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Abstract In this paper, we investigate the set of solutions for nonlinear Volterra type integral equations in
Banach spaces in the weak sense and under Henstock–Kurzweil–Pettis integrability. Moreover, a fixed point
result is presented for weakly sequentially continuous mappings defined on the function spaceC(K , X), where
K is compactHausdorff and X is aBanach space.Themain condition is expressed in termsof axiomaticmeasure
of weak noncompactness.

Mathematics Subject Classification 47H10 · 28B05 · 45D05

1 Introduction

The differential, integral and integro-differential problems in Banach spaces have been widely studied by
many authors. Recently, for problems involving highly oscillating functions, many authors have examined the
existence of solutions under Henstock–Kurzweil–Pettis integrability [1,7–9,19,20,24–28].

In this paper, motivated by these examinations we focus on the existence of solutions in the weak sense
for the nonlinear Volterra type integral equation in Banach spaces

x(t) = h(t) +
∫ t

0
G(t, s) f (s, x(s),

∫ s

0
k(s, τ )x(τ )dτ)ds, (1.1)

involving the Henstock–Kurzweil–Pettis integral. The main tools used in our study are associated with the
techniques of measure of weak noncompactness, properties and convergence theorems mainly of Vitali type
for Henstock–Kurzweil–Pettis integrals based on the notion of equi-integrability (see [11]). By using these
tools, we are able to prove not only the existence of solutions of the considered integral equation, but also we
can obtain a topological structure of the set of these solutions.

In the next section, we give some preliminary facts and present a fixed point result for function spaces.
Our ideas were motivated originally by a theorem of Dobrakov [13] which has the interest to characterize
weakly convergent sequences in C(K , X) with weakly convergent sequences in X without equicontinuity
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conditions. In the last section, we use our fixed point result and the techniques of the theory of measure of
weak noncompactness presented in Section 2 to establish existence principle for the nonlinear Volterra integral
equation (1.1) under Henstock–Kurzweil–Pettis integrability. By imposing some conditions expressed in terms
of themeasure of weak noncompactness on f and k, we define an operator over the Banach space of continuous
functions from a compact interval to a Banach space, whose fixed points are solutions of (1.1).

2 Preliminaries

Let X be a Banach space with the norm ||.|| and let K be a compact and Hausdorff space. In what follows, we
denote by C(K , X) the Banach space of all continuous functions from K to X , endowed with the sup-norm
||.||∞ defined by ||x ||∞ = sup{‖x(t)‖, t ∈ K } for each x ∈ C(K , X).

Definition 2.1 Let X be a Banach space and C a lattice with a least element, which is denoted by 0. By a
measure of weak noncompactness on X , we mean a function � defined on the set of all bounded subsets of X
with value in C satisfying:

(1) �(conv(�)) = �(�), for all bounded subsets � ⊆ X , where conv denotes the closed convex hull of �,
(2) for any bounded subsets �1, �2 of X we have

�1 ⊆ �2 �⇒ �(�1) ≤ �(�2),

(3) �(� ∪ {a}) = �(�) for all a ∈ X , � bounded set of X ,
(4) If �(�) = 0, then � is relatively weakly compact in X .

The above notion is a generalization of the well-known De Blasi measure of weak noncompactness β (see
[10]) defined on each bounded set � of X by

β(�) = inf{ε > 0 : there exists a weakly compact set D such that

� ⊆ D + Bε(θ)}.
Note for all bounded subsets �, �1, �2 of X ,

(5) β(�1 ∪ �2) = max{β(�1), β(�2)},
(6) β(λ�) = λβ(�) for all λ > 0,
(7) β(�1 + �2) ≤ β(�1) + β(�2).

(8) β
(⋃

|λ|≤h λ�
)

= hβ(�).

Note that β is the counterpart for the weak topology of the classical Hausdorff measure of noncompactness.
For more examples and properties of measures of weak noncompactness, we refer the reader to [2,4,5,21,22].

