Though several numerical results are available in the literature, to compare our own approximate analytical
results for different parametric values, we have performed numerical computation with the simple and still
popular technique Runge–Kutta–FehlbergMethod with a shooting technique(RKFM). The numerical solution
of the governing Eqs. (12–16) subject to the boundary conditions Eq. (18) have been obtained using the RKFM
method. It was necessary to adopt a shooting technique to get the missing slopes f ′′(0), g′′(0) and −s′(0),
−
′(0), −θ ′(0)) for various physical parameters. The numerical results and approximate analytical results
agree very well in all the calculations, some of which are shown in the tables and figures.

1 Refer. http://numericaltank.sjtu.edu.cn/BVPh.htm.
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Table 2 Comparison of skin friction results for steady case ( f ′′(0), g′′(0)) when M = λ = 0 for nodal and saddle point regions

c f ′′(0) g′′(0)
Kumari et al. [9] Present HAM Present RKFM Kumari et al. [9] Present HAM Present RKFM

0.00 1.2268 1.2268084 1.2268084 0.5848 0.5848333 0.5848333
0.25 1.2453 1.2453641 1.2453641 0.8378 0.8378750 0.8378750
0.50 1.2654 1.2654008 1.2654008 1.0142 1.0142396 1.0142396
0.75 1.2892 1.2892765 1.2892765 1.1723 1.1723170 1.1723170
1.00 1.3153 1.3153407 1.3153407 1.3153 1.3153347 1.3153347
−0.2 1.2256 1.2256840 1.2256840 0.3350 0.3350904 0.3350904
−0.4 1.2262 1.2262611 1.2262611 0.0459 0.0459610 0.0459610
−0.6 1.2361 1.2361333 1.2361333 −0.2664 −0.2666421 −0.2666421
−0.8 1.2519 1.2519924 1.2519924 −0.5485 −0.5485740 −0.5485740
−1.0 1.2732 1.2732043 1.2732043 −0.8110 −0.8110879 −0.8110879

Table 3 Comparison of heat transfer rates (−s′(0)) for different Pr, when M = λ = 0 for nodal and saddle point regions

−s′(0)
c Kumari et al. [9] Present HAM Present RKFM

Pr = 0.7 Pr = 10.0 Pr = 0.7 Pr = 10.0 Pr = 0.7 Pr = 10.0

0.00 0.4957 1.3386 0.4959980 1.3387713 0.4959980 1.3387713
0.25 0.5358 1.4265 0.5369627 1.4262420 0.5369627 1.4262420
0.50 0.5798 1.5311 0.5784300 1.5320669 0.5784300 1.5320669
0.75 0.6233 1.6419 0.6235361 1.6438587 0.6235361 1.6438587
1.00 0.6656 1.7523 0.6659613 1.7526072 0.6659613 1.7526072
−0.10 – – 0.5463178 1.5901238 0.5463178 1.5901238
−0.25 – – 0.6109312 1.6432103 0.6109312 1.6432103
−0.50 – – 0.6961289 1.7074361 0.6961289 1.7074361
−0.75 – – 0.7233490 1.8498630 0.7233490 1.8498630
−1.00 – – 0.8073104 1.9103814 0.8073104 1.9103814

6 Results and discussion

We have studied the effect of various physical parameters such as magnetic parameter M , ratio of the velocity
gradient c, unsteady parameter λ on velocity and temperature profiles as well as on skin friction coefficients
and heat transfer rates. The approximate analytical solutions for the velocity and temperature are obtained in
the form of a power series solution using computer Algebra softwareMathematica. The expressions for f , g,
s, 
 and θ are obtained up to 10th degree polynomial. It is to be mentioned here that, though computations
could be done easily up to 16th order of deformations equations, to retain the results up to sixth decimal places
accuracy we have stopped at the 10th order. Computations have been carried out for several combinations of
parameters λ and M , c, Pr, only some representative results are presented here in the form of Tables 1, 2, 3, 4
and Figs. 2, 3, 4, 5, 6, 7, 8, 9.

For the special case of M = λ = 0 (in the absence of magnetic and unsteady parameter), Table 2 presents
the values of skin friction results for steady case ( f ′′(0), g′′(0)) with that of [9] for nodal and saddle point
regions. It was found to be in very good agreement from the 10th order approximation itself. The comparison
of heat transfer results for steady case −s′(0) is presented in Table 3. Here, the values of the heat transfer
coefficients in terms of local Nusselt number are small for Pr = 0.7 in comparison to the values for Pr = 10.0.
This means that the values of the local Nusselt number increase with an increase in Prandtl number.

It is seen from Table 4 that the skin friction and heat transfer rates ( f ′′(0), −s′(0)) for various values
of c and M are compared in steady case (λ = 0) with that of [9]. It is found that the values of local skin
friction and heat transfer coefficients in terms of local Nusselt number are small for c = 0 in comparison to
the values for c = 1.0. This means that the values of the local Nusselt number increase with an increase in c
corresponding with that of magnetic values. The Figs. 3 and 4 show the effect of our study parameters on the
velocity, temperature profiles and Figs. 5, 6, 7, 8, 9 show variation of shear stresses and heat transfer rates.

The effect of magnetic parameter M on the velocity profiles f ′(η) and g′(η) in x-and y-directions and
temperature profiles s(η), φ(η) and θ(η) are plotted in Figs. 3 and 4. It is observed that there is an overshoot
in the velocity profiles as magnetic parameter M increases from 0.5 to 4.0. Overshoot in profiles means there
is a sudden increase and an immediate decrease in the flow velocity near the surface. This is due to the fact
that the imposition of magnetic field creates a drag-like force, called Lorentz force, in the flow field that
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Table 4 Comparison of skin friction and heat transfer rates for steady case ( f ′′(0), −s′(0)) when Pr = 0.72 at various values of
c and M

c M f ′′(0) −s′(0)
Kumari et al. [9] Present HAM Present RKFM Kumari et al. [9] Present HAM Present RKFM

0.0 0.0 1.2268 1.2269340 1.2269340 0.4957 0.4959982 0.4959982
0.0 0.5 1.4132 1.4133836 1.4133836 0.5069 0.5070253 0.5070253
0.0 1.0 1.5795 1.5791185 1.5791185 0.5156 0.5158103 0.5158103
0.0 2.0 1.8664 1.8665012 1.8665012 0.5287 0.5282495 0.5282495
0.0 4.0 2.3397 2.3420600 2.3420600 0.5461 0.5462691 0.5462691
1.0 0.0 1.3153 1.3107777 1.3107777 0.6656 0.6658604 0.6658604
1.0 0.5 1.4827 1.4826013 1.4826013 0.6794 0.6794317 0.6794317
1.0 1.0 1.6403 1.6459755 1.6459755 0.6911 0.6919000 0.6919000
1.0 2.0 1.9176 1.9210201 1.9210201 0.7091 0.7107628 0.7107628
1.0 4.0 2.3796 2.3789651 2.3789651 0.7340 0.7341152 0.7341152

Fig. 3 Effect of the magnetic parameter M on the velocity profiles f ′(η) and g′(η) in x- and y-directions

Fig. 4 Effect of the magnetic parameter M on the temperature profiles s(η), 
(η) and θ(η)

has the tendency to slow down the flow near the surface, at the same time increasing fluid temperature. As
the magnetic field increases, the velocity profile decreases while the temperature profile increases, but the
temperature profiles are thinner for higher values of M . The temperature in the absence of viscous dissipation
s(η) gradually reaches the free stream values, but the behaviour of temperature profiles in the presence of
viscous dissipation and Ohmic heating are significantly different in the sense that it increases sharply close to
the boundary layer, attains a maximum value and starts decreasing rapidly to attain its free stream values.

