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Abstract In this paper, we study the class of rings in which every flat ideal is finitely projective.We investigate
the stability of this property under localizations and homomorphic images, and its transfer to various contexts
of constructions such as direct products, amalgamation of rings A �� f J , and trivial ring extensions. Our
results generate examples which enrich the current literature with new and original families of non-coherent
rings that satisfy this property.

Mathematics Subject Classification 13D05 · 13D02

1 Introduction

All rings considered in this paper are assumed to be commutative with identity elements and all modules are
unitary.

We start by recalling a few definitions. Azumaya [2] generalized the concept of projectivity of modules
to finitely projective and gave an interesting study of finitely projective modules. An R-module M is called
finitely projective if, for any finitely generated submodule N , the inclusion map N → M factors through a free
module F . Note that Jones [15] use the term f -projective, Mao and Ding [20] and Simson [25] uses the term
ℵ−1-projective. It is well known that every projective module is finitely projective and any finitely generated
finitely projective module is projective and also every finitely projective module is flat. The following diagram
of implications summarizes the relations between them:

M is projective �⇒ M is finitely projective �⇒ M is flat.

But these are not generally reversible, e.g., the rationals are finitely projective as Z-module, though not
projective. Let F be any field, R := ∏

n∈N F and K := ⊕n∈NF . Then R/K is R-flat since R is regular, but
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R/K is not finitely projective by [15, page 1611]. An interesting study of rings over which every flat module
is finitely projective is done by Shenglin [24].

In this paper, we are interested in those rings over which every flat ideal is finitely projective. We call such
ring an FFP-ring. In particular, perfect rings and hereditary rings are FFP-rings. Also, all Noetherian rings and
Prüfer rings are FFP-rings. See for instance [2,6,15,24].

Let A and B be rings, J an ideal of B and let f : A −→ B be a ring homomorphism. In [10], the
amalgamation of A with B along J with respect to f is the sub-ring of A × B defined by:

A �� f J := {(a, f (a) + j) ; a ∈ A, j ∈ J }.
This construction is a generalization of the amalgamated duplication of a ring along an ideal introduced and
studied in [7–9]. This construction has been studied, in the general case, by D’Anna and Fontana in [9].

Let A be a ring and E an A-module. The trivial ring extension of A by E (also called the idealization
of E over A) is the ring R := A ∝ E whose underlying group is A × E with multiplication given by
(a, e)(a′, e′) := (aa′, ae′ + a′e). For the reader’s convenience, recall that if I is an ideal of A and E ′ is a
submodule of E such that I E ⊆ E ′, then J := I ∝ E ′ is an ideal of R. Recall that prime (resp., maximal)
ideals of R have the form p ∝ E , where p is a prime (resp., maximal) ideal of A [1, Theorem 3.2]. Suitable
background on commutative trivial ring extensions is demonstrated in [1,12,14,16].

The purpose of this paper is to give some simplemethods to construct FFP-rings. For this, we investigate the
stability of the FFP-property under localization and homomorphic image, and its transfer to various contexts
of constructions such as direct products, amalgamation of rings A �� f J , and trivial ring extensions. Our
results generate original examples which enrich the current literature with new families of non-coherent rings
satisfying the FFP-property.

2 Main results

Let R be a commutative ring. We will use the following notations and basic notions:
Z(R) := {a ∈ R/ax = 0 for some 0 
= x ∈ R} denotes the set of zero divisors of R.
Nil(R) := {a ∈ R/an = 0 for some positive integer n} denotes the set of nilpotent elements of R.
Min(R) := {P ∈ spec(R)/ P is a minimal prime ideal of R} denotes the set of minimal prime ideals of R.
Q(R) denotes the total ring of quotients of R, that is, the localization of R by the set of all its non-zero

divisors.
Let E be an R-module, fdR(E) denotes the usual flat dimension of E .
A non-zero divisor of R will be called a regular element, and an ideal of R which contains a regular element

will be called a regular ideal.
Recall that R is called semi-hereditary if every finitely generated ideal of R is projective and is said to

have weak global dimension ≤ 1 (i.e., wdim(R) ≤ 1) if every finitely generated ideal of R is flat. A semi-
hereditary ring R has wdim(R) ≤ 1. In the domain context, all these conditions coincide with the definition
of a Prüfer domain. Glaz [11, Example 3.2.1] provides examples of non-semi-hereditary ring of wdim ≤ 1.
See for instance [3,4,11]. These examples are not FFP-rings as shown by the following result.

Proposition 2.1 Any FFP-ring of wdim ≤ 1 is semi-hereditary.

