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Abstract In this paper, we continue to investigate some important results in generalized topological groups
and we prove extension closed property for connectedness, compactness, and separability of generalized
topological groups. Last, we define generalized topological group actions on generalized topological spaces
and we establish a homeomorphism between action group and action space.

Mathematics Subject Classification General topology · Topological groups

1 Introduction

In [2], Császár introduced and extensively studied the notion of generalized open sets discarding finite inter-
section axiom from the general topology. Since then he and many other authors in the literature have shown
that important properties and results still hold, with some or no modification.

In [8], we defined the generalized topological group structure and we proved some basic results. Especially,
we examined generalized connectedness property in [8].
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In [9], we defined the ultra Hausdorff property of spaces and we gave some basic characterizations and we
investigated the relation between generalized compactness and ultra Hausdorfness.

In this paper, we continue to investigate some important results in generalized topological groups and
prove extension closed property for connectedness, compactness, first countability and separability of gener-
alized topological groups. In the last section, we define generalized topological group actions on generalized
topological spaces and we establish a homeomorphism between action group and action space.

2 More results on generalized topological groups, extension closed properties of quotient spaces

From [6], we know that Cartesian product of G-compact sets is G-compact.

Theorem 2.1 For any two G-compact subsets E and F of a G-topological group G, their product E F in G is
a G-compact subspace of G.

Proof Since multiplication is G-continuous, the subspace E F of G is a G-continuous image of the Cartesian
product E × F of the spaces E and F . Since E × F is G-compact, the space E F is G-compact. ��
Theorem 2.2 Let G be a G-ultra Hausdorff normal G-compact G-topological group, F a G-compact subset
of G, and P a G-closed subset of G. Then, the sets F P and P F are G-closed.

Proof Since G is G-compact then P × F is G-compact and by previous result, P F and F P are G-compact.
Since G is G-ultra Hausdorff and G-normal, F P and P F are G-closed. ��

From [6], we know that Cartesian product of G-connected sets is G-connected.

Theorem 2.3 For any two G-connected subsets E and F of a G-topological group G, their product E F in G
is a G-connected subspace of G.

Proof Since multiplication is G-continuous, the subspace E F of G is a G-continuous image of the Carte-
sian product E × F of the spaces E and F . Since E × F is G-connected from [6], the space E F is
G-connected. ��
Definition 2.4 A G-closed G-continuous mapping with G-compact preimages of points is called G-perfect.

Theorem 2.5 The G-quotient mapping π of G onto the G-quotient space G/H is G-perfect where H is a
G-compact subgroup of a G-ultra Hausdorff normal G-topological group G.

Proof Take any G-closed subset P of G. Then, by Theorem 2.2, P H is G-closed in G. However, P H is the
union of cosets that is P H = π−1π(P). It follows by definition of a quotient mapping that the set π(P) is
G-closed in the quotient space G/H . Thus, π is a G-closed mapping. In addition, if y ∈ G/H and π(x) = y
for some x ∈ G, then π−1(y) = x H is a G-compact subset of G. Hence, the fibers of π are G-compact and π
is G-perfect. ��
Corollary 2.6 Let H be a G-compact subgroup of a G-ultra Hausdorff normal G-topological group G such
that the G-quotient space G/H is G-compact. Then, G is also G-compact.

Definition 2.7 (discrete group) Let G be a G-topological group. Then, a subgroup K is called discrete group
if K ∩ V is at most one singleton set, for any G-open set V in G.

In [8], we proved the following result which we need in the proof of the next theorem.

Lemma 2.8 Let U be an arbitrary G-open neighborhood of the neutral element e of a G-connected G-
topological group G. Then, G = ⋃∞

n=1 U n.

Theorem 2.9 Let G be a G-connected G-topological group and e its identity element. If U is any G-open
neighborhood of e, then G is generated by U.
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Proof Let U be a G-open neighborhood of e. For each n ∈ N, we denote by U n the set of elements of the form
u1 . . . un , where each ui ∈ U . Let W := ⋃

n∈N U n . Since each U n is G-open, we have that W is a G-open set.
We now see that it is also G-closed.

Let g be an element of generalized closure of W . That is, g ∈ ClGW . Since gU−1 is a G-open neighborhood
of g, it must intersect W . Thus, let h ∈ W ∩ gU−1.

Since h ∈ gU−1, then h = gu−1 for some elements u ∈ U . Since h ∈ W , then h ∈ U n for some n ∈ N,
i.e., h = u1 . . . un with each ui ∈ U . We then have g = u1 . . . unu, i.e., g ∈ U n+1 ⊆ W . Hence, W is G-closed.
Since G is G-connected and W is G-open and G-closed, we must have W = G. This means that G is generated
by U . ��
Theorem 2.10 Let K be a discrete invariant subgroup of a G-connected G-topological group G. If for any
G-open neighborhood U of x in G there exists a G-open symmetric neighborhood V of e in G such that
V xV ⊂ U, then every element of K commutes with every element of G, i.e., K is contained in the center of
the group G.

Proof Assume that the subgroup K is non-trivial. Take an arbitrary element x ∈ K distinct from the identity
e of G. Since the group is discrete, we can find a G-open neighborhood U of x in G such that U ∩ K = {x}.
It follows from the G-continuity of the multiplication in G and the obvious equality exe = x that there exists
a G-open symmetric neighborhood V of e in G such that V xV ⊂ U . Let y ∈ V be arbitrary. Since K is
an invariant subgroup of G, we have that yxy−1 ∈ K . It is also clear that yxy−1 ∈ V xV −1 = V xV ⊂ U .
Therefore, yxy−1 ∈ U ∪ K = {x}, i.e., yxy−1 = x . This implies that yx = xy for each y ∈ V .

Since the group G is G-connected, Lemma 2.8 implies that the sets V n , with n ∈ N, cover the group G.
Therefore, every element g ∈ G can be written in the form g = y1...yn , where y1, ..., yn ∈ V and n ∈ N.
Since x commutes with every element of V , we have

gx = y1 · · · ynx = y1 · · · xyn = · · · = y1x · · · yn = xy1 · · · yn = xg.

We have proved that the element x ∈ K is in the center of the group G. Since x is an arbitrary element of K ,
we conclude that the center of G contains K . ��

By Theorem 2.9, we have the following result.

Theorem 2.11 If H is a G-dense subgroup of a G-connected G-topological group, then every G-neighborhood
U of the identity element in H algebraically generates the group H.

Definition 2.12 A space X is called G-resolvable if there exists G-dense disjoint subsets A and B of X .

Let G be a G-topological group. Since G is homogeneous and the union of resolvable spaces is again
resolvable then we have the following results.

Theorem 2.13 (i) If a subgroup H of a G-topological group G is G-resolvable, then so is G.
(ii) If a G-topological group G contains a proper G-dense subgroup, then G is G-resolvable.
(iii) If a G-topological group G contains a non-G-closed subgroup, then G is G-resolvable.

Proof (i) We reach the aim by generalized subspace topology.
(ii) It is coming from the first result (i) since closure of a generalized topological subgroup is subgroup.
(iii) It is coming from (i) and (iii). ��
Theorem 2.14 Let f : G → H be a G-continuous mapping of G-topological spaces. If G is G-compact and
H is G-ultra Hausdorff and G-normal, then f is G-closed. ��
Proof Let K be a G-closed set in G. Since G is G-compact then K is G-compact. So, by G-continuity of f ,
f (K ) is G-compact in H . By assumption, H is ultra Hausdorff and normal, so f (K ) is G-closed. ��
Definition 2.15 Let Xand Y be G-topological spaces. A G-continuous onto mapping f : X → Y is called
identification map if f is G-open or G-closed.
Theorem 2.16 Let f : G → H be a G-continuous onto homomorphism of G-topological groups. If G is
G-compact and H is G-ultra Hausdorff and normal, then f is G-open.
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Proof By Theorem 2.14, the mapping f is G-closed, and hence it is quotient. Let K be the kernel of f . If U is
G-open in G, then f −1( f (U )) = KU is G-open in G, by Theorem 2.9 of [8]. Since f is quotient, it follows
that the image f (U ) is G-open in H . Therefore, f is a G-open mapping. ��
Lemma 2.17 Suppose that f : X → Y is a G-open G-continuous mapping of a space X onto a space Y,
x ∈ X, B ⊂ Y, and f (x) ∈ ClG(B) where ClG(B) is generalized closure of B. Then, x ∈ f −1(ClG(B)).

Proof Take y = f (x), and let O be a G-open neighborhood of x . Then, f (O) is a G-open neighborhood of
y. Therefore, f (O) ∩ B �= ∅ and, hence, O ∩ f −1(B) �= ∅. It follows that x ∈ ClG( f −1(B)). Equality is
evident. ��
Theorem 2.18 Let H be a G-closed subgroup of a G-topological group G. If the spaces H and G/H are
G-separable, then the space G is also G-separable.

Proof Let π be the natural homomorphism of G onto the quotient space G/H . Since G/H is G-separable, we
can fix a G-dense countable subset B of G/H . Since H is G-separable and every coset x H is G-homeomorphic
to H , we can fix a G-dense countable subset My of π−1(y), for each y ∈ B. Put M = ⋃{My : y ∈ B}. Then,
M is a countable subset of G and M is G-dense in π−1(B). Since π is a G-open mapping of G onto G/H , it
follows from Lemma 2.17 that ClG(π−1(B)) = G. Hence, M is G-dense in G and G is G-separable. ��
Theorem 2.19 Let H be a G-closed invariant subgroup of a G-topological group G. If H and G/H are
G-connected, then so is G.

Proof Suppose that H and G/H are G-connected and f : G → {0, 1} be an arbitrary G-continuous map.
We have to show that f is constant. The restriction of f to H must be constant and since each coset gH
is G-connected, f must be constant on gH as well taking value f (g). Thus, we have a well-defined map
f̃ : G/H → {0, 1} such that f̃ ◦ π = f . By the fundamental property of quotient spaces, it follows that f̃ is
G-continuous and so must be constant since G/H is G-connected. Hence, f is also constant and we conclude
that G is G-connected. ��

3 G-topological group actions on G-topological spaces

In this section, wewill introduceG-topological GroupActions onG-topological spaces andwewant to improve
some results from topological group action theory.

Definition 3.1 If G is a G-topological group and X is a G-topological space, then an action of G on X is a
map G × X → X , with the image of (g, x) being denoted by g(x), such that (gh)(x) = g(h(x)) and e(x) = x .

For a point x ∈ X , the set G(x) = {gx : g ∈ G} is called the orbit of x .
If this map is G-continuous, then the action is said to be G-continuous. The space X , with a given G-

continuous action of G on X , is called G-space.

Proposition 3.2 Every G-continuous action θ : G × X → X of a G-topological group G on a space X is a
G-open mapping.

Proof It is sufficient to verify that the images under θ of the elements of some base for G × X are G-open in X.
Let O = U × V ⊂ G × X, where U and V are G-open in G and X , respectively. Then, θ(O) = ⋃

g∈G θg(V )
is G-open in X since every θg is a G-homeomorphism of X onto itself. Since the G-open sets U × V form a
base for G × X , the mapping θ is G-open. ��
Proposition 3.3 The G-continuity of an action θ : G × X → X of a G-topological group G with identity e on
a space X is equivalent to the G-continuity of θ at the points of the set {e} × X ⊂ G × X.

Proof Let g ∈ G and x ∈ X be arbitrary and U be a neighborhood of gx in X . Since θh is a homeomorphism
of X for each h ∈ G, the set V = θg−1(U ) is a neighborhood of x in X . By the G-continuity of θ at (e, x),
we can find a neighborhood O of e in G and a neighborhood W of x in X such that hy ∈ V for all h ∈ O
and y ∈ W . Clearly, if h ∈ O and y ∈ W , then (gh)(y) = g(hy) ∈ gV = θg(V ) = U . Thus, ky ∈ U , for all
k ∈ gO and all y ∈ W , where O ′ = gO is a neighborhood of g in G. Hence, the action θ is G-continuous. ��
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Here are some examples of G-continuous actions of G-topological groups.

Example 3.4 Any G-topological group G acts on itself by left translations, i.e., θ(x, y) = xy for all x, y ∈ G.
The G-continuity of this action follows from the G-continuity of the multiplication in G.

Example 3.5 Let G be a topological group, H a G-closed subgroup of G, and let G/H be the corresponding
left coset space. The action φ of G on G/H , defined by the rule φ(g, x H) = gx H , is G-continuous. Indeed,
take any y0 ∈ G/H , and fix a G-open neighborhood O of y0 in G/H . Choose x0 ∈ G such that π(x0) = y0,
where π : G → G/H is the G-quotient mapping. There exists G-open neighborhoodsU and V of the identity e
in G such that π(U x0) ⊂ O and V 2 ⊂ U . Clearly, W = π(V x0) is G-open in G/H and y0 ∈ W.By the choice
of U and V , if g ∈ V and y ∈ W , then φ(g, y) ∈ O . Indeed, take x1 ∈ V x0 with π(x1) = y. Then, y = x1H
and φ(g, y) = gx1H ∈ V V x0H ⊂ π(U x0) ⊂ O . It follows that φ is G-continuous at (e, y0) ∈ G × G/H ;
hence, φ is G-continuous, by Proposition 3.3.

Suppose that a G-topological group G acts continuously on a space X and that Y = X/G is the corre-
sponding orbit set. Let Y carry the quotient G-topology generated by the orbital projection π : X → X/G (a
set U ⊂ Y is G-open in Y if and only if the preimage π−1(U ) is G-open in X ). The G-topological space X/G
so obtained is called the orbit space or the orbit space of the G-space X . The orbital projection is always a
G-open mapping:

Proposition 3.6 If θ : G × X → X is a G-continuous action of a topological group G on a space X, then the
orbital projection π : X → X/G is G-open.

Proof For aG-open setU ⊂ X , consider the setπ−1π(U ) = GU . Every left translation θg is a homeomorphism
of X onto itself, so the set GU = ⋃

g∈G θg(U ) is G-open in X . Since π is a G-quotient mapping, π(U ) is
G-open in Y . ��
Theorem 3.7 If a G-compact G-topological group H acts continuously on an ultra-G-Hausdorff space X,
then the orbital projection π : X → X/H is a G-open and G-perfect mapping.

Proof Let Y = X/H . If y ∈ Y, choose x ∈ X such that π(x) = y and note that π−1(y) = H x is the orbit of
x in X . Since the mapping of H onto H x assigning to every g ∈ H , the point gx ∈ X is G-continuous, the
image H x of the G-compact group H is alsoG-compact. Hence, all fibers of π are G-compact.

To verify that the mapping π is G-closed, let y ∈ Y and x ∈ X be as above, and let O be a G-open set in X
containing π−1(y) = H x . Since the action of H on X is G-continuous, we can find, for every g ∈ H , G-open
neighborhoods Ug � g and Vg � x in H and X , respectively, such that UgVg ⊂ O . By the G-compactness of
H and of the orbit H x , there exists a finite set F ⊂ H such that H = ⋃

g∈F Ug and H x ⊂ ⋃
g∈F gVg . Then,

V = ⋂
g∈F Vg is a G-open neighborhood of x in X , and we claim that H V ⊂ O . Indeed, if h ∈ H and z ∈ V ,

then h ∈ Ug , for some g ∈ F , so that hz ∈ UgV ⊂ UgVg ⊂ O . Thus, W = π(V ) is a G-open neighborhood
of y in Y , and we have π−1π(V ) = H V ⊂ O . Hence, the mapping π is G-closed. Finally, π is G-open, by
Proposition 3.6. ��
Definition 3.8 Let X andY beG-spaceswithG-continuous actions θX : G×X → X and θY : G×Y → Y.AG-
continuous mapping f : X → Y is called G-equivariant if θY (g, f (x)) = f (θX (g, x)), i.e., g f (x) = f (gx),
for all g ∈ G and all x ∈ X . Clearly, f is G-equivariant if and only if the diagram below commutes,

G × X
θX−−−−→ X

⏐
⏐
�F

⏐
⏐
� f

G × Y
θY−−−−→ Y

where F = idG × f is the product of the identity mapping idG of G and the mapping f .

Example 3.9 Let H be a G-closed subgroup of a G-topological group G, and Y = G/H be the left coset space.
Denote by θG the action of G on itself by left translations, and by θY the natural G-continuous action of G on
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Y . Then, the quotient mapping π : G → G/H defined by π(x) = x H for each x ∈ G is equivariant. Indeed,
the equality g(π(x)) = gx H = π(gx) holds for all g, x ∈ G. Equivalently, the diagram is commutative,

G × G
θG−−−−→ G

⏐
⏐
��

⏐
⏐
�π

G × Y
θY−−−−→ Y

where � = idG × π .

Let η = {Xi : i ∈ I } be a family of G-spaces. Then, the product space X = ∏
i∈I Xi , if X is ultra-G-

Hausdorff, is a G-space. To define an action of G on X , take any g ∈ G and any x = (xi )i∈I ∈ X , and put
gx = (gxi )i∈I . Thus, G acts on X coordinatewise. The following result guarantees the G-continuity of this
action.

Proposition 3.10 The coordinatewise action of G on the product X = ∏
i∈I Xi of G-spaces is G-continuous,

i.e., X is a G-space, if X is ultra-G-Hausdorff.

Proof By Proposition 3.3, it suffices to verify the continuity of the action of G on X at the neutral element
e ∈ G. Let x = (xi )i∈I ∈ X be an arbitrary point and O ⊂ X a neighborhood of gx in X . Since canonical
open sets form a base of X , we can assume that O = ∏

i∈I Oi , where each Oi is a G-open neighborhood
of xi in Xi and the set F = {i ∈ I : Oi �= Xi } is finite. Since all factors are G-spaces, we can choose, for
every i ∈ F , G-open neighborhoods Vi � e and Vi � xi in G and Xi , respectively, such that Ui Vi ⊂ Oi . Put
U = ⋃

i∈F Vi and W = ∏
i∈I Wi , where Wi = Vi if i ∈ F and Wi = Xi otherwise. It follows immediately

from the definition of the sets U and W that U W ⊂ O . Therefore, the action of G on X is G-continuous.
Theorem 3.11 Let G act G-continuously on X and suppose that both G and X/G are G-connected, then X
is G-connected.

Proof Suppose X is the union of two disjoint nonempty G-open subsets U and V . Now π(U ) and π(V ) are
G-open in X/G. Since X/G is G-connected, π(U ) and π(V ) cannot be disjoint. If π(x) ∈ π(U )∪π(V ), then
both U ∪ O(x) and V ∪ O(x) are nonempty, where O(x) is the orbit of x . It means O(x) is a disjoint union of
two nonempty G-open sets. But O(x) is the image of G under the G-continuous function f : G → X defined
by f (g) = g(x). O(x) is therefore G-connected, and thus a contradiction. ��

Then, we can give the relationship between group actions and separation axiom in the following.

Theorem 3.12 If X isG-compact topological group and G aG-closed subgroup acting on X by left translation,
then X/G is G-regular, and so X/G is G-Hausdorff.

Proof Since G is a G-closed subgroup and the left translation map Lx : X → X is a G-homeomorphism then
π−1π(x) = xG = Lx (G) is G-closed. Thus, every point π(x) of X/G is G-closed, and it follows that X/G
is G-T1 space.

Now we will show that for a G-closed subset F of X/G and a point p /∈ F , there are G-open sets U, V
satisfying p ∈ U, F ⊂ V, U ∩ V = ∅. Since X acts transitively on X/G, we may suppose that p is element
of the class eG = G of the identity element e. Since F is G-closed, there exists a G-open set U0 such that
F ∩ U0 = ∅ and p ∈ U0. From the continuity of group action of X , there is a G-open set W such that e ∈ W
and W −1W ⊂ π−1(U0). The set Wπ−1(F) = ⋃

x∈π−1(F) W x is G-open. Since π is G-open map, both the
sets U = π(W ) and V = π(Wπ−1(F)) are G-open and such that p ∈ U and F ⊂ V . Last, we will show
that U ∩ V = ∅ by contradiction. So assume that there exists y ∈ U ∩ V . Then, there exists x1, x2 ∈ W and
x ∈ π−1(F) such that y = π(x2) = π(x1x). Thus, we have g ∈ G such that x2g = x1x , from which we
deduce that π(xg−1) ∈ F ∩ U0 = ∅ from xg−1 = x1−1x2 ∈ W −1W ⊂ π−1(U0). So, we get U ∩ V = ∅. ��

To give the last important result, we need the following definitions.

Definition 3.13 Let G act on the generalized topological space X . Then, for a point x of X the set

Gx = {g ∈ G : gx = x} (or Gx = {g ∈ G : xg = x})
is a subgroup of G and it is called stabilizer of x in G.
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We should note that Gx is G-closed since the singleton set {x} is G-closed.
Definition 3.14 Let G act on the generalized topological space X . Then, for a point x of X , we define a map

μx : G → X

by μx (g) = gx (or μx (g) = xg).

By continuity of action μx is G-continuous. Obviously, we have the following facts.
(i) μx is surjective iff G acts transitively on X .
(ii)

⋂
x∈X Gx = {e} iff G acts effectively on X .

Now we are ready to prove the following result.

Theorem 3.15 If G is G-compact, X ultra G-Hausdorff, and if G acts transitively on X, then X is homeomor-
phic to the orbit space G/Gx for any x ∈ X.

Proof Let X be a homogeneousG-space ofG. First, we claim thatμx induces a bijection hx : G/Gx → X such
that μx = hx ◦ πx , where πx : G → G/Gx is orbital projection. We have π(g1) = π(g2) iff g1−1g2 ∈ Gx
iff g1−1g2x = x iff μ(g1) = μ(g2). The equality hx (πx (g)) = μx (g) determines the injection hx . On
the other hand, from the first fact above μx is surjective implies hx is surjective. Since U is G-open in
X , μx

−1(U ) = πx
−1(hx

−1(U )) is G-open in G and hence, hx
−1(U ) is G-open. Thus, hx is G-continuous

bijection.
Next, we claim that for g ∈ G, x ∈ X and y = gx , the diagram

G/Gx
hx−−−−→ X

⏐
⏐
�Ag

⏐
⏐
�Lg

G/G y
hy−−−−→ X

is commutative, where G y = gGx g−1 and Ag is a homeomorphism given by Ag(g′Gx ) = (gg′g−1)G y .
Indeed, for g1 ∈ G, Lg(hx (πx (g1))) = Lg(μx (g1)) = gg1x = gg1g−1y = hy(Ag(πy(g1))). It implies that
the diagram is commutative. Clearly, we have G y = AgGx = gGx g−1.

Last if μx (or hx ) is G-open map then hx is a homeomorphism. By hypothesis, μx is G-open map. So, if
O is G-open set in G/Gx then πx

−1(O) is G-open (by Theorem 3.7) and hence, hx (O) = μx (πx
−1(O)) is

G-open. It means that hx is G-open map, which implies that hx is a homeomorphism. ��
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