The variation of surface shear stress rates in x-and y-directions (i.e., f ′′(0) and g′′(0)) and the heat transfer
rate (−s′(0), −
′(0) and −θ ′(0)) with the unsteady parameter λ for different magnetic parameter M and the
different viscous dissipation parameters α, β with ratio of velocity gradient c on the heat transfer rates profile
for a fixed value of Pr = 0.7 are presented in Figs. 5, 6, 7, 8, 9. It observed that the decrease in unsteady
parameter λ decreases the surface shear stress rates. It is to be noted that the surface shear stress rates ( f ′′(0)
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Fig. 5 Effect of the magnetic parameter M on the shear stress rates f ′′(0) and g′′(0) in x- and y-directions and the heat transfer
rates −s′(0) at M = 0.0, Pr = 0.7

Fig. 6 Effect of the magnetic parameter M on the heat transfer rates

Fig. 7 Effect of the viscous dissipation parameters α, β and magnetic parameter M on the heat transfer rates

and g′′(0)) in x- and y-directions for every M curve becomes zero for a certain value of unsteady parameter
λ. For example, as seen from Fig. 5, g′′(0) vanishes at λ = −0.438,−2.189 for M = 0.5, 4.0, respectively.
Also, reverse flow occurs for negative values of λ. This means that the decelerating flow behaves like an
adverse pressure gradient. Similar trend has been observed by Kumari et al. [9]. The boundary layer thickness
increases with decreasing unsteady parameter, which means that the velocity in z-direction increases which
in turn increases the heat transfer rate. Hence, as the unsteady parameter λ decreases the heat transfer rate
(−s′(0), −
′(0), −θ ′(0)) increases as observed from Fig. 6.
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Fig. 8 Effect of the viscous dissipation parameters α, β and ratio of velocity gradient c on the heat transfer rates

Fig. 9 Comparison of the surface shear stress ( f ′′(0), g′′(0)), and the heat transfer rates −s′(0) at M = 0.0, Pr = 0.7 with those
of [9]

The effect of the viscous dissipation parameters α, β on the surface heat transfer rate (−
′(0), −θ ′(0)),
for various values of M , c are presented in Figs. 7 and 8. From Fig. 7, it is observed that, as the unsteady
parameter increases, the surface heat transfer (−
′(0) and −θ ′(0)) decreases with respect to increase in the
magnetic parameter and viscous dissipation parameters. For a given α, β and M , −θ ′(0)) values are always
higher than −
′(0) values. This is due to the presence of Ohmic heating. Similar to Fig. 7, in Fig. 8, the effect
with respect to stretching ratio c is presented. Here surface heat transfers (−
′(0) and −θ ′(0)) are found to
be higher for saddle point region (c = −0.5) compared to its value in the nodal point region (c = 0.5).

A comparison result of the shear stress rates (f′′(0) and g′′(0)) and the surface heat transfer rate (−s′(0))
for two values of c with those of Kumari [9] is shown in Fig. 9. As the unsteadiness in the flow increases the
shear stress rates increase where as heat transfer rates decrease.

7 Conclusions

The flow and heat transfer analysis is presented for a three-dimensional viscous fluid flow in the neighborhood
of a stagnation point. An approximate analytical expression in the form of a series solution is derived for
velocity and temperature using Homotopy Analysis Method. The coefficients of the series solution contain all
the study parameters such as c, M and Pr, λ, α, β. The Computer Algebra software Mathematica is used to
perform these semi-analytical calculations. The effect of various parameters such as magnetic parameter M ,
ratio of the velocity gradient parameter c and unsteady parameter λ are analysed on velocity and temperature
as well as on surface shear stress rates and heat transfer rates. The accelerating free stream velocity, i.e., λ > 0
or magnetic parameter M tend to delay or prevent flow reversal. The heat transfer and surface shear stress are
found to increase with the increase in the magnetic parameter. Hence it is suggested that by controlling the
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magnetic field on suitable strength, one can control the heat transfer rates as well as delay the occurrence of
flow reversal near stagnation point region.
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