Proof Let R be an FFP-ring with wdim(R) ≤ 1 and let I be an finitely generated ideal of R. Then I is flat
since wdim(R) ≤ 1 and so I is finitely projective since R is an FFP-ring. Therefore, I is projective since it is
finitely generated and finitely projective, as desired. ��

Now, we give a class of FFP-rings.

Proposition 2.2 Any coherent ring is an FFP-ring.

Proof Assume that R is a coherent ring and we must show that it is an FFP-ring. Let J be a flat ideal of R and
I be a finitely generated sub-ideal of J . Then I is a finitely presented since R is coherent. Hence, the inclusion
map I −→ J factors through a free module by [5, Theorem 1], as desired. ��

The converse does not hold in general (see Examples 2.20 and 2.21 below).

Proposition 2.3 Let R → S be an injective flat ring homomorphism. If S is an FFP-ring, then so is R.
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Proof Assume that S is an FFP-ring and let I be a flat ideal of R. Then, I ⊗R S = I S is a flat ideal of S and
so I ⊗R S is a finitely projective ideal of S (since S is an FFP-ring). Hence, I is a finitely projective ideal of
R by [6, lemma 5]. It follows that R is an FFP-ring. ��

Corollary 2.4 Any domain is an FFP-ring.

Corollary 2.5 Let R be a ring and R[X ] be the polynomial ring over R. If R[X ] is an FFP-ring, then so is R.

Corollary 2.6 Let R be a ring and I be a flat ideal of R. If R �� I is an FFP-ring, then so is R.

Proof By Proposition 2.3, since if I is a flat ideal of R, then R �� I is faithfully flat R-module. ��

Corollary 2.7 Let R be a commutative ring and let S be a set of regular element of R. Then if S−1(R) is an
FFP-ring, then so is R.

Proposition 2.8 Let R be a ring. If R is reduced and Min(R) is compact, then R[X ] and R are FFP-ring.

Proof If R is reduced and Min(R) is compact, then Q(R[X ]) the total ring of quotients of R[X ] is Von
Neumann regular by [21, Corollary 1, Page 270]. Hence, R[X ] is an FFP-ring by Proposition 2.3 and so is R
by Corollary 2.5. ��

Recall that a ring R is a PP-ring (or weak Baer ring) if principal ideals of R are projective.

Corollary 2.9 Any PP-ring is an FFP-ring.

Proof Let R be a PP-ring. Then Q(R), the total ring quotients of R, is a Von Neumann regular ring by [13,
Theorem 2.11]. Hence, R is an FFP-ring by Proposition 2.3. ��

Next, we study the transfer of the FFP-property to direct products.

Theorem 2.10 Let (Ri )i=1,...,n be a family of commutative rings. Then R =: ∏n
i=1 Ri is an FFP-ring if and

only if so is Ri for each i = 1, . . . , n.

The Proof of the Theorem involves the following Lemma.

Lemma 2.11 Let R1 and R2 be two rings and let E1 and E2 be two modules over R1 and R2, respectively.
Then f dR1×R2(E1 × E2) = sup{ f dR1(E1), f dR2(E2)}.

Proof By [17, Lemma 2.5]. ��

Proof of Theorem 2.10 The proof is done by induction on n and it suffices to check it for n = 2. Assume that
(R1 × R2) is an FFP-ring and we must show that Ri is an FFP-ring for i = 1, 2.

Let I1 be a flat ideal of R1 and J1 be a finitely generated sub-ideal of I1. Then, I1 × R2 is a flat ideal of
R1 × R2 which is an FFP-ring (by Lemma 2.11) and J1 × R2 is a finitely generated sub-ideal of I1 × R2.
Then, there exists a free (R1 × R2)-module F (F � (R1 × R2)

� for some finite index set �), a morphism
ϕ : J1 × R2 −→ F and a morphism ψ : F −→ I1 × R2 such that ψ ◦ ϕ := idJ1×R2 . Consider the morphism
ψ1: R�

1 −→ I1, where ψ1((xi )i∈�) = π1(ψ((xi , 0)i∈�)), for every (xi )i∈� ∈ R�
1 and a morphism ϕ1:

J1 −→ R�
1 defined by the following diagram:
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�
�
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�
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�
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�
��
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ϕ
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ψ

i1 idJ1×R2 π1

π
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�

�
�

�
�

�
�

�
�

��

where π((xi , yi )i∈�) = (xi )i∈� for every (xi , yi )i∈� ∈ (R1 × R2)
�. Then, ψ1 ◦ ϕ1 = ψ1 ◦ π ◦ ϕ ◦ i1 =