Definition 2.2 A function f : X1 −→ X2, where X1 and X2 are Banach spaces, is said to be weakly–weakly
sequentially continuous if for each weakly convergent (xn)n ⊂ X1 with xn ⇀ x , we have f xn ⇀ f x . Here,
⇀ denotes weak convergence.

The following fixed point result due to Arino et al. [3] will be used throughout this section.

Theorem 2.3 Let X be a metrizable locally convex linear topological space and let C be a weakly compact
convex subset of X. Then, any weakly sequentially continuous map F : C −→ C has a fixed point.

To characterize weak convergence in C(K , X), we use Dobrakov’s theorem

Theorem 2.4 ([13, Theorem 9]) Let K be a compact Hausdorff space and X a Banach space. Let (xn) be a
bounded sequence in C(K , X), and x ∈ C(K , X). Then, (xn) is weakly convergent to x if and only if (xn(t))
is weakly convergent to x(t) for each t ∈ K.

Now, we state the following Ambrosetti’s type lemma which will be useful in the sequel.

Lemma 2.5 Let V ⊆ C(K , X) be a family of strongly equicontinuous functions. Then
(a)

β(V ) = sup
t∈K

β(V (t)) = β(V (K ))

where V (t) = {x(t) : x ∈ V } and V (K ) = ⋃
t∈K {x(t) : x ∈ V }.

(b) The function t �−→ β(V (t)) is continuous.

The next fixed point result has the advantage to omit any equicontinuity conditions.
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Theorem 2.6 Let K be a compact Hausdorff space, X is a Banach space with Q a non-empty closed convex
subset of C(K , X) and � is a measure of weak noncompactness on X. Suppose F : Q −→ Q satisfying:

(i) If {xn} ⊂ Q is a sequence with xn(t) ⇀ x(t) for each t ∈ K, then Fxn(t) ⇀ Fx(t) for each t ∈ K.
(ii) F(Q) is bounded and F is �-condensing (i.e., �(F(Y )) < �(Y ) for all bounded subsets Y ⊂ Q such

that �(Y ) 
= 0).

Then, the set of fixed points of F is non-empty and weakly compact in C(K , X).

Proof Let S be the set of fixed points of F in Q. We claim that S is non-empty. Indeed, let x0 ∈ F(Q)
and G the family of all closed bounded convex subsets D of C(K , X) such that x0 ∈ D and F(D) ⊂ D.
Obviously G is non-empty, since conv(F(Q)) ∈ G (the closed convex hull of F(Q) in C(K , X)). We denote
H = ⋂

D∈GD. Then, H is closed and convex, and x0 ∈ H . If x ∈ H , then F(x) ∈ D for all D ∈ G and hence
F(H) ⊂ H . Therefore, we have H ∈ G. We claim that H is a weakly compact subset of C(K , X). Denote
H∗ = conv(F(H) ∪ {x0}). We have H∗ ⊂ H , which implies that F(H∗) ⊂ F(H) ⊂ H∗. Therefore, H∗ ∈ G,
H ⊂ H∗. Hence H = H∗. Clearly, H is bounded and if �(H) 
= 0, we obtain

�(H) = �(conv(F(H) ∪ {x0}) = �(conv(F(H)) ∪ {x0}) = �(F(H)) < �(H),

which is a contradiction, so�(H) = 0. Since, H is a weakly closed subset ofC(K , X) (notice a convex subset
of a Banach space is closed iff it is weakly closed), then H is a weakly compact subset of C(K , X). We claim
that F is weakly sequentially continuous. Indeed, let {xn} be a sequence in H such that xn ⇀ x inC(K , X). By
Theorem 2.4, we have xn(t) ⇀ x(t) for each t ∈ K . Thus by hypothesis (i), Fxn(t) ⇀ Fx(t) for each t ∈ K ,
and with the same argument we obtain Fxn ⇀ Fx in C(K , X). So, F is weakly sequentially continuous. It
follows using Theorem 2.3 that F : H −→ H has a fixed point and so S 
= ∅. Because S ⊂ F(Q), F(S) = S
and F is �-condensing, we have �(S) = 0 and so S is a relatively weakly compact subset of C(K , X). Also,
by the sequentially weak continuity of F , the set S is weakly sequentially closed. Let x ∈ Q, be weakly
adherent to S. Since Sw, the weak closure of S in C(K , X), is weakly compact, by the Eberlein–Šmulian
theorem [14, Theorem 8.12.4, p. 549], there exists a sequence {xn} ⊂ S such that xn ⇀ x , so x ∈ S. Hence
S is a weakly closed subset of Q. Therefore, S is weakly compact in C(K , X). ��
Remark 2.7 Theorem 2.6 is a special case of Theorem 12 in [16], namely where the Banach space isC(K , X).

