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Abstract This paper considers the estimation problem for Burr type-X model, when the lifetimes are collected
under type-II progressive censoring with random removals, where the number of units removed at each failure
time follows a binomial distribution. The methods of maximum likelihood as well as the Bayes procedure to
derive both point and interval estimates of the parameters are used. The expected test time to complete the
censoring test is computed and analyzed for different censoring schemes. The effect of the binomial distribution
parameter p on the expected test time under progressive censoring and the relative expected test time over
the complete sample are investigated. Monte Carlo simulations are performed to compare and evaluate the
performance of different methods. Furthermore, an example with a real data set is presented for illustrative
purposes.
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1 Introduction

In many life test studies, it is common that the lifetimes of test units may not be able to record exactly. An
experimenter may terminate the life test before all n products fail to save time or cost. Therefore, the test is
considered to be censored in which data collected are the exact failure times on those failed units and the
running times on those non-failed units. A generalization of type-II censoring is progressive type-II censoring
which is useful when the loss of life test units at points other than the termination point is unavoidable. For the
theory methods and applications of progressive censoring, one can refer to the monograph by Balakrishnan
and Aggarwala [1] and the survey paper by Balakrishnan [2]. The progressively type-II censoring scheme
is described as follows. First, the experimenter places n units on test. If the first failure is observed, r; of
surviving units are randomly removed. When the i th failure unit is observed, r; of surviving units are randomly
selected and removed, i = 2, ..., m. This experiment terminates when the mth failure unit is observed and
Fm =n —m—ry —---— ry—1 of surviving units are all removed. Note that, in this scheme, r1, rq, ..., 1y,
the number of units # and the number of observed failure times m are all prefixed. However, in some practical
situations, these numbers may occur at random. For example, in some reliability experiments, an experimenter
may decide that it is inappropriate to carry on the testing on some of the tested units even though these units
have not failed. In such cases, the pattern of removal at each failure is random.

Inference, sampling design and generalization based on progressively censored samples were studied by
many authors, see among others, Balasooriya et al. [3], Ng et al. [4], Balakrishnan et al. [5], Fernandez [6],
Soliman [7], Asgharzadeh [8], Ku and Kaya [9], Wu et al. [10], Banerjee and Kundu [11] and Raqab et al.
[12]. However, a little work is introduced in the Bayesian context. Amin [13] considered the Bayes estimation
and Bayes prediction problems for Pareto distribution based on the progressive type-II censoring with random
removals. Also, in Bayesian setting, Sarhan and Abuammoh [14] discussed some statistical inference for the
exponential distribution using progressively censoring sample with random removals. Wu [15] has studied
estimation for Pareto distribution under progressive censoring with uniform removals. A uniform removal
pattern may not seem very realistic as it assumes that each removal event occurs with an equal probability
regardless of the number of units removed. A more realistic alternative to describe the number of occurrences
of an event out of # trials is the binomial distribution as suggested by Tse et al. [16]. Classical and Bayesian
procedures are developed in this paper in the context of parameter estimation and estimated the expected test
time for Burr-X model under progressive censoring with binomial removals.

The rest of this paper is organized as follows. The model formulation and the corresponding likelihood
function under type-II progressive censoring with binomial removals are discussed in Sect. 2. In Sect. 3, the
procedures of obtaining the maximum likelihood estimates of the parameters 6 and p are discussed. Both
point and interval estimations of the parameters are derived. Point and interval estimations using Bayesian
procedures are presented in Sect. 4. In Sect. 5, we discuss the expected test time under progressive type-II
censoring with the effect of various p. Finally, we will give an example with a real data set to illustrate our
proposed methods. Results from simulation studies assessing the performance of our proposed methods are
included in Sect. 6.

2 The model
Let the lifetime of a particular unit have a Burr type-X distribution with probability density function (pdf)
£ (x:0) = 20x exp(—x2) (1 —exp(—xD))" ' x>0,0>0. (1)
The corresponding cumulative distribution function(cdf) is
Fx(x) = (1 —exp(—x%)", x>0, 0>0. @)
Let (X,, R1), (X2, R2), ..., (X, Ry) denote a progressively type-II censored sample, where X, < X,

< --- < X,, with predetermined number of removals, say R| = ri, Ry = ra,..., R, = rp. Then, the
conditional likelihood function can be written as (see Cohen [17])

LO:x|R=r)= CHf (i) [1 = F(xp]™, 3)

i=1
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wherec=nmn—ri—1)---(n—ry—rp—---—ryp—1 —m+ 1), and r; can be any integer value between 0
and(n—m—ry —---—rj_1)fori =1,2,3,..., m — 1. Substituting (1) and (2), into (3) gives
L(G;le:r):cT(x)@mz ZGexp(GZ(]l 1)1nU,~), 4)
]1—0 ]m—o
where

T(0) = [ [ 25 exp(—x?) U~ Ui = (1 - exp(—xP).
i=l1

G = (_])j1+~~~+jm (r.l) (rm) ®)
Ji Jm

Suppose that an individual unit being removed from the test at the ith failure, i = 1,2,...,m — 1 is in-
dependent of the others, but with same probability p. Then, the number R; of units removed at the ith
failure , i = 1,2,...,m — 1, follows a binomial distribution with parameters n — m — Z;;} r; and p.

bin (n —m — z;;} 7, p). Therefore,

n—m r n—m-ry
P(R1=r1)=( " )P I—=p) ; (6)

andfori =1,2,3,...,.m—1
PR;p)=PRi=ri|Ri-1=ri-1,...,Ri =11)

_ (fl —m — Zl 1 1) r,(l _ p)nfmfzé;}rlfri’ (7
r
where0 <rj <n—mandO0<r, <n—m— Z;;% r; fori =1,2,3,...,m — 1. Furthermore, suppose that
R; is independent of x; for all i. Then, the likelihood function takes the following form,
LO,p,x,r)=L0O;x| R=r)P(R=r), (8)
where
P(R=r)=PRi=r) X P(Rp=nr|Ri=r)x P(R3=r3| Ry =12, Ry =r11)
X+ X P(Rp—1 =7m-1| Rn—2 =rm-2, ..., Ry =rp). ©
Then,
PR=r)= (n —m)! pZ?"Jll ri (1 — p)m=D—m=3, m=iyri (10)

(n —m— Z;”:_ll ri)!]—ﬂnz_ll ril
Using (4), (8) and (10), the likelihood function takes the following form

L©®,p;x,r)=c"Tx)Ly(©)L,(p), (11)

where
Li () =06™ Z z G exp(GZ(]l l)ani), (12)

/I—O Jm—O
and
Ly (p) = p=ist 7(1 — p) =D o= =Xi i, (13)
—m)!

with ¢* = cn—m) and T (x) = H;"zl 2x; exp(—xiz) (Ui)_1 . It should be noted that

(n—m > 1Vz) [T 1r,

both ¢* and T (x) do not depend on the parameters 6 and p.
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3 Maximum likelihood estimation

This section discusses the procedures of obtaining the maximum likelihood estimates of the parameters 6 and
p based on progressively type-II censoring data with binomial removals. Both point and interval estimations
of the parameters are derived.

3.1 Point estimation

It is obvious that L in (12) does not involve p. Thus, the maximum likelihood estimate (MLE) of 6 can be
derived by maximizing (12) directly. On the other hand, L, in (13) does not depend on the parameter 6, then
the MLE of p can be obtained directly by maximizing (13). In particular, after taking the logarithms of L (6)
and L7 (p), the MLEs of 6 and p can be found by solving the following equations

+Z ZGZ(], DInU; =0, (14)
= jm=0 i=1
m—1 .
Z:n:—ll i ((m - (n—m)y=27" (m—i—1) ri)
p 1—p
Making use of (14) and (15) yields

=0. (15)

1l

Omr = (—m) Z---iGZ(ml)an,- : (16)

j1=0  ju.=0 i=l
and
m—1
Doy Ti

pmL = = . (17

(m=1) (n—m)—=2_ ", (m—i—1)r;

3.2 Interval estimation
3.2.1 Bootstrap confidence intervals

In this subsection, we use the parametric bootstrap percentile method suggested by Efron [18]. The algorithms
for estimating confidence intervals of the parameters 6 and p are illustrated as follows

1. From the original data X = Xj, X2, ..., X,y with the corresponding values R = r;, i = 1,2,...m,
compute the ML estimates 6 and p p of the parameters using (16) and (17).

2. Use p to generate a bootstrap sample R* = r,i = 1,2,..., m using binomial distribution, where r
follows the bin (n — m, p) distribution and the variables rl-*|rf‘, ry,...,r;_; follow the bin (n —m —

>'_\ rj. P) distribution fori =2,3,....m — 1.
3. Use @ in step 1, with the binomial progressive censoring scheme obtained in step 2, generate a bootstrap
sample X* = X7, X3, ..., X;, using algorithm presented in Balakrishnan and Sandhu [19].

As in step 1, based on X*, compute the bootstrap sample estimates of 6 and p, say 6* and P
Repeat steps 2—4 N BOOT times.
(112 [N ])

6. Arrange all 0%’s and p*’s, in an ascending order to obtain the bootstrap sample (¢; ', ¢;, ..., ¢,
[ =1, 2(wherego1_9* @ =Dpr).

v oA

Let G(z) = P(¢; < z) be the cumulative distribution function (cdf) of ¢;.
Define ¢jpoot = G 1(z) for given z. The 100(1 — y) % approximate bootstrap confidence interval of ¢; is

given by
I:(/’lboot (%) » Plboot (1 - %)] . (18)
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3.2.2 Approximate interval estimation

The approximate confidence intervals based on asymptotic distributions of the MLE of the parameters 6 and
p are derived. The asymptotic variances and covariances of the MLE for parameters 6 and p are given by
elements of the inverse of Fisher information matrix

9%L o
Li=E Coij=1,2. (19)

 900p

Unfortunately, the exact mathematical expressions for the above expectations are difficult to obtain. Therefore,
we give the approximate (observed) asymptotic variance—covariance matrix for the MLE, which is obtained
by dropping the expectation operator E and it can be written as

-1

L 9L R R
T30 d0ap _ [ var(6) cov(e,@} 0,
2L 2L cov@, ) var(p) |
“opae  ap? dgs
with
3L m 9L 3L
202 = a2 gop ~opas " @D
and
FL _ XL = D= m) = 305 on — by )
p? p? (1-p)? '

The asymptotic normality of the MLE can be used to compute the approximate confidence intervals for
parameters 6 and p.
Therefore, (1 — «)100 % approximate confidence intervals for parameters 6 and p become

0+ Zypy/var@) and P+ Zgjoy/var(p), (23)

where Z, > is the percentile of the standard normal distribution with right-tail probability c /2.

4 Bayes estimation

It is well known that choice of loss function is an integral part of Bayesian estimation procedures. A wide
variety of loss functions has been developed in the literature to describe various types of loss structures. The
symmetric square error loss SEL is one of the most popular loss functions. It is widely employed in the
inference, but its application is motivated by its good mathematical properties, not by its applicability for
representing a true loss structure. A loss function should represent the consequences of different errors. There
are situations where overestimation and underestimation can lead to different consequences. Such conditions
are very common in engineering, medical and biomedical sciences. For example, when we estimate the average
reliable working life of the components, overestimation is usually more serious than underestimation. In this
case, an asymmetric loss function might be more appropriate. A number of asymmetric loss functions may
be found in the literature, but among these asymmetric losses, LINEX loss function (LLF) is dominantly and
widely used because it is a natural extension of SEL.
The mathematical form of LLF may simply be expressed as

LA) xe®—cA—1; ¢#0, (24)

where A = (; —u), u is an estimate of u.
It is easy to verify that the value of u that minimizes E, (L(# — u)) in (24) is

~ 1
UpL = —Zlog(Eu[eXp(—cu)]), (25)
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another useful asymmetric loss function is the General Entropy loss (GEL) function
La(u, u) oc (ufu)? — g log(u/u) — 1, (26)
whose minimum occurs at # = u. The Bayes predictive estimate u G of u under GEL (26) is

upG = (E,u=97)~4. 27)

For more details, see Soliman [7].

4.1 Point estimation

We assume that the parameters 6 and p behave as independent random variables. As prior distributions in
derivation of Bayes estimators of the parameters, we use conjugate gamma prior distribution with known
parameters ¢, 8 for 8. Namely, the prior pdf of 6 takes the following form
_ B e
T @ B)= m 0 exp(—p60), 0 >0, >0, g>0, (28)
o

while p has conjugate Beta prior distribution with known parameters y, A. That is, the prior pdf of p is given
by

™ (p) = p7 DV A-p* D 0<p<ly,a>0. (29)

B(y,»)

The joint prior (pdf) of 6 and p is
w@,p)=m @)m(p),0 >0,0<p<1
B* (@1 -1 .
= 0 Vexp {0} p¥ 7V (1 = )7V (30)
B(. )T (@) b

Therefore, the joint posterior (pdf) of 6 and p is

p" D (1= DT 3G ot exp {—q,6)

! 31)
By T m+a) 3 o 20 0Ga;" ™"

7*@,p|x,r)=

where

m—1 m—1

m
gj=F=2 Ui+ DU, y*=y+ D r and 2=kt @m—=1D)@—m) =D (m—ir. (32)
i=l1 =1 i=l1

Therefore, the marginal posterior (pdf) of 6 and p is given by

;’i:O . Z"'m 0 G Q(m-i-a—l) CXP(—Q(/]J)

Jm=

['(m+a) Z;izo T Z;’Z:o G CIj_m_a ’

7@ x,r)= (33)

and

1 * *
w5 (plx,r) = WW D —p*-n, (34)

It is noted that the posterior distribution of & is Gamma with parameters (m + «) and g, while the posterior
distribution of p is Beta with parameters y* and A*.
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4.1.1 Symmetric Bayes estimation
SEL function Under SEL function (symmetric), the estimator of a parameter is the posterior mean. Thus,

Bayes estimators of the parameters are obtained using the posterior densities (33) and (34).
The Bayes estimators 6pg and pps of the parameters 6 and p are

- o0
Ops :/ om0 | x,r) do
0

m —(m+a+1)
_mAe 3o XheGa
- r I'm —m— ’
lel:() Z/nl:()G q/ "

(35)

and

*

)/*-i-)»*.

1
ﬁBs=/0 prs (plx-r)dp = (36)

4.1.2 Asymmetric Bayes estimation

(i) LL function If we put u = 6 in (25), then the Bayes estimate fpL of parameter 6 relative to the LLF using
(33)is

- 1 o
OpL = ——log |:/ exp(—ab)m; (0 | x) d0:|
a 0

‘m —(m+a)
r I'm —(m+a)

Similarly, if in (25), u = p, then the Bayes estimate pp; of the parameter p relative to the LLF using (34)
is

1
= ——log (37)
a

_ 1 : .
DBL = —;log |:/0 exp(—ap)m; (p | x,r) dpi|

1

1 ! R .
- - —ap)p D (1 = -1
P 10g[B(y*’/\*)/0 exp(—ap)p'’ ~) (1 = p) dp]- (38)

One can use a numerical integration technique to get the above integration (38).
(i) GEL function Let u = 6 in (27), then the Bayes estimate 6p; of parameter 6 relative to the GEL function
(27)is

086 = [Eo(0~"|x)]"1/»
o0 (~1/b)
= [/ 0~ (0| x,r) d@] . (39)
0

From (33) resulting in
m - —p)yq(=1/b)
~ Fm+a—b> 2" Gq; (m+a—b)
Opc = - . - v .
(m+a) Zj1=0 . zjm=0 qu

Let u = p, in (27), then the Bayes estimate ppg of parameter p relative to the GEL function is

| (~1/b)
PBG = [/O ptri(p | z)dp]

_ [F ¢+ 19T (" —b)T‘”b)
S LT@HT (" + 25— b) '

(40)

(41)
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4.2 Interval estimation
4.2.1 Highest posterior density interval (HPDI)

In general, the Bayesian method to interval estimation is much more direct than the maximum likelihood
method. Now, having obtained the posterior distribution p(w | Data), we ask, “How likely is it that the
parameter w lies within the specified interval [wr, wr]?”. Bayesian call this interval based on the posterior
distribution a ‘credible interval’. The interval [w; , wy] is said to be a (1 — &) 100 % credible interval for 0 if

wy

/p(a) | Data)df = 1 — «. (42)
oL
For the shortest credible interval, we have to minimize the interval [wr, wy] subject to the condition (42)
which requires
p(wr | Data) = p(wy | Data). (43)

Asinterval [wr , wy ] which simultaneously satisfies (42) and (43) is called the ‘shortest’ (1 —a)100 % credible
interval. A highest posterior density interval (HPDI) is such that the posterior density for every point inside
the interval is greater than that for every point outside of it. For a unimodal, but not necessarily symmetrical,
posterior density and the shortest credible and the HPD intervals are identical.

We now proceed to obtain the (1 — «)100 % HPD intervals for the parameters 6 and p. Consider the
posterior distribution of 6 in (33). Due to the unimodality of (33), the (1 — «)100 % HPDI [0}, 8] for the
parameter 6 is given by the simultaneous solution of the equations

Ou
/nf‘(@ |x,r)=(0—a) and 7] O |x,r)=n]Ov |x,r). (44)
oL
Similarly, using the posterior pdf of p in (34), the (1 — «)100 % HPDI [py, py] for the parameter p is given
by the simultaneous solution of the equations
pu
/nﬁ‘(p |x,r) =0 —a) and 73 (pL|x,r) =73 (pu | x,7). (45)
pL
Now, we have to use a mathematical package to get the numerical solution to solve these two systems.

5 Expected test time

In practical application, an experimenter may be interested to know whether the test can be completed within
a specified time. This information is important for an experimenter to choose an appropriate sampling plan
because the time required to complete a test is directly related to the cost. Under a type-II censoring plan, the
time required to complete a test is the time to observe the mth failure in a sample of n test units. The time is
given by X,,,, which denotes the mth order statistics in a sample of size n. Similarly, under progressive type-II
censoring sampling plan with random or binomial removals conditioning on R, the expected value of X,,, (see
Balakrishnan and Aggarwala [1]) is given by

r1)
EXy|R=r]= C<r> ( et 2 "“/ xf (x) FPO=1 () dx

o (”) () e on ) — 1
—296(r>2 Z( ey (—1)"( ; )

I
=0 [,=0 |} R U s

ﬁ
) (4(k n 1>3/2) ’ (#0)
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m m—1
al:Zli,C(r)zn(n—rl—1)(n—r1—r2—2)~~-|:n—2(rl-—l):|, (47)

i=1 i=1

and h (l;) =11 + 1+ - - - 4+ [; + i. Furthermore, the expected time of a type-II censoring test without removals
can be found by setting r;, =0 foralli =1,...,m — 1 and r,, = n — m in (46). It is given by

mo—1
(MmO — JT
epl=2e(,) 3 o0 (") () “

Similarly, the expected time of a complete sampling case with n test units can also be obtained by setting
m=nandr; =0foralli =1,...,min (46). It is given by

no—1
-1
E[x}*] _2n02( 1)"( p )(ﬁ) (49)

The expected termination point for progressively type-II censoring with binomial removals is evaluated by
taking expectation on both sides (46) with respect to the R. That is,

g(ri) g(r1) g(rm—1)

E[Xp]=ER[EXn |R=rll=D_ > - > PR PEXny|R=r], (50)

r1=0r2=0 rm—1=0

where g(r;)) =n—m, g(rij))=n—m—ry —---—ri_1,i =2,...,m—1,and P (R, p) is given in (10).
The ratio of the expected time under different schemes to the expected time under complete sampling
namely, ratio of expected experiment times (REET) is

Expected experiment time under different schemes
REET = . . G
Expected experiment time under complete sample

Suppose that an experimenter wants to observe the failure of at least m complete failures when the test is
anticipated to be conducted under different schemes. Then, the REET provides important information in
determining whether the experiment time can be shortened significantly if a much larger sample of n test units
is used and the test is stopped once m failures are observed.

To compare (49) and (50), we use: REET = z[ ;{;';J] which define the ratio of the expected termination point
under type-II progressive censoring with binomial removals and the expected termination point for complete
sample. It is clear that when the value of REET closer to 1, the termination point is closer to the complete

sample.

6 Illustrative example

Example 6.1 (Real life data) To illustrate the inferential procedures developed in the preceding sections, we
choose the real data set which was also used in Lawless ([20], pp. 185). These data are from Nelson [21]
concerning the data on time to breakdown of an insulating fluid between electrodes at a voltage of 34 kv
(minutes). The 19 times to breakdown are

09 415 0.19 0.78 8.01 31.75 7.35 6.50 827 3391
3252 316 485 278 4.67 1.31 12.06  36.71  72.89

Consider a life test where 19 units of lifetimes are put in test, simultaneously. The test is terminated at the
time of the thirteenth failure. The number of surviving items removed from the experiment at the failure of each
units denoted by r; is generated from the binomial distribution as follows: r; from bin (6, p = 0.4) distribution

and the variables r;|ry, r, ..., ri—1 from bin (6 — Zl 17j »0.4) distributions fori = 2,3, ..., 12. We set ry,

according to the following relation: r,, =n —m — lel rpifn —m — Z;;% r; > 0and r, = 0, otherwise.
The observed failure times of the first 13 units measured in an informative experiment with the corresponding
values of r; are: (x;, ;) = (0.19,2), (0.78,1), (0.96,1), (1.31,1), (2.78,1), (3.16,0), (4.67,0), (4.85,0), (6.5,0),
(7.35,0), (8.01,0), (8.27,0), (12.06,0). These data generated withn = 19 and m = 13 using algorithm presented
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Table 1 Different point estimates for 6 and p

Parameters (Om ()Boot (IBs (JBL (JBG

a b

—1 0.0001 1 -1 0.0001 1
9 31761 3.1960  3.1822 35397  3.1822 29094  3.1822  3.086 2.9890
P 0.3750 0.3822 0.3750 0.3820 0.3750 0.3682 0.3750 0.3553 0.3333

Table 2 95 % confidence intervals for 6 and p

Parameters ACI Length BCI Length HPDI Length
0 [1.6386,4.7136] 3.075 [1.8347,5.0574] 3.2227 [1.8391,4.9024] 3.0634
p [0.1378,0.6122] 0.4744 [0.1475,0.6615] 0.5140 [0.1634,0.6162] 0.4528

Table 3 The MSE of the estimate of 6 for (6, p) = (0.321, 0.4). with CVP of 95 % ACI and 95 % HPDI

n m ML SE LINEX GE CvVP CVP
a b
—1 1 —1 1 ACI HPDI
30 27 0.0645 0.0644 0.0656 0.0633 0.0644 0.0609 0.950 0.971
24 0.0685 0.0683 0.0696 0.0671 0.0683 0.0646 0.944 0.970
18 0.0727 0.0730 0.0747 0.0714 0.0730 0.0679 0.957 0.972
12 0.0785 0.0791 0.0811 0.0773 0.0791 0.0734 0.939 0.966
40 36 0.0573 0.0575 0.0585 0.0566 0.0575 0.0542 0.956 0.965
32 0.0578 0.0580 0.0589 0.0571 0.0580 0.0550 0.958 0.976
24 0.0617 0.0620 0.0631 0.0610 0.0620 0.0589 0.941 0.971
16 0.0657 0.0663 0.0676 0.0651 0.0663 0.0626 0.945 0.966
60 54 0.0455 0.0455 0.0459 0.0451 0.0455 0.0442 0.948 0.972
48 0.0479 0.0480 0.0485 0.0475 0.0480 0.0464 0.937 0.967
36 0.0506 0.0509 0.0516 0.0503 0.0509 0.0489 0.944 0.974
24 0.0528 0.0534 0.0541 0.0526 0.0534 0.0511 0.957 0.968
30 72 0.0400 0.0401 0.0404 0.0398 0.0401 0.0391 0.940 0.981
64 0.0411 0.0413 0.0416 0.0409 0.0413 0.0400 0.947 0.978
48 0.0431 0.0434 0.0438 0.0430 0.0434 0.0420 0.956 0.975
32 0.0479 0.0485 0.0490 0.0479 0.0485 0.0466 0.951 0.971
100 90 0.0338 0.0338 0.0340 0.0337 0.0338 0.0332 0.951 0.977
80 0.0362 0.0363 0.0365 0.0361 0.0363 0.0356 0.941 0.972
60 0.0363 0.0365 0.0367 0.0362 0.0365 0.0357 0.961 0.986
40 0.0399 0.0403 0.0407 0.0400 0.0403 0.0391 0.952 0.985

in Balakrishnan and Sandhu [19]. We use our results of the previous sections and the above data to derive
different estimates of the parameters 6 and P . The Bayes estimates are derived under the non-informative prior
(¢ = B =y = A = 0) provides prior distributions which are not proper. The Bayes point estimates relative to
squared error, LINEX and general entropy loss functions are denoted, respectively, by: (.)gs, ()L, ()BG -
The results of different point estimates are shown in Table 1. Also, we compute 95% approximate confidence
interval (ACI), 95 % Bootstrap confidence interval (BCI) and 95 % highest posterior density interval (HPDI)
for the parameters 6 and P. The results are given in Table 2.

7 A Simulation study

Example 7.1 In this example, we consider tests with n = 30, 40, 60 and 100 units generated from Burr-X
distribution with parameter 6. The test is terminated when the number of failed subjects achieves or exceeds
a certain value m, where m/n = 40, 60, 80 and 90 %. Data for the dropouts r; were generated from the
binomial distribution as described in example 1. 1000 samples are generated for the parameter value (0, p) =
(0.321, 0.4). The samples were generated using the algorithm described in Balakrishnan and Sandhu [19]. We
used different sample sizes (n), different sampling schemes (i.e., different Ri values) and informative priors
(o, B) = (¥, 1) = (1, 2) with the values of previous parameters 8 and p, respectively. For each simulated
data set, the MLE, symmetric Bayes and asymmetric Bayes estimates of 8 and p and their mean square error
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Table 4 The MSE of the estimator of p for (6, p) = (0.321, 0.4). with CVP of 95 % ACI and 95 % HPDI
n m ML SE LINEX GE CVP Cvp
a b
—1 1 —1 1 ACI HPDI
30 27 0.1713 0.1030 0.1070 0.1001 0.1030 0.1140 0.973 0.982
24 0.1329 0.0995 0.1019 0.0974 0.0995 0.1006 0.936 0.978
18 0.1000 0.0864 0.0877 0.0853 0.0864 0.0857 0.928 0.966
12 0.0766 0.0695 0.0703 0.0683 0.0695 0.0685 0.953 0.982
40 36 0.1571 0.1026 0.1062 0.0997 0.1026 0.1026 0.922 0.982
32 0.1161 0.0937 0.0955 0.0920 0.0937 0.0937 0.958 0.979
24 0.0858 0.0764 0.0774 0.0753 0.0764 0.0747 0.942 0.972
16 0.0653 0.0611 0.0616 0.0607 0.0611 0.0607 0.952 0.984
60 54 0.1368 0.1018 0.1045 0.0994 0.1018 0.1012 0.937 0.976
48 0.0991 0.0854 0.0868 0.0842 0.0854 0.0842 0.930 0.963
36 0.0649 0.0604 0.0610 0.0598 0.0604 0.0596 0.956 0.981
24 0.0527 0.0505 0.0507 0.0502 0.0505 0.0504 0.950 0.982
80 72 0.1232 0.0984 0.1005 0.0964 0.0984 0.0966 0.945 0.983
64 0.0818 0.0737 0.0745 0.0730 0.0737 0.0734 0.943 0.977
48 0.0571 0.0543 0.0546 0.0540 0.0543 0.0539 0.952 0.975
32 0.0455 0.0437 0.0439 0.0435 0.0437 0.0434 0.952 0.978
100 90 0.1102 0.0919 0.0935 0.0904 0.0919 0.0907 0.928 0.955
80 0.0740 0.0682 0.0690 0.0675 0.0682 0.0673 0.940 0.980
60 0.0505 0.0484 0.0487 0.0482 0.0484 0.0481 0.948 0.976
40 0.0423 0.0412 0.0413 0.0410 0.0412 0.0410 0.941 0.965
Table 5 Expected test time E [X,, ] for type-1I progressive censoring with binomial removals: for 6 = 1
n m p=0.1 p=02 p=023 p=04 p=0.5 p=0.6 p=0.7 p=0.38 p=09
6 6 1.5203 1.5203 1.5203 1.5203 1.5203 1.5203 1.5203 1.5203 1.5203
5 1.2537 1.3162 1.3618 1.3941 1.4160 1.4304 1.4394 1.4449 1.4482
4 1.0043 1.0635 1.1235 1.1825 1.2363 1.2810 1.3144 1.3366 1.3498
3 0.7925 0.8365 0.8844 0.9367 0.9931 1.0514 1.1080 1.1580 1.1970
10 10 1.6757 1.6757 1.6757 1.6757 1.6757 1.6757 1.6757 1.6757 1.6757
9 1.5057 1.5771 1.6114 1.6271 1.6341 1.6373 1.6390 1.6399 1.6406
8 1.3358 1.4549 1.5256 1.5631 1.5817 1.5908 1.5955 1.5981 1.5999
7 1.1586 1.2927 1.4013 1.4719 1.5114 1.5317 1.5421 1.5479 1.5516
6 1.0060 1.1082 1.1981 1.2714 1.3305 1.3809 1.4259 1.4637 1.4884
5 0.8667 0.9684 1.0799 1.1854 1.2719 1.3346 1.3757 1.4009 1.4161
15 15 1.7914 1.7914 1.7914 1.7914 1.7914 1.7914 1.7914 1.7914 1.7914
14 1.4617 1.6105 1.7098 1.7521 1.7657 1.7692 1.7700 1.7704 1.7706
13 1.2286 1.4340 1.6046 1.6928 1.7288 1.7416 1.7458 1.7473 1.7479
12 1.1335 1.3766 1.5755 1.6725 1.7072 1.7174 1.7204 1.7219 1.7228
11 1.0939 1.3261 1.5268 1.6313 1.6724 1.6862 1.6910 1.6934 1.6950
10 0.9943 1.0772 1.2417 1.3968 1.5140 1.5909 1.6344 1.6552 1.6631
9 0.9039 0.9929 1.1738 1.3372 1.4513 1.5268 1.5781 1.6109 1.6264
8 0.6164 0.7063 0.9518 1.2154 1.4048 1.5085 1.5565 1.5772 1.5859
7 0.5360 0.5979 0.8036 1.0596 1.2787 1.4213 1.4943 1.5245 1.5362

(MSE) are calculated. Using results in Sects. 3.2 and 4.2, the approximate confidence interval (ACI) based on
asymptotic distributions of the MLEs and HPDI of the parameters is calculated and compared based on their
coverage probabilities (CVP). All of the computations were performed by (mathematica 7.0) using a Pentium
4 processor, so we cannot compute the BCI and CVP to the bootstrap method. Tables 3 and 4 present the
simulation results for € and p, respectively.

The following results emerge from the simulation results

estimates of p have smaller MSE.
The MSE associated with both MLE and Bayes estimates of the parameters decrease with increasing the
sample size n. Also, it decreases when the percentage of censoring becomes small (i.e., m is large).

The method using highest posterior density performs better than the asymptotic normality-based procedure
in giving closer coverage probability to the nomial value.

. The ML method provides better estimates of 6 in the sense of having smaller MSE, while the Bayes
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Table 6 Expected test time E [ X, ] for type-II progressive censoring with binomial removals for 6 = 2

n m p=0.1 p=02 p=03 p=04 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

6 6 1.7285 1.7285 1.7285 1.7285 1.7285 1.7285 1.7285 1.7285 1.7285
5 1.4870 1.5436 1.5850 1.6142 1.6341 1.6472 1.6553 1.6603 1.6632
4 1.2592 1.3092 1.3617 1.4154 1.4659 1.5086 1.5407 1.5618 1.5742
3 1.0678 1.1067 1.1485 1.1945 1.2451 1.2987 1.3516 1.3988 1.4354

10 10 1.8698 1.8698 1.8698 1.8698 1.8698 1.8698 1.8698 1.8698 1.8698
9 1.7149 1.7800 1.8112 1.8255 1.8319 1.8348 1.8363 1.8372 1.8378
8 1.5611 1.6691 1.7333 1.7674 1.7843 1.7925 1.7968 1.7992 1.8008
7 1.9374 1.5178 1.6179 1.6836 1.7202 1.7388 1.7483 1.7536 1.7570
6 1.2609 1.3457 1.4200 1.4824 1.5359 1.5851 1.6317 1.6721 1.6987
5 1.1370 1.2286 1.3290 1.4244 1.5030 1.5600 1.5975 1.6204 1.6342

15 15 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754
14 1.6289 1.7832 1.8904 1.9365 1.9512 1.9550 1.9558 1.9562 1.9564

13 1.3870 1.5967 1.7800 1.8759 1.9152 1.9291 1.9336 1.9350 1.9356

12 1.2989 1.5442 1.7553 1.8596 1.8969 1.9075 1.9105 1.9118 1.9127

11 1.2767 1.5032 1.7114 1.8216 1.8648 1.8790 1.8837 1.8859 1.8873

10 1.1895 1.2416 1.4048 1.5688 1.6956 1.7797 1.8273 1.8499 1.8581

9 1.1087 1.1662 1.3440 1.5137 1.6350 1.7164 1.7723 1.8080 1.8245

8 0.7774 0.8479 1.1056 1.3891 1.5942 1.7064 1.7578 1.7795 1.7880

7 0.6990 0.7406 0.9559 1.2306 1.4674 1.6217 1.7002 1.7316 1.7430

Table 7 Expected test time E [ X, ] for type-II progressive censoring with binomial removals for 6 = 3

n m p=0.1 p=02 p=03 p=04 p=05 p=0.6 p=0.7 p=0.8 p=09
6 1.8414 1.8414 1.8414 1.8414 1.8414 1.8414 1.8414 1.8414 1.8414
5 1.6128 1.6664 1.7055 1.7332 1.7520 1.7644 1.7721 1.7768 1.7796
4 1.3967 1.4418 1.4903 1.5412 1.5899 1.6316 1.6630 1.6836 1.6954
3 1.2179 1.2538 1.2921 1.3345 1.3817 1.4326 1.4835 1.5291 1.5643

10 10 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754 1.9754
9 1.8283 1.8901 1.9198 1.9333 1.9394 1.9422 1.9436 1.9445 1.9450
8 1.6826 1.7849 1.8458 1.8782 1.8942 1.9021 1.9061 1.9084 1.9099
7 1.5260 1.6391 1.7350 1.7982 1.8333 1.8511 1.8601 1.8652 1.8683
6 1.3982 1.4737 1.5396 1.5963 1.6469 1.6956 1.7431 1.7850 1.8126
5 1.2832 1.3690 1.4633 1.5533 1.6277 1.6818 1.7173 1.7390 1.7521

15 15 2.0761 2.0761 2.0761 2.0761 2.0761 2.0761 2.0761 2.0761 2.0761
14 1.7197 1.8774 1.9890 2.0372 2.0526 2.0564 2.0573 2.0576 2.0579
13 1.4741 1.6856 1.8758 1.9760 2.0170 2.0315 2.0361 2.0375 2.0381
12 1.3849 1.6350 1.8533 1.9616 2.0003 2.0112 2.0142 2.0154 2.0163
11 1.3838 1.5997 1.8119 1.9251 1.9696 1.9840 1.9886 1.9907 1.9921
10 1.2752 1.3294 1.4933 1.6622 1.7944 1.8824 1.9322 1.9558 1.9643
9 1.2490 1.2610 1.4362 1.6094 1.7347 1.8194 1.8778 1.9151 1.9323
8 0.8360 0.9230 1.1885 1.4831 1.6969 1.8137 1.8671 1.8892 1.8978
7 0.8176 0.8190 1.0380 1.3229 1.5695 1.7303 1.8118 1.8439 1.8550

4. Another values of the parameter 6 were considered and the results were not reported here because those
cases exhibited a similar pattern to the case considered here. But in general, we note that the MSE of all
estimates of the parameters 6 and p is reduced when the removal probability p is large.

Example 7.2 In this example, we compute numerically the expected test time E [ X,,] for different values of
n,m, p and 6 under progressive type-II censoring with binomial removals. We consider the following values
:n=6,10,15;0 = 1,2,3 and p = 0.1(0.1)0.9. The cases of m = n correspond to the complete sample plan.
The results are displayed in Tables 5, 6 and 7.

From Tables 5, 6 and 7, it is observed that the expected termination time for type-II progressive censoring
sample is getting close to that of the complete sample when m is increasing. For fixed m, the expected
experiment time of type-II progressive with binomial removals decreases when the sample size n increasing.
Also, with respect to binomial removals, it is clear that for fixed n and m, the REET getting closer to one
faster for increasing p . All results are due to the fact that a high removal probability implies a large number of
dropouts. Thus, the removal probability p plays a major factor in the time required to complete the experiment.
In all cases, a large number of test units n would shorten the experiment time of the test when the underlying
scheme is type-II progressive with binomial removals.
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8 Conclusions

The purpose of this paper is to develop a maximum likelihood estimation and Bayesian estimation of the Burr
type-X distribution when data are collected under type-II progressive censoring with binomial removals. We
investigate both point and interval estimations of the parameters and the expected time to complete the test.
The results show that the MSE of different estimators of the parameter 6 is decreasing when the removal
probability p increasing, on the other hand, the corresponding time required to complete the test increases
significantly. We also computed the expected termination time for type-II progressive censoring with binomial
removals. Illustrative Example and simulation study were conducted to examine the performance of the MLE
and the Bayes estimators. Finally, we discussed some numerical results concerning the expected test time. In
summary, results of the numerical examples demonstrate that when data are collected under type-II progressive
censoring with binomial removals, the test time is most influenced by the removal probability p. From Tables
5, 6,7, users can decide the censoring number in their life test under the consideration of expected termination
point. Generally, the results would provide important information to experimenters in planning a life test.

Acknowledgments The authors would like to express their thanks to Professor Mohamed A. W. Mahmoud for his helpful
assistance in revising this manuscript. The authors would like to thank the anonymous referees for their constructive comments
on an early version of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Balakrishnan, N.; Aggarwala, R.: Progressive Censoring: Theory, Methods, and Applications. Birkhauser, Boston (2000)
Balakrishnan, N.: Progressive censoring methodology: anappraisal. Test 16, 211-296 (with discussions) (2007)
Balasooriya, U.; Saw, S.L.C.; Gadag,V.: Progressively censored reliability sampling plans for theWeibull distribution. Tech
nometrics 42, 160-167 (2000)
4. Ng, H.K.; Chan, P.S.; Balakrishnan, N.: Optimal progressive censoring plans for the Weibull distribution. Technometrics
46, 470-481 (2004)
5. Balakrishnan, N.; Knnan, N.; Lin, C.T.; Ng, H.: Point and interval estimation forGaussian distribution based on progressively
type II censored samples. IEEE Trans. Reliab. 52, 90-95 (2003)
6. Fernandez, A.J.: On estimating exponential parameters with general type II progressive censoring. J. Stat. Plan. Inference
121, 135-147 (2004)
7. Soliman, A.A.: Estimation of parameters of life from progressively censored data using Burr-XII model. IEEE Trans. Reliab.
54, 3442 (2005)
8. Asgharzadeh, A.: Point and interval estimation for a generalized logistic distribution under progressive type II censoring.
Commun. Stat. Theory Methods 35, 1685-1702 (2006)
9. Ku, C.; Kaya, M.F.: Estimation for the parameters of the Pareto dsitribution under progressive censoring. Commun. Stat.
Theory Methods 36, 1359-1365 (2007)
10. Wu, S.-J.; Chen, Y.-J.; Chang, C.-T.: Statistical inference based on progressively censored samples with random removals
from the Burr type XII distribution. J. Stat. Comput. Simul. 77, 19-27 (2007)
11. Banerjee, A.; Kundu, D.: Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Trans. Reliab.
57, 369-378 (2008)
12. Raqaba, M.Z.; Asgharzadeh, A.R.; Valiollahi, R.: Prediction for Pareto distribution based on progressively type-II censored
samples. Comput. Stat. Data Anal. 54, 1732-1743 (2010)
13. Amin, Z.H.: Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals. J. Appl.
Stat. 35(11), 1203-1217 (2008)
14. Sarhan, A.M.; Abuammoh, A.: Statistical inference using progressively type-II censored data with random scheme. Int.
Math. Forum 35, 1713-1725 (2008)
15. Wu, S.-J.: Estimation for the two-parameter pareto distribution under progressive censoring with uniform removals. J. Stat.
Comput. Simul. 73(2), 125-134 (2003)
16. Tse, S.K.; Yang, C.; Yuen, H.K.: Statistical analysis of Weibull distributed lifetime data under type II progressive censoring
with binomial removals. J. Appl. Stat. 27, 1033-1043 (2000)
17. Cohen, A.C.: Progressively censored samples in life testing. Technometrics 5, 327-329 (1963)
18. Efron, B.: The bootstrap and other resampling plans. In: CBMS-NSF Regional Conference Seriesin Applied Mathematics,
vol. 38. SIAM, Philadelphia (1982)
19. Balakrishnan, N.; Sandu, R.A.: A simple simulational algorithm for generating progressively type-1I censored samples. Am.
Stat. 49, 229-230 (1995)
20. Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (1982)
21. Nelson, W.B.: Applied Life Data Analysis. Wiley, New York (1982)

W=




	Inferences using type-II progressively censored data with binomial removals
	Abstract
	1 Introduction
	2 The model
	3 Maximum likelihood estimation
	3.1 Point estimation
	3.2 Interval estimation
	3.2.1 Bootstrap confidence intervals
	3.2.2 Approximate interval estimation


	4 Bayes estimation
	4.1 Point estimation
	4.1.1 Symmetric Bayes estimation
	4.1.2 Asymmetric Bayes estimation

	4.2 Interval estimation
	4.2.1 Highest posterior density interval (HPDI)


	5 Expected test time
	6 Illustrative example
	7 A Simulation study
	8 Conclusions
	Acknowledgments
	References