π1 ◦ ψ ◦ ϕ ◦ i1 =π1 ◦ id j1×R2 ◦ i1 = idJ1 , and so I1 is finitely projective. Hence, R1 is an FFP-ring.
Also, R2 is an FFP-ring by the same argument as R1.
Conversely, we assume that R1 and R2 are FFP-rings. Note that I is an ideal of R1 × R2 if and only if

I := I1 × I2 for some ideals I1, I2 of R1 and R2, respectively. On the other hand, I is flat if and only if Ii
is Ri -flat for every i = 1, 2 (by Lemma 2.11). Let J1 × J2 be a finitely generated sub-ideal of I1 × I2. Then
J1 (respectively J2) is finitely generated sub-ideal of I1 (respectively I2). Since Ri is an FFP-ring, then, there
exists a free Ri -module Fi , a morphism ϕi : Ji −→ Fi and amorphismψi : Fi −→ Ii such thatψi oϕi := idJi .
Considers the morphism ϕ and ψ defined by: ϕ: J1 × J2 −→ F1 × F2, where ϕ(x, y) := (ϕ1(x), ϕ2(y)) and
ψ : F1 × F2 −→ I1 × I2, where ψ(x, y) := (ψ1(x), ψ2(y)) . Then ψ ◦ ϕ := idJ1×J2 . Therefore, I1 × I2 is
finitely projective, which completes the proof. ��
Example 2.12 Let R1 be a non-FFP-ring, R2 be any ring and let R := R1 × R2. Then R is not an FFP-ring.

We combine Proposition 2.3 with [10, Proposition 3.1] to get the transfer of the FFP-property to the amal-
gamation A �� f J .

Proposition 2.13 Let A and B be rings, f : A −→ B be a ring homomorphism, and let J be an ideal of B
such that J and f −1(J ) are regular ideals of B and A, respectively. If Q(A) and Q(B) are FFP-rings, then
so is A �� f J .

Proof By [10, Proposition 3.1], we have Q(A �� f J ) := Q(A) × Q(B). Then Q(A �� f J ) is an FFP-ring if
and only if so are Q(A) and Q(B) (by Theorem 2.10). Hence, A �� f J is an FFP-ring by Proposition 2.3. ��
Corollary 2.14 Let A be a ring and I be a regular ideal of A. Then A �� I is an FFP-ring if so is Q(A).

Proposition 2.13 enables us to construct other classes of FFP-rings.

Example 2.15 Let A and B be two domains, and let J be an ideal of B. Then A �� f J is an FFP-ring.
In particular, if I is an ideal of a domain A, then R := A �� I is an FFP-ring.

Now, we study the transfer of the FFP-property between a ring A and the trivial ring extension of A by
E , where E is an A-module. The main result (Theorem 2.16) enriches the literature with original examples of
(non-coherent) FFP-rings. Recall that if E is an A-module, then Z(E) := {a ∈ A such that ae := 0 for some
0 
= e ∈ E}.
Theorem 2.16 Let A be a ring, let E be an A-module and let R := A ∝ E be a trivial ring extension of A by
E. Then:

(1) Assume that E is a flat A-module or an ideal of A. If R is an FFP-ring, then so is A.
(2) Assume that A is a domain and E is an A-module such that Z(E) := 0 [In particular, if E is a K -vector

space, where K := q f (A) is the quotient field of A]. Then R is an FFP-ring.

(3) Assume that A is a domain and E is a divisible A-module. Then R is an FFP-ring.
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(4) Let (A, M) be a local ring and let R := A ∝ E be the trivial ring extension of A by an A-module E
such that M E = 0. Then R is an FFP-ring if so is A.

Before proving Theorem 2.16, we establish the following lemmas.

Lemma 2.17 [19, Theorem 7(2)] Let A be a ring, let E be an A-module and let R := A ∝ E be a trivial ring
extension of A by E. If J := I ∝ E (where I is a non-zero ideal of A) is a flat ideal of R, then I is a flat ideal
of A.

Lemma 2.18 Let T = K ∝ E be the trivial ring extension of a field K by a K -vector space E. Then T is an
FFP-ring.

Proof T is the only non-zero flat ideal of T by [1, Corollary 3.4] since K is a field. Hence, T is an FFP-ring.
��

An R-module M is called P-flat if, for any (s, x) ∈ R × M such that sx = 0, x ∈ (0 : s)M , where
(0 : s) = AnnR(s). If M is flat, then M is naturally P-flat. In the domain case, P-flat is equivalent to torsion
free and when R is an arithmetical ring, i.e., the lattice formed by its ideals is distributive, then any P-flat
module is flat (by [6, p. 236]). Also, every P-flat cyclic module is flat (by [6, Proposition 1(2)]). See for
instance [6,22].

