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Abstