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Abstract We give a simple criterion so that a countable infinite direct sum of trace (evaluation) maps is a trace
map. An application to the theory of self-adjoint extensions of direct sums of symmetric operators is provided;
this gives an alternative approach to results recently obtained byMalamud–Neidhardt and Kostenko–Malamud
using regularized direct sums of boundary triplets.

Mathematics Subject Classification 47B25 · 47B38

1 Introduction

Webeginwith a simple example. Let�0 = ∂2

∂x2
+ ∂2

∂θ2
be the Laplace–Beltrami operator on the two-dimensional

cylinder M0 := R+ × T with respect to the flat Riemannian metric g0 = (
1 0
0 1

)
. Its minimal realization with

domain C∞
c (M0) is symmetric and negative as a linear operator in the Hilbert space L2(M0) = L2(R+) ⊗

L2(T). We denote its Friedrichs’ self-adjoint extension by �D
0 ; it corresponds to imposing Dirichlet boundary

conditions at the boundary T, i.e., D(�D
0 ) = {u ∈ H2(M0) : limx↓0 u(x, θ) = 0}. Here H2(M0) is the

usual Sobolev–Hilbert space of order two. Let us denote by Hs(T) the (fractional) Sobolev–Hilbert space of
square-integrable functions f on the 1-dimensional torus T such that

∑
k∈Z |k|2s | f̂k |2 < +∞, where f̂k is the

usual Fourier coefficient f̂k := 1√
2π

∫
T

e−ikθ f (θ) dθ . Then γ0 : D(�D
0 ) → H

1
2 (T), the unique continuous

linear map which on regular functions acts by

γ0u(θ) = lim
x↓0

∂u

∂x
(x, θ),

is a concrete example of what we call an abstract trace map (see the next section), i.e., γ0 is continuous (w.r.t.
graph norm), surjective and its kernel is dense in L2(M0). By partial Fourier transform with respect to the
angular variable one gets
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L2(M0) = ⊕
k∈Z

L2(R+), �D
0 = ⊕

k∈Z
d2

k ,

where

d2
k : D(d2

k ) ⊂ L2(R+) → L2(R+), d2
k f := f ′′ − k2 f,

D(d2
k ) = D0 := { f ∈ L2(R+) ∩ C1(R+) : f ′′ ∈ L2(R+), f (0) = 0}.

On D0 one can define the trace map

γ̂0 : D0 → C, γ̂0 f := f ′(0),

which is bounded, surjective and with a kernel dense in L2(R+). Moreover γ̂0 is bounded uniformly in k ∈ Z

w.r.t. the graph norm of d2
k , and so the infinite direct sum

⊕
k∈Z

γ̂0 : D( ⊕
k∈Z

d2
k ) → �2(Z). (1.1)

is a well defined bounded operator. Since γ0 corresponds to ⊕
k∈Z

γ̂0 by partial Fourier transform, (1.1) does not

define a trace map since it is not surjective: its range space is the strict subspace of �2(Z) defined by

h
1
2 (Z) :=

{

{sk}k∈Z ∈ �2(Z) :
∑

k∈Z
|k| |sk |2 < +∞

}

� H
1
2 (T).

This simple example shows that an infinite direct sum of trace maps can fail to be a trace map: the direct sum
of the range spaces can be different from the range space of the sum.

In Sect. 2 we provide a simple criterion which selects the right range space in order that the direct sum of
trace maps is a trace map. Such a simple criterion uses a hypothesis involving the boundedness of operator-
valued sequences obtained composing the trace maps with their right inverses [see (2.1)]. Such a hypothesis
seems a very strong one (indeed that allows an easy proof), however, we show that always there exist right
inverses such that (2.1) holds true (see Lemma 2.3).

In Sect. 3 we give an application to self-adjoint extensions of direct sums of symmetric operators and
provide a couple of examples. We obtain that the methods here presented permit to obtain results equivalent
to the ones recently obtained in [8] and [7] using regularized boundary triplets (see Remark 3.5).

In Example 1 we determine the trace space for the evaluation map f → { f ′(xn)}n∈N acting on functions
f ∈ H2(R\X)∩ H1

0 (R\X) where X = {xn}n∈N ⊂ R, xn < xn+1. In this case Theorem 2.1 easily implies that
the range space is a weighted �2-space with weight wn = d−1

n , where dn := xn+1 − xn . By Theorem 3.2 such
a trace map can be used to define one-dimensional Schrödingier operators with δ and δ′ interaction supported
on the discrete set X , thus providing a construction alternative to the one presented in [7].

In Example 2 we show that our criterion easily gives the correct trace space H
1
2 (T) for the example

provided at the beginning. Then we point out that the same criterion allows to prove that Hs(T), s = 1
2 − α

1+α
,

is (isomorphic to) the defect space of �min
α , −1 < α < 1, the minimal realization of the Laplace–Beltrami

operator�α := ∂2

∂x2
− α

x
∂
∂x +x2α ∂2

∂θ2
corresponding to the degenerate/singular Riemannian metric gα(x, θ) =(

1 0
0 x−2α

)
. We refer to the papers [3] and [4] for the almost-Riemannian geometric considerations leading to

the study of �α and to [12] for the classification of all self-adjoint extensions of �min
α .

2 Direct sums of abstract trace maps

LetHk , k ∈ Z, be a sequence of Hilbert spaces, with scalar product 〈·, ·〉k and corresponding norm ‖ · ‖k . On
each Hk we consider a self-adjoint operator

Ak : D(Ak) ⊂ Hk → Hk

and we denote by H(k) the Hilbert space consisting of D(Ak) equipped with a scalar product 〈·, ·〉(k) giving
rise to a norm ‖ · ‖(k) equivalent to the graph one.
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Let hk , k ∈ Z, be a sequence of auxiliary Hilbert spaces with scalar product [·, ·]k and corresponding norm
| · |k .

Let

τk : H(k) → hk, k ∈ Z,

be a sequence of abstract trace maps, i.e., τk is a linear, continuous and surjective map such that its kernel
K (τk) is dense in Hk . Since τk is continuous and surjective there exists a linear continuous right inverse

ιk : hk → H(k), τk ιk = 1

(see e.g. [2, Proposition 1, Section 6, Chapter 4]). Since τk is surjective, ιk is injective and so we can define a
new scalar product on hk by

[φk, ψk](k) := [ι∗k ιkφk, ψk]k ≡ 〈ιkφk, ιkψk〉(k).

It is immediate to check that hk is complete w.r.t. the norm

|φk |(k) := ‖ιkφk‖(k) ≡ |(ι∗k ιk)1/2φk |k .
Let us denote by h(k) the Hilbert space given by hk equipped with the scalar product [·, ·](k). We define

H := ⊕
k∈Z

Hk, H◦ := ⊕
k∈Z

H(k),

h := ⊕
k∈Z

hk, h◦ := ⊕
k∈Z

h(k)

with corresponding norms ‖ · ‖, ‖ · ‖◦, | · |, | · |◦.
We denote by ||| · ||| the operator norm of bounded linear operators.

Theorem 2.1 Let ιk be a linear continuous right inverse of τk and suppose that

sup
k∈Z

|||ιkτk ||| < +∞. (2.1)

Then the linear map

τ : H◦ → h◦, τ ( ⊕
k∈Z

vk) := ⊕
k∈Z

(τkvk)

is an abstract trace map, i.e., is continuous, surjective and its kernel K (τ ) is dense in H .

Proof (continuity) Let v = ⊕
k∈Z

vk ∈ H◦. Then

|τv|2◦ =
∑

k∈Z
‖ιkτkvk‖2(k) ≤

(
sup
k∈Z

|||ιkτk |||
)2 ∑

k∈Z
‖vk‖2(k)

=
(
sup
k∈Z

|||ιkτk |||
)2

‖v‖2◦.

(surjectivity) Given φ = ⊕
k∈Z

φk ∈ h◦, let us define v := ⊕
k∈Z

vk by vk = ιkφk ∈ H(k). Then v ∈ H◦ by

∑

k∈Z
‖vk‖2(k) =

∑

k∈Z
‖ιkφk‖2(k) =

∑

k∈Z
|φk |2(k) = |φ|2◦.

(density) Given v := ⊕
k∈Z

vk ∈ H and ε > 0, let Nε ≥ 0 such that
∑

|k|>Nε
‖vk‖2k ≤ ε/2. Since K (τk) is

dense in Hk , there exist vk,ε ∈ K (τk) such that ‖vk − vk,ε‖2k ≤ 2−|k|(ε/6). Define vε := ⊕
|k|≤Nε

vk,ε . Then

vε ∈ K (τ ) and

‖v − vε‖2 ≤
∑

|k|≤Nε

‖vk − vk,ε‖2k + ε

2
≤ ε

6

∑

k∈Z
2−|k| + ε

2
= ε.

��
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Remark 2.2 Notice that Theorem 2.1 holds true for any sequence of Hilbert spaces H(k), k ∈ N, such that
each H(k) is densely embedded in Hk . However, our hypotheses H(k) = D(Ak) permits to show that it is
always possible to find right inverses ιk such that hypothesis (2.1) is satisfied (see Lemma 2.3 below).

For any z ∈ ρ(Ak), let us define the following bounded linear operators:

Rk(z) : Hk → H(k), Rk(z) := (−Ak + z)−1,

Gk(z) : hk → Hk, Gk(z) := (τk Rk(z̄))
∗.

By resolvent identity one has

Gk(w) − Gk(z) =(z − w)Rk(w)Gk(z) = (z − w)Rk(z)Gk(w). (2.2)

Now let us take z = ±i in the above definitions and pose

Rk := (−Ak + i)−1, Gk := Gk(−i), G+
k := Gk(i),

�k(z) := τk

(
Gk + G+

k

2
− Gk(z)

)

.

Then z → �k(z) is a Weyl function (equivalently a Krein’s Q-function), i.e., it satisfied the identities

�k(z) − �k(w) = (z − w)Gk(w̄)∗Gk(z)

and

�k(z)
∗ = �k(z̄).

Therefore, the set

Zk := {z ∈ ρ(Ak) : 0 ∈ ρ(�k(z))}.
is not void: C\R ⊆ Zk (see e.g. [11, Theorem 2.1]).

Posing

�k := �k(−i),

one has the identities

G+
k − Gk = 2i Rk Gk, (2.3)

G∗
k Gk = −i �k (2.4)

and so
ιk : hk → H(k), ιk := i Rk Gk�

−1
k = Rk Gk(G

∗
k Gk)

−1. (2.5)

is a linear bounded right inverse of τk . Moreover, since Rk : Hk → H(k) is unitary w.r.t. the scalar product

〈uk, vk〉(k) := 〈(−A + i)uk, (−A + i)vk〉k,

one has
ι∗k ιk = (G∗

k Gk)
−1. (2.6)

Lemma 2.3 Let ιk be defined as in (2.5). Then |||ιkτk ||| = 1.
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Proof By (2.5) one has

‖ιkτkvk‖(k) = ‖Gk(G
∗
k Gk)

−1G∗
k(−Ak + i)vk‖k .

Since the range of Gk is closed one has the decomposition Hk = R(Gk) ⊕ K (G∗
k) and so (−Ak + i)vk =

Gkφk ⊕ wk . Therefore

‖ιkτkvk‖(k) = ‖Gkφk‖k ≤ ‖(−Ak + i)vk‖k = ‖vk‖(k).

If vk = Rk Gkφk then ‖ιkτkvk‖(k) = ‖vk‖(k). ��
Remark 2.4 In the case there exists λ ∈ ∩k∈Z ρ(Ak) ∩ R the previous reasonings have the following variant.
By (2.2) there follows

Gk(−i)∗Gk(−i)

= Gk(λ)∗(1 + (λ − i)Rk(i))(1 + (λ + i)Rk(−i))Gk(λ).

and so

|Gk(−i)∗Gk(−i)φk |k ≤ |||1 + (λ − i)Rk(i)|||2|Gk(λ)∗Gk(λ)φk |k
≤

(
1 +

√
1 + λ2

)2 |Gk(λ)∗Gk(λ)φk |k .
Since Gk(−i)∗Gk(−i) is injective by (2.4), this shows that Gk(λ)∗Gk(λ) is injective. Since it is self-adjoint
and its range is closed [since the range of Gk(λ) is closed], Gk(λ)∗Gk(λ) is a continuous bijection. Then

ιk := Rk Gk(G
∗
k Gk)

−1,

is a bounded right inverse of τk , where in this case we used the notation

Rk := (−Ak + λ)−1, Gk := Gk(λ).

Moreover, using the scalar product

〈uk, vk〉(k) := 〈(−Ak + λ)uk, (−Ak + λ)vk〉k,

one gets

ι∗k ιk = (G∗
k Gk)

−1.

and, proceeding as in the proof of Lemma 2.3,

|||ιkτk ||| = 1.

Theorem 2.1 has the following alternative version where one can still use the original trace space h as long
as one regularizes the traces τk :

Theorem 2.5 Let us define rk := (G∗
k Gk)

1/2 and

τ̃k : H(k) → hk, τ̃k := r−1
k τk .

Then the linear map

τ̃ : H◦ → h, τ̃ ( ⊕
k∈Z

vk) := ⊕
k∈Z

(τ̃kvk)

is continuous, surjective and its kernel K (τ̃ ) = K (τ ) is dense in H .

Proof The proof is the same as in Theorem 2.1. It suffices to notice that ι̃k := ιkrk is the right inverse of τ̃k
and that

(ι̃k)
∗ ι̃k = rk ι

∗
k ιkrk = rk(G

∗
k Gk)

−1rk = 1.

��
Remark 2.6 Notice that in this section Z can be replaced by any other countable set N and that we can replace
[·, ·](k) by a scalar product inducing an equivalent norm.Moreover, given a finite subset F ⊂ N , we can replace
h(k) by hk for any k ∈ F .
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3 Applications and examples

Let Sk , k ∈ Z, be the sequence of symmetric operators defined by Sk := Ak |K (τk), where Ak and τk are defined
as in the previous section. Then S := ⊕

k∈Z
Sk is a symmetric operator and S = A|K (τ ), where A := ⊕

k∈Z
Ak

and τ := ⊕
k∈Z

τk is defined as in Theorem 2.1. Here τk is considered as a map on H(k) to h(k), so that when

calculating the adjoint G(k)(z) of τk(Rk(z̄)) one gets

G(k)(z) := Gk(z)ι
∗
k ιk .

Next Lemma shows that the direct sums ⊕
k∈Z

G(k)(z) appearing in Theorem 3.2 below are well-defined bounded

operators:

Lemma 3.1

∀z ∈
⋂

k∈Z
ρ(Ak), sup

k∈Z
|||G(k)(z)||| < +∞.

Proof By (2.2) one has, posing G(k) := G(k)(−i),

|||G(k)(z)||| ≤ |||1 − (i + z)Rk ||| |||G(k)||| ≤ (2 + |z|) |||G(k)|||.
By (2.6),

‖G(k)φk‖k = ‖Gk ι
∗
k ιkφk‖k = 〈ι∗k ιkφk, G∗

k Gk ι
∗
k ιkφk〉k = |φk |(k)

and so

|||G(k)||| = 1.

��
By Theorem 2.1 and by the results provided in [9, Theorem 2.2] and [11, Theorem 2.1] one gets the following

Theorem 3.2 The set of self-adjoint extensions of S is parametrized by couples (�, �), where � is an
orthogonal projection in h◦ = ⊕

k∈Z
h(k) and � is a self-adjoint operator in the Hilbert space Range(�).

Denoting by A�,� the self-adjoint extension associated with (�, �) one has

A�,�( ⊕
k∈Z

vk) = ⊕
k∈Z

(
Akv

◦
k +

(
Re(z◦)G◦

(k) + i Im(z◦)G�
(k)

)
φk

)
,

D(A�,�) =
{

⊕
k∈Z

vk ∈ H : vk = v◦
k + G◦

(k)φk, ⊕
k∈Z

v◦
k ∈ ⊕

k∈Z
D(Ak),

⊕
k∈Z

φk ∈ D(�), �( ⊕
k∈Z

τkv
◦
k ) = �( ⊕

k∈Z
φk)

}
.

Moreover, for any z ∈ (∩k∈Z ρ(Ak)) ∩ ρ(A�,�),

(−A�,� + z)−1 = ⊕
k∈Z

(−Ak + z)−1

+ ⊕
k∈Z

G(k)(z)�
(
� + � ⊕

k∈Z
τk(G

◦
(k) − G(k)(z))�

)−1
� ⊕

k∈Z
G∗

(k)(z).

Here

G◦
(k) := 1

2
(G(k)(z◦) + G(k)(z̄◦)), G�

(k) := 1

2
(G(k)(z◦) − G(k)(z̄◦))

and z◦ ∈ ∩k∈Z ρ(Ak).
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Remark 3.3 By the definition of D(A�,�) one has that A�,� is a direct sum if and only if both � and � are
direct sums.

In the case z◦ ∈ R one has G�
(k) = 0 and

τk(G
◦
(k) − G(k)(z)) = z Gk(z◦)∗Gk(z) ι∗k ιk = z Gk(z)

∗Gk(z◦) ι∗k ιk
In the case 0 ∈ ∩k∈Z ρ(Ak) one can take z◦ = 0, so that

A�,�( ⊕
k∈Z

vk) = ⊕
k∈Z

Akv
◦
k .

Remark 3.4 Theorem 3.2 has an alternative version in the case one uses the trace map furnished by Lemma
2.5. In this case the extension parameter (�, �) is such that � is an orthogonal projection in h = ⊕

k∈Z
hk and

� is a self-adjoint operator in the Hilbert space associated with �. The statement of Theorem 3.2 remains
unchanged replacing τk with τ̃k and G(k)(z) with

G̃k(z) := G(k)(z)rk = Gk(z)r
−1
k = (τ̃k Rk(z̄))

∗.

Also in this case the norm of G̃(k)(z) : Hk → hk is bounded uniformly in k ∈ Z for any z ∈ ∩k∈Z ρ(Ak).

Remark 3.5 By [10] and [11, Section 4], Theorem 3.2 and Lemma 2.5 provide results equivalent to the ones
that can be obtained using Boundary Triplet Theory. Let us for simplicity take z◦ = i . Then (see [10, Theorem
3.1])

D(S∗
k ) = {vk ∈ H : vk = v◦

k + G◦
kφk, v◦

k ∈ D(Ak), φk ∈ hk},
S∗

k : D(S∗
k ) ⊆ Hk → Hk, S∗

k vk := Akvk + Rk Gkφk,

and the triple {hk, βk,0, βk,1}, where
βk,0 : D(S∗

k ) → hk, βk,0vk := τkv
◦
k ,

βk,1 : D(S∗
k ) → hk, βk,1vk := φk,

is a boundary triple for S∗
k , i.e., βk,1 and βk,2 are surjective and satisfy the Green-type identity

〈S∗
k uk, vk〉k − 〈uk, S∗

k vk〉k = [β1,kuk, βk,0vk]k − [βk,0uk, βk,1vk]k . (3.1)

Moreover the Weyl function of Sk is

Mk(z) = τk

(
Gk + G+

k

2
− Gk(z)

)

(see [10, Theorem 3.1]). By (3.1) there follows that {hk, rkβk,1, r−1
k βk,2}, where rk is defined in Lemma 2.5,

is a boundary triple for S∗
k as well with Weyl function r−1

k Mk(z) r−1
k .

By Lemma 2.5 and [10, Theorem 1.6] one gets

D(S∗) =
{

⊕
k∈Z

vk : vk = v◦
k + G̃◦

kφk, ⊕
k∈Z

v◦
k ∈ ⊕

k∈Z
D(Ak), ⊕

k∈Z
φk ∈ h

}

≡
{

⊕
k∈Z

vk : vk = v◦
k + G◦

kψk, ⊕
k∈Z

v◦
k ∈ ⊕

k∈Z
D(Ak), ⊕

k∈Z
rkψk ∈ h

}

and the triple {h, β̃0, β̃1} is a boundary triple for S∗ = ⊕
k∈Z

S∗
k with Weyl function ⊕

k∈Z
(r−1

k Mk(z) r−1
k ), where

β̃0 : D(S∗) → h, β̃0( ⊕
k∈Z

vk) := ⊕
k∈Z

(r−1
k β0,k)( ⊕

k∈Z
vk) ≡ ⊕

k∈Z
(r−1

k τkv
◦
k ),

β̃1 : D(S∗) → h, β̃1( ⊕
k∈Z

vk) := ⊕
k∈Z

(rkβ1,k)( ⊕
k∈Z

vk) ≡ ⊕
k∈Z

(rkψk) ≡ ⊕
k∈Z

φk .

Let us notice that the norm of r−1
k τk ≡ τ̃k : H(k) → hk is bounded uniformly in k ∈ Z by Lemma 2.5, and so

β̃0 is well defined. β̃1 is well defined as well by the definition of D(S∗).
In conclusion this provides results on direct sums of regularized boundary triplets of the kind recently

obtained in [8, Section 5], [7, Section 3], [5, Section 2].
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Example 3.6 Given {xn}n∈N ⊂ R, xn < xn+1, let Hn := L2(In), n ≥ 0, where I0 = (−∞, x1] and
In = [xn, xn+1], n ∈ N. Let

An : D(An) ⊂ L2(In) → L2(In), Anu = u′′, n ≥ 0,

D(A0) := {u ∈ L2(I0) ∩ C1(I0) : u′′ ∈ L2(I0), u(x1) = 0},

D(An) := {u ∈ C1(In) : u′′ ∈ L2(In), u(xn) = u(xn+1) = 0}, n ∈ N,

τ0 : H(0) → C, τ0u := −u′(x1).

τn : H(n) → C
2, τnu := (u′(xn), −u′(xn+1)) n ∈ N.

For any n ≥ 0, the map τn is continuous, surjective and has a kernel dense in L2(In).
By Remark 2.6 we can suppose n �= 0 and, since 0 ∈ ∩n>0 ρ(An), we can use the results provided in

Remark 2.4 with λ = 0.
The kernel of (−An)

−1, n > 0, is given by

Kn(x, y)

= 1

dn
((xn+1 − x)(y − xn)θ(x − y) + (x − xn)(xn+1 − y)θ(y − x)),

where θ denotes Heaviside’s function and dn := xn+1 − xn . Therefore

(Gnξ)(x) = 1

dn
(ξ1(xn+1 − x) + ξ2(x − xn)), ξ ≡ (ξ1, ξ2),

G∗
nu ≡ 1

dn

⎛

⎝
xn+1∫

xn

(xn+1 − x)u(x) dx,

xn+1∫

xn

(x − xn+1)u(x) dx

⎞

⎠

and so by straightforward calculations one gets that G∗
nGn : C2 → C

2 corresponds to the positive-definite
matrix

G∗
nGn ≡ dn

[
1/3 1/6
1/6 1/3

]
.

In conclusion on h(n) = C
2 we can put the equivalent scalar product

[ξ, ζ ](n) := ξ · ζ

dn
.

Hence, by Theorem 2.1, denoting by �2d(N) the weighted �2-space

�2d(N) :=
{

{sn}n∈N :
∑

n∈N

|sn|2
dn

< +∞
}

,

one gets that

τ := τ0 ⊕ ( ⊕
n∈N

τn) : H0 ⊕ ( ⊕
n∈N

H(n)) → C ⊕ �2d(N) ⊕ �2d(N) (3.2)

is continuous, surjective and has a kernel dense in L2(−∞, x∞), x∞ := supn∈N xn . Notice that �2d(N) = �2(N)
if and only if

0 < d∗ := inf
n∈N

dn ≤ d∗ := sup
n∈N

dn < +∞.
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Using Theorem 3.2 with trace map τ defined in (3.2), one gets the same kind of self-adjoint extensions given in
[7] (the case in which 0 < d∗ ≤ d∗ < +∞ has been studied in [6]). Such extensions describe one-dimensional
Schrödinger operators in L2(−∞, x∞) with δ and δ′ interactions supported on the discrete set X = {xn}n∈N.
These operators have been studied in [1, Chapters III.2 and III.3], when 0 < d∗ ≤ d∗ < +∞ and x∞ = +∞,
and in [7] when d∗ < +∞. Analogous considerations, with An given by the one-dimensional Dirac operator
withDirichlet boundary conditions on the interval In , lead to self-adjoint extension describing one-dimensional
Dirac operators with δ and δ′ interactions on the discrete set X = {xn}n∈N (see [1, Appendix J], for the case
X in which is a finite set and [5] for the general case).

Example 3.7 At first let us check that applying Thereom 2.1 to the example given in the introduction one gets

the right trace space h◦ = h
1
2 (Z). Hence here Ak = d2

0 − k2. By Remark 2.6 we can suppose k �= 0 and,
since 0 ∈ ∩k∈Z\{0} ρ(Ak), we can use the results provided in Remark 2.4 with λ = 0. Since the kernel of
(−d2

0 + z2)−1, Re(z) > 0, is given by

K (z; x, y) = e−z |x−y| − e−z (x+y)

2z
,

one easily gets

G∗
k ≡ γ̂0(−d2

0 + k2)−1 : L2(R+) → C, G∗
k f =

∞∫

0

e−|k| x f (x) dx

and so G∗
k Gk : C → C is given by the multiplication by the real number

G∗
k Gk ≡

∞∫

0

e−2|k| x dx = 1

2 |k| .

Therefore h(k) = C is equipped with the scalar product

[ξ, ζ ](k) := |k| ξ · ζ

and so

h◦ = C ⊕
(

⊕
k∈Z\{0}

h(k)

)
=

{

{sk}k∈Z ∈ �2(Z) :
∑

k∈Z
|k| |sk |2 < +∞

}

.

Using Theorem 3.2 with trace map

γ0 = ⊕
k∈Z

γ̂0 : ⊕
k∈Z

D0 → h
1
2 (Z),

then one can determine all self-adjoint extensions of the minimal Laplacian onM0.
Such an example can be generalized in the following way: let Mα be R+ × T endowed with the singu-

lar/degenerate Riemannian metric

gα(x, θ) =
(
1 0
0 x−2α

)
, α ∈ R.

The Riemannian volume form corresponding to gα is dω = x−αdxdθ and so we denote by L2(Mα) be the
Hilbert space

L2(Mα) :=
⎧
⎨

⎩
u : R+ × T → C :

2π∫

0

+∞∫

0

|u(x, θ)|2 x−αdxdθ < +∞
⎫
⎬

⎭
.

In [4] it is shown that the minimal realization

�min
α : C∞

c (Mα) ⊂ L2(Mα) → L2(Mα)
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of the Laplace–Beltrami operator

�α := ∂2

∂x2
− α

x

∂

∂x
+ x2α

∂2

∂θ2
(3.3)

corresponding to gα is essentially self-adjoint whenever α /∈ (−3, 1), has deficiency indices (1, 1) whenever
α ∈ (−3,−1] and has infinite deficiency indices whenever α ∈ (−1, 1). Therefore, in order to determine and
then study all self-adjoint realizations of �min

α , −1 < α < 1, by Theorem 3.2 one needs to characterize the
range space of the trace map

γαu(θ) := lim
x↓0 x−α ∂u

∂x
(x, θ)

acting on function in the domain of the Friedrichs extensions �D
α (corresponding to Dirichlet boundary con-

ditions at T) of �min
α (see [12]). Let us sketch here a proof in the case 0 < α < 1, referring to [12] for more

details and for the (more involved but still using Theorem 2.1) proof that holds in the case −1 < α < 1.
By partial Fourier transform one gets

L2(Mα) = ⊕
k∈Z

L2
w(R+), �D

α = ⊕
k∈Z

(d2
α − k2qα),

where L2
w(R+) is the weighted L2 space

L2
w(R+) :=

⎧
⎨

⎩
f : R+ → C :

∞∫

0

| f (x)|2x−αdx < +∞
⎫
⎬

⎭
,

and

(d2
α − k2qα) : Dα,k ⊂ L2

w(R+) → L2
w(R+),

d2
α f (x) := f ′′(x) − α

x
f ′(x), qα(x) = x2α,

Dα,k := { f ∈ L2
w(R+) ∩ C1(R+) : (d2

α − k2qα) ∈ L2
w(R+), f (0) = 0}.

By Remark 2.6 we can suppose k �= 0 and, since 0 ∈ ∩k∈Z\{0} ρ(Ak), Ak = d2
α − k2qα , whenever 0 < α < 1,

we can use the results provided in Remark 2.4 with λ = 0. Since fξ ≡ Gkξ solves the boundary value problem
{

f ′′
ξ (x) − α

x f ′
ξ (x) − k2x2α fξ = 0

fξ (0) = ξ,

one gets

(Gkξ)(x) = ξ exp

(
−|k|xα+1

α + 1

)
.

Therefore G∗
k Gk : C → C is given by the multliplication by the real number

G∗
k Gk ≡

∞∫

0

e−2 |k|xα+1

α+1 x−αdx = |k| α−1
α+1

∞∫

0

e−2 xα+1
α+1 x−αdx

and so h(k) = C is equipped with the scalar product

[ξ, ζ ](k) := |k| 1−α
1+α ξ · ζ.
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Thus by Theorem 2.1 the range space of γα (i.e., the defect space of �min
α ) is given by the fractional Hilbert–

Sobolev space

Hs(T) � hs(Z) :=
{

{sk}k∈Z ∈ �2(Z) :
∑

k∈Z
|k|2s |sk |2 < +∞

}

,

where s = 1
2 − α

1+α
.
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