Before proving Theorem 2.16, we also need the following lemma of independent interest.

Lemma 2.19 Let A be a domain, E be an A-module, F(
= 0) be a sub-module of E and R := A ∝ E be a
trivial ring extension of A by E. Then 0 ∝ F is not a P-flat R-module.

Proof Let F(
= 0) be a sub-module of E . Two cases are then possible:

Case 1: Z(F) := 0. Let (0, 0) 
= (0, f ) ∈ 0 ∝ F and (0, 0) 
= (0, e) ∈ 0 ∝ F . Then, (0, f )(0, e) = (0, 0)
and (0 : (0, e)) = 0 ∝ E since Z(F) = 0. Then (0, f ) /∈ (0 : (0, e))(0 ∝ F) = (0 ∝ E)(0 ∝ F) = 0. Thus,
0 ∝ F is not a P-flat R-module.

Case 2: Z(F) 
= 0. Let 0 
= d ∈ Z(F) and 0 
= f ∈ F such that d f := 0. Hence, (d, 0)(0, f ) := (0, 0) and
(0 : (d, 0)) ⊆ 0 ∝ E and so (0, f ) /∈ (0 : (d, 0))(0 ∝ F) := 0. Therefore, 0 ∝ F is not a P-flat R-module,
as desired. ��
Proof of Theorem 2.16 (1) Assume that R is an FFP-ring. We have two cases.

Case 1. If E is a flat A-module, the result follows clearly by Proposition 2.3.

Case 2. Assume now, that E is an ideal of A and let I be a flat ideal of A. Then I ⊗A R (:= I ∝ I E)
(since I is flat and E is an ideal of A) is a flat ideal of R and so it is a finitely projective since R is an
FFP-ring. Therefore, I is a finitely projective ideal of A by [6, Lemma 5] and so R is an FFP-ring.

(2) Assume that A is a domain and E is an A-module such that Z(E) = 0. The set S := (A − {0}) ∝ E is
the set of regular elements of A ∝ E by [1, Theorem 3.5]. Hence, by [1, Theorem 4.1], Q(A ∝ E) �
S−1(A) ∝ S−1(E) := K ∝ S−1(E), where K = q f (A) is the quotient field of A. Therefore, A ∝ E is
an FFP-ring by Lemma 2.18 and Proposition 2.3.

(3) Assume that A is a domain and E is a divisible A-module. Let J be a non-zero flat ideal of R, we need
to prove that J is finitely projective. By [1, Corollary 3.4], J := I ∝ E or J := 0 ∝ E ′ for some ideal
I of R or some submodule E ′ of E . Since 0 ∝ E ′ is not flat since is not P-flat by Lemma 2.19, then
J := I ∝ E . Let L be a finitely generated sub-ideal of J . Two cases are possible:

Case 1: L := 0 ∝ E ′, where E ′ is a finitely generated sub-module of E . Thus, J is finitely projective.
Indeed there exists a free A-module F and an epimorphism f such that I � F/ker f . Consider the
morphism ϕ: F ⊗A R −→ I ⊗A R(� I ∝ E) defined by ϕ := ( f ⊗ idR). Then ϕ ◦ id(0∝E ′) := id(0∝E ′).