3 Main result

Let I = [0, 1] and X be a real Banach space. In this section, we investigate topological structure of the set of
solutions in weak sense of following nonlinear Volterra type integral equation (1.1), x ∈ C(I, X) and involving
the Henstock–Kurzweil–Pettis integral [7,8].

First, we introduce the concept of Henstock–Kurzweil–Pettis integrability and give some related facts
which are useful in the sequel.

Definition 3.1 ([18]) A K-partition of [0, T ] is a finite collection P = {([ck, dk], tk) : 1 ≤ k ≤ n} such that
{[ck, dk] : 1 ≤ k ≤ n} is a nonoverlapping family of subintervals of [0, T ] covering [a, b] and tk ∈ [ck, dk]
for k = 1, 2, . . . , n. A gauge on [0, T ] is a function δ : [0, T ] −→ (0,∞). AK-partition P = {([ck, dk], tk) :
1 ≤ k ≤ n} is δ-fine if [ck, dk] ⊆ (tk − δ(tk), tk + δ(tk)) for k = 1, 2, . . . , n. A function f : [0, T ] −→ X is
said to be Henstock–Kurzweil-integrable, or simply HK-integrable, on [0, T ] if there exists w ∈ X with the
following property: for each ε > 0 there exists a gauge δε(.) defined on [0, T ] such that

∥∥∥∥∥
n∑

k=1

f (tk)(dk − ck) − w

∥∥∥∥∥ < ε

for any δε-fine K-partition P = {([ck, dk], tk) : 1 ≤ k ≤ n} of [0, T ]. We set w = (HK)
∫ T
0 f (s)ds.

Remark 3.2 This definition includes the generalized Riemann integral defined by Gordon [17]. In a special
case, when δ is a constant function, we get the Riemann integral.

We will also use the following equi-integrability notion, specific to the HK integrability that allows to
obtain a Vitali-type convergence result.
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Definition 3.3 A family F of HK-integrable functions defined on [0, T ] is said to be HK-equi-integrable if
there exists w ∈ X with the following property: for each ε > 0, there exists a gauge δε(.) defined on [0, T ]
such that ∥∥∥∥∥

n∑
k=1

f (tk)(dk − ck) − w

∥∥∥∥∥ < ε

for any δε-fine K-partition P = {([ck, dk], tk) : 1 ≤ k ≤ n} of [0, T ] and every f ∈ F .

The generalization of the Pettis integral obtained by replacing the Lebesgue integrability of the functions by
the Henstock–Kurzweil integrability produces the Henstock–Kurzweil–Pettis integral (for the definition of
Pettis integral, see [12]).

Definition 3.4 ([8]) A function f : [0, T ] −→ X is said to beKurzweil–Henstock–Pettis integrable, or simply
HKP-integrable, on [0, T ] if there exists a function g : [0, T ] −→ X with the following properties:

(i) ∀ x∗ ∈ X∗, x∗ f is Henstock–Kurzweil integrable on [0, T ].
(ii) ∀ t ∈ [0, T ], ∀ x∗ ∈ X∗, x∗g(t) = (HK)

∫ t
0 x

∗ f (s)ds.

This function g will be called a primitive of f and by g(T ) = ∫ T
0 f (t)dt we will denote the Henstock–

Kurzweil–Pettis integral of f on the interval [0, T ].
Remark 3.5 (i) Any HK-integrable function is HKP-integrable. The converse is not true (see an example in

[15]). Thus, the family of all Kurzweil–Henstock–Pettis integrable functions is larger than the family of
all Kurzweil–Henstock integrable ones.

(ii) Since each Lebesgue integrable function is HK-integrable, we find that any Pettis integrable function is
HKP-integrable. The converse is not true (see also [15]).

For b > 0 we denote by Bb = {y ∈ X such that ‖y‖ ≤ b}, Db = {z ∈ C(I, X) such that ‖z‖ ≤ b}, and
integrals are taken in the sense of (HKP) integrals. The closed unit ball of the dual X∗ is denoted by B(X∗).

Theorem 3.6 Let f : I × X2 −→ X, h : I −→ X and G, k : I × I −→ R satisfy the following conditions:

(1) h is weakly continuous on I .
(2) For each t ∈ I , G(t, .), is continuous, G(t, .) and k(t, .) ∈ BV (I,R). Also, the applications t �−→

G(t, .) and t �−→ k(t, .) are ‖.‖BV -continuous. (Here, BV (I,R) represents the space of real bounded
variation functions with its classical norm ‖.‖BV ).

(3) f is weakly–weakly sequentially continuous (for each convergent sequence {tn} ⊂ [0, 1] and for all weakly
convergent sequences {xn}, {yn} ⊂ X, the sequence { f (tn, xn, yn)} is weakly convergent in X) such that
for all r > 0 and ε > 0, there exists δε,r > 0 such that

∥∥∥∥
∫ t

τ

f (s, x(s),
∫ s

0
k(s, η)x(η)dη)ds

∥∥∥∥ < ε, ∀ |t − τ | < δε,r , ∀ x ∈ Dr . (3.1)

(4) There exists b0 > max(1, supt∈I ‖k(t, .)‖BV ) supt∈I ‖h(t)‖ such that for every weakly convergent (xn)n ⊂
Db0 , the set {

x∗ f (., xn(.),
∫ (.)

0
k(., τ )xn(τ )dτ), n ∈ N, x∗ ∈ B(X∗)

}
(3.2)

is HK-equi-integrable.
(5) There exists b1 > supt∈I ‖h(t)‖, and a positive constant α such that

β(k(J, J )V (J ))) ≤ αβ(V (J )) for each closed interval J ⊂ I, for every V ⊂ Db1, (3.3)

where k(J, J )V (J ) = {k(t, s)x(r), t, s, r ∈ J, x ∈ V }.
(6) There exists a nonnegative function L(., .) such that

(a) for each closed subinterval J of I and bounded subsets Y, Z of X,

β( f [J × Y × Z ]) ≤ sup{L(t,max(β(Y ), β(Z))), t ∈ J }, (3.4)

where f [J × Y × Z ]) = { f (t, y, z) : t ∈ J, (y, z) ∈ Y × Z}.
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(b) The function s �−→ L(s, r) is continuous for each r ∈ [0,+∞[, and

sup
t∈I

{
(HK)

∫ t

0
|G(t, s)| L(s, r)ds

}
< r (3.5)

for all r > 0.

Then, there exists an interval J = [0, a] ⊂ I such that the set of solutions of (1.1) defined on J is non-empty
and weakly compact in the space C(J, X).

Proof To simplify, we denote T x(t) = ∫ t
0 k(t, s)x(s)ds b

′
1 = supt∈I ‖k(t, .)‖BV and c = supt∈I ||h(t)||. Let

c < b2 < min(b0,
b0
b′
1
). For x ∈ Db2 and x∗ ∈ B(X∗) we have

∣∣x∗(T x(s))
∣∣ =

∣∣∣∣(HK)

∫ s

0
x∗(k(s, τ )x(τ ))dτ

∣∣∣∣
≤ sup

t∈I
‖k(t, .)‖BV

∫ 1

0

∣∣x∗x(τ )
∣∣ dτ ≤ b′

1b2 ≤ b0.

From here

sup
{∣∣x∗T x(s)

∣∣ , x∗ ∈ B(X∗)
} ≤ b0,

so T x ∈ Db0 . We notice that for x ∈ C(I, X), the function f (., x(.),
∫ (.)

0 k(., τ ) x(τ )dτ) is HKP-integrable
on [0, 1] (assumption (4)). Now let ε > 0. By assumption (3), there exists δε,b2 > 0 such that for |t2 − t1| ≤ δ
we have for all x ∈ Db2 , ∥∥∥∥

∫ t2

t1
f (s, x(s), T x(s))ds

∥∥∥∥ < ε. (3.6)

Now, Put d = supt∈I ‖G(t, .)‖BV and 0 < μ < b2−c
d . By the previous analysis, there exists a ≤ 1 with

αa < 1 such that

sup
t∈[0,a]

∥∥∥∥
∫ t

0
f (s, x(s), T x(s))ds

∥∥∥∥ < μ

for any x ∈ C(I, X), satisfying ||x || ≤ b2. Put J = [0, a], denote byC(J, X) the space of continuous functions
J −→ X , endowed with the topology of uniform convergence, and by B̃ the set of all continuous functions
J −→ Bb2 . We shall consider B̃ as a topological subspace of C(J, X). It is clear that the set B̃ is convex and
closed. Define the operator F by

Fx (t) = h(t) +
∫ t

0
G(t, s) f (s, x(s),

∫ s

0
k(s, τ )x(τ )dτ)ds, x ∈ C(I, X).

First notice that for x ∈ C(I, X), the family
{
x∗ f (., x(.),

∫ (.)

0
k(., τ )x(τ )dτ), x∗ ∈ B(X∗)

}

is HK-equi-integrable [see (3.2)]. Since for t ∈ I the function s �−→ G(t, s) is of bounded variation then by
[24, Lemma 25] and assumption (4), the function

G(t, .) f (., x(.),
∫ (.)

0
k(., τ )x(τ )dτ)

is HKP-integrable on [0, t] and thus the operator F makes sense.
We assert that F : B̃ −→ B̃ is weakly–weakly sequentially continuous.
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1. Let us firstly prove that the values of F are in B̃. For any x∗ ∈ B(X∗), for any x ∈ B̃

∣∣x∗Fx (t)
∣∣ =

∣∣∣∣x∗h(t) + x∗
∫ t

0
G(t, s) f (s, x(s), T x(s))ds

∣∣∣∣
≤ ∣∣x∗h(t)

∣∣ +
∣∣∣∣(HK)

∫ t

0
G(t, s)x∗ f (s, x(s), T x(s))ds

∣∣∣∣
≤ c + ‖G(t, .)‖BV

∣∣∣∣(HK)

∫ t

0
x∗ f (s, x(s), T x(s))ds

∣∣∣∣
≤ c + d

∥∥∥∥
∫ t

0
f (s, x(s), T x(s))ds

∥∥∥∥
≤ c + d sup

t∈[0,a]

∥∥∥∥
∫ t

0
f (s, x(s), T x(s))ds

∥∥∥∥
≤ c + dμ ≤ b2.

From here

sup
{∣∣x∗Fx (t)

∣∣ , x∗ ∈ B(X∗)
} ≤ b2.

So, Fx (t) ∈ Bb2 .

2. Next, we will prove that F(B̃) is a strongly equicontinuous subset. Let 0 ≤ t1 < t2 ≤ a and x ∈ B̃.
We suppose without loss of generality that Fx (t1) 
= Fx (t2). By the Hahn–Banach theorem, there exists
x∗ ∈ X∗, such that ‖x∗‖ = 1 and

‖Fx (t2) − Fx (t1)‖ = ∣∣x∗(Fx (t2) − Fx (t1))
∣∣

≤ ∣∣x∗(h(t1)) − x∗(h(t2))
∣∣

+
∣∣∣∣(HK)

∫ t1

0
(G(t2, s) − G(t1, s))x

∗ f (s, x(s), T x(s))ds
∣∣∣∣

+
∣∣∣∣(HK)

∫ t2

t1
G(t2, s)x

∗ f (s, x(s), T x(s))ds
∣∣∣∣

≤ ∣∣x∗(h(t2) − h(t1))
∣∣

+‖G(t2, .) − G(t1, .)‖BV
∣∣∣∣(HK)

∫ t1

0
x∗ f (s, x(s), T x(s))ds

∣∣∣∣
+ sup

ζ∈I
‖G(ζ, .)‖BV

∣∣∣∣
∫ t2

t1
x∗ f (s, x(s), T x(s))ds

∣∣∣∣
≤ ∣∣x∗(h(t2)) − x∗(h(t1))

∣∣
+‖G(t2, .) − G(t1, .)‖BV sup

υ∈J

∥∥∥∥
∫ υ

0
f (s, x(s), T x(s))ds

∥∥∥∥
+ d

∥∥∥∥
∫ t2

t1
f (s, x(s), T x(s))ds

∥∥∥∥ .

So, the result follows from hypotheses (1), (2) and inequality (3.6).
3. Now we will show that F is weakly–weakly sequentially continuous. Let (xn(.))n a weakly convergent

sequence to x in B̃. Then by Theorem 2.4, xn(t) ⇀ x(t) for each t ∈ [0, a]. Let s ∈ [0, a] and x∗ ∈ X∗.
We have ∣∣x∗k(s, τ )xn(τ )

∣∣ ≤ b2‖x∗‖‖k(s, .)‖∞,

for all τ ∈ [0, s] . So,

lim
n→∞(HK)

∫ s

0
x∗k(s, τ )xn(τ )dτ = (HK)

∫ s

0
x∗k(s, τ )x(τ )dτ.
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Then

lim
n→∞x∗

∫ s

0
k(s, τ )xn(τ )dτ = x∗

∫ s

0
k(s, τ )x(τ )dτ,

and so T xn(s) ⇀ T x(s). Therefore, the operator T is weakly–weakly sequentially continuous on B̃.
Moreover, because f is weakly–weakly sequentially continuous, so

f (s, xn(s), T xn(s)) ⇀ f (s, x(s), T x(s)),

for each s ∈ [0, a]. Now, for each t ∈ [0, a], applying Theorem 5 in [11] and Lemma 25 in [24] to the
sequence (G(t, .) f (., xn(.), T xn(.))n , we find that the function G(t, .) f (., x(.), T x(.)) is HKP-integrable
on [0, t] and

∫ t

0
G(t, s) f (s, xn(s), T xn(s))ds ⇀

∫ t

0
G(t, s) f (s, x(s), T x(s))ds.

Whence, Fxn (t) ⇀ Fx (t) for each t ∈ [0, a] and by Theorem 2.4 the operator F is weakly–weakly sequentially
continuous. Next, we consider Q = convF(B̃). Because F(B̃) is bounded and strongly equicontinuous, so
Q is a weakly closed bounded and strongly equicontinuous subset of B̃. Clearly F(Q) ⊂ Q. We claim that
F : Q −→ Q is β-condensing. Indeed, let V be a subset of Q such β(V ) 
= 0, V (t) = {x(t), x ∈ V } and
F(V )(t) = {Fx (t), x ∈ V }. Because V is bounded and strongly equicontinuous, we have by Lemma 2.5(a)
that supt∈J β(V (t)) = β(V ) = β(V (J )). For fixed t ∈ J , we divide the interval [0, t] into n parts: 0 = t0 <
t1 < · · · < tn = t and put Ti = [ti−1, ti ]. By Henstock–Kurzweil–Pettis integral mean value theorem [8], we
obtain

Fx (t) = h(t) +
n∑

i=1

∫ ti

ti−1

G(t, s) f (s, x(s),
∫ s

0
k(s, τ )x(τ )dτ)ds

∈ h(t) +
n∑

i=1

(ti − ti−1)conv

{
G(t, s) f (s, x(s),

∫ s

0
k(s, τ )x(τ )dτ), s ∈ Ti , x ∈ V

}

∈ h(t) +
n∑

i=1

(ti − ti−1)conv{G(t, s) f (Ti , V (Ti ), convk([0, s] × [0, s])V ([0, s])), s ∈ Ti }.

Using the properties of the measure of weak noncompactness, we have

β(F(V )(t))

≤
n∑

i=1

(ti − ti−1)β(conv{G(t, s) f (Ti , V (Ti ), conv(k([0, s][0, s])V ([0, s])), s ∈ Ti }

≤
n∑

i=1

(ti − ti−1)β(conv
{
G(t, s) f (Ti , V (Ti ), conv

{
∪

ω∈[0,t] ω((k([0, s][0, s])V ([0, s])))
}
, s ∈ Ti

}

≤
n∑

i=1

(ti − ti−1)β(conv
{
G(t, s) f (Ti , V (Ti ), conv

{
∪

ω∈[0,t] ω((k([0, t][0, t])V ([0, t])))
}
, s ∈ Ti

}

≤
n∑

i=1

(ti − ti−1) sup
s∈Ti

|G(t, s)| β(conv
{
f (Ti , V (Ti ), conv

{
∪|ω|∈[0,a] ω((k(J, J )V (J )))

}
, s ∈ Ti

}

≤
n∑

i=1

(ti − ti−1) sup
s∈Ti

|G(t, s)| sup
τ∈Ti

L(τ,max(β(V (J )), β
({

conv
{

∪|ω|∈[0,a] ω((k(J, J )V (J )))
})

≤
n∑

i=1

(ti − ti−1) |G(t, τi )| L(si ,max(β(V (J )), β
({

conv
{

∪|ω|∈[0,a] ω((k(J, J )V (J )))
})

,
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here for each i , τi , si ∈ Ti are numbers such that

|K (t, τi )| = sup
s∈Ti

|G(t, s)| and L(si ,max(β(V (J )), β
({

conv
{

∪|ω|∈[0,a] ω((k(J, J )V (J )))
})

= sup
s∈Ti

L(s,max(β(V (J )), β
({

conv
{

∪|ω|∈[0,a] ω((k(J, J )V (J )))
}))

.

Next, by property (vi i i) of β and (3.3), we have

β
({

conv
{

∪|ω|∈[0,a] ω((k(J, J )V (J )))
}))

= aβ(k(J, J )V (J )) ≤ αaβ(V (J )) < β(V (J )),

so

β(F(V )(t)) ≤
n∑

i=1

(ti − ti−1) |G(t, τi )| L(si , β(V )).

From the continuity of the functions s �−→ G(t, s) and s �−→ L(s, β(V )) on [0, t], it follows that there exists
η > 0 such that

|G(t, τ )L(q, β(V )) − G(t, s)L(s, β(V ))| < ε, (3.7)

if |τ − s| < η, |q − s| < η, q, s, τ ∈ [0, t]. So, taking ti in the manner that |ti − ti−1| < η and by (3.7) we
infer that

β(F(V )(t)) ≤
n∑

i=1

(ti − ti−1)

(
(HK)

∫ ti

ti−1

|G(t, τi )L(si , β(V )) − G(t, s)L(s, β(V ))|ds
)

+
n∑

i=1

(ti − ti−1)

(
(HK)

∫ ti

ti−1

|G(t, s)| L(s, β(V ))ds

)

≤ εt + (HK)

∫ t

0
|G(t, s)| L(s, β(V ))ds

≤ εt + sup

{
(HK)

∫ t ′

0
|G(t, s)| L(s, β(V )), t ′ ∈ J

}
.

As the last inequality is satisfied for every ε > 0, we get

β(F(V )(t)) ≤ sup

{
(HK)

∫ t ′

0
|G(t, s)| L(s, β(V ))ds, t ′ ∈ J

}
.

Applying again Lemma 2.5(a) for the bounded strongly equicontinuous subset F(V ), we obtain that
β(F(V )) = supt∈J {F(V )(t)}. Accordingly, by (3.5)

β(F(V )) ≤ sup

{
(HK)

∫ t ′

0
|G(t, s)| L(s, β(V ))ds, t ′ ∈ J

}
< β(V ),

so, F is β-condensing. Now, applying Theorem 2.6, we infer that F has a fixed pint in Q ⊂ B̃. Therefore, S
the fixed point set of F in B̃ is non-empty. Finally, we have F(S) = S ⊂ Q, so β(F(S)) = 0 and hence S is
relatively weakly compact subset of B̃. Because the operator F is weakly–weakly sequentially continuous, so
S is weakly sequentially closed. The use of Eberlein–Šmulian theorem [14, Theorem 8.12.4, p. 549], proves
that S is weakly compact. This achieves the proof. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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9. Cichoń, M.: On solutions of differential equations in Banach spaces. Nonlinear Anal. Theory. Methods Appl. 60(4), 651–

667 (2005)
10. DeBlasi, F.S.: On a property of the unit sphere in Banach space. Bull. Math. Soc. Sci. Math. R.S. Roum. 21, 259–262 (1977)
11. Di Piazza, L.: Kurzweil–Henstock type integration on Banach spaces. Real Anal. Exch. 29(2), 543–555 (2003)
12. Diestel, J.; Uhl, J.J.: Vector measures., Math. Surv., 15 (1977)
13. Dobrakov, I.: On representation of linear operators on C0(T, X). Czech. Math. J. 20, 13–30 (1971)
14. Edwards, R.E.: Functional Analysis, Theory and Applications., Holt, Reinhart and Winston, New York, (1965)
15. Gamez, J.L.; Mendoza, J.: On Denjoy-Dunford and Denjoy-Pettis integrals. Stud. Math. 130, 115–133 (1998)
16. Garcia-Falset, J.: Existence of fixed points and measures of weak noncompactness. Nonlinear Anal. Theory Methods

Appl. 71, 2625–2633 (2009)
17. Gordon, R.A.: Rienmann integration in Banach spaces. Rocky Mt. J. Math. 21(3), 923–949 (1991)
18. Gordon, R.A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Stud. Math., 4 AMS, Providence, 1994
19. Yu, L.; Barbot, J.-P.; Boutat, D.; Benmerzouk, D.: Observability forms for switched systems with zeno phenomenon or high

switching frequency. Autom. Control, IEEE Trans. 56(2), 436–441 (2011)
20. Kaliaj, S.B.; Tato, A.D.; Gumeni, F.D.: Controlled convergence theorems for Henstock–Kurzweil–Pettis integral on m-

dimensional compact intervals. Czech. Math. J. 62(1), 243–255 (2012)
21. Kryczka, A.; Prus, S.; Szczepanik, M.: Measure of weak noncompactness and real interpolation of operators. Bull. Aust.

Math. Soc. 62, 389–401 (2000)
22. Kryczka, A.; Prus, S.: Measure of weak noncompactness under complex interpolation. Stud. Math. 147, 89–102 (2001)
23. O’Regan, D.: Weak solutions of ordinary differential equations in Banach spaces. Appl. Math. Lett. 12, 101–105 (1999)
24. Satco, B.: A Kolmós-type theorem for the set-valued Henstock–Kurzweil–Pettis integrals and applications. Czech. Math.

J. 56(131), 1029–1047 (2006)
25. Satco, B.: Volterra integral inclusions via Henstock–Kurzweil–Pettis integral. Discuss. Math. Differ. Incl. Control

Optim. 26, 87–101 (2006)
26. Sikorska-Nowak, A.: Nonlinear integral equations in Banach spaces and Henstock–Kurzweil–Pettis integrals. Dyn. Syst.

Appl. 17, 97–108 (2008)
27. Sikorska-Nowak, A.: Integrodifferential equations on time scales with Henstock–Kurzweil–Pettis delta integrals. Abstr.

Appl. Anal. Vol. 2010, 17 (2010). doi:10.1155/2010/836347
28. Sikorska-Nowak, A.: The set of solutions of Volterra and Urysohn integral equations in Banach spaces. Rocky Mt. J.

Math. 40(4), 1313–1331 (2010)

123

http://dx.doi.org/10.1155/2010/836347

	On an integral equation under Henstock--Kurzweil--Pettis integrability
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main result
	References