Case 2: L := I ′ ∝ E , where I ′ is a finitely generated sub-ideal of I . Hence, I is a flat ideal of A (by
Lemma2.17) and so it is finitely projective (since A is an FFP-ring). Then there exists a free A-module F , a
morphismϕ1: I ′ −→ F and amorphismψ1 : F −→ I such thatψ1◦ϕ1 := idI ′ . Consider themorphisms
ϕ andψ defined by: ϕ: I ′ ⊗A R −→ F ⊗A R such that ϕ := (ϕ1⊗ idR) andψ : F ⊗ R −→ I ⊗A R, such
thatψ := (ψ1⊗idR), thenψ◦ϕ := (ψ1⊗idR)◦(ϕ1⊗idR) := (ψ1◦ϕ1)⊗idR := idI ′ ⊗idR := id(I ′∝E).
Therefore, I ∝ E is finitely projective, as desired.
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(4) Let (A, M) be a local FFP-ring, R := A ∝ E be the trivial ring extension of A by an A-module E such
that M E := 0 and let J be a flat ideal of R. By [23, Lemma 2.1], we may assume that J (M ∝ E) := J .
Then J := J (M ∝ E) ⊆ (M ∝ E)(M ∝ E) := M2 ∝ 0. Hence, J := I ∝ 0 for some ideal I of A. We
have J ⊗R A ∼= J ⊗R R/(0 ∝ E) ∼= J/J (0 ∝ E) ∼= I ∝ 0/(I ∝ 0)(0 ∝ E) := I ∝ 0. So, I is a flat
ideal of A since J is a flat ideal of R. Hence, I is a finitely projective ideal of A since A is an FFP-ring.
We claim that J is a finitely projective ideal of R.
Indeed, let I ′ ∝ 0 be a finitely generated sub-ideal of J , where I ′ is a finitely generated sub-ideal
of I . Since I is finitely projective and (I ∝ 0 := J ) ∼= I , then there exists a free A-module F , a
morphism ϕ1: I ′ ∝ 0 −→ F and a morphism ψ1 : F −→ I ∝ 0 such that ψ − 1 ◦ ϕ1 := idI ′∝0.
Consider the morphisms f , ϕ and ψ defined by: f : F −→ F ⊗A R such that f (x) := x ⊗ 1R ,
ϕ : I ′ ∝ 0 −→ F such that ϕ := ( f oϕ1), and ψ : F ⊗A R −→ I ∝ 0 such that ψ1 := (ψ ◦ f ). Then
ψ ◦ ϕ := ψ ◦ ( f oϕ1) := ψ − 1 ◦ ϕ1 := id(I ′∝0). Therefore, J := I ∝ 0 is finitely projective and this
completes the Proof of Theorem 2.16. ��

Theorem 2.16 gives new and original examples of (non-coherent) FFP-rings.

Example 2.20 Let A be a domain which is not Prüfer, K := q f (A), and let R := A ∝ K be the trivial ring
extension of A by K . Then:

(1) R is an FFP-ring by Theorem 2.16(2).

(2) R is not coherent by [16, Theorem 2.8(1)]. In particular, R is non-Noetherian.

Example 2.21 Let (A, M) be a local domain and let R := A ∝ (A/M)�, where � is an infinite set, be the
trivial ring extension of A by the A-module (A/M)�. Then:

(1) R is an FFP-ring by Theorem 2.16(4).

(2) R is not coherent by [18, Theorem 2.1]. In particular, R is non-Noetherian.

Example 2.22 (1) Z ∝ Q/Z is an FFP-ring.

(2) If G is a divisible abelian group, then Z ∝ G is an FFP-ring.

(3) Let R be a domain and G be a divisible abelian group, then R ∝ HomZ(R, G) is an FFP-ring.

(4) If R is a Dedekind ring and A is a torsion-free R-module, then R ∝ Ext1R(A, B) is an FFP-ring, for
every R-module B.

Proof (1) The rationals Q is a divisible Z-module, then Q/Z is a divisible Z-module. Hence, Z ∝ Q/Z is
an FFP-ring.

(2) If G is a divisible abelian group, then G is a divisible Z-module. Hence, Z ∝ G is an FFP-ring by
Theorem 2.16.

(3) Let R be a domain and G be a divisible abelian group, then HomZ(R, G) is an injective R-module by
[22, Lemma 3.37]. Then, R ∝ HomZ(R, G) is an FFP-ring by Theorem 2.16.

(4) By [22, Proposition 8.2] and Theorem 2.16. ��
Our next (and last) result establishes the transfer of the FFP property to a particular homomorphic image.

Proposition 2.23 Let R be a ring and let I be a pure ideal of R. If R is an FFP-ring, then so is R/I .
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Proof Let R be an FFP-ring and let J/I be a flat ideal of R/I . Then J is a flat ideal of R (using the exact
sequence: 0 −→ I −→ J −→ J/I −→ 0 where I and J/I are flat R-modules since I is a pure ideal of R).
So J is finitely projective. The epimorphism p : J −→ J/I is finitely split, since I is a pure sub-module of
J (see [2] page 114). Hence, by [2, Corollary 13] J/I is finitely projective R-module. Let K/I be a finitely
generated sub-ideal of J/I , there exists a free R-module F , a morphism ϕ : K/I −→ F and a morphism
ψ : F −→ J/I such that ψ ◦ ϕ := idK/I . It follows that ((ψ ⊗ 1R/I ) ◦ (ϕ ⊗ 1R/I )(x) := x) for all x ∈ K/I
since R/I is a flat R-module. We get that J/I is finitely projective ideal of R/I . Hence, R/I is an FFP-ring.

��
The converse does not hold in general as the following examples shows.

Example 2.24 Let R be a ring and let m be a prime ideal of R. Then R/m is always an FFP-ring.

Example 2.25 Z and Z/6Z are FFP-rings, but 6Z is a non-pure finitely generated ideal of Z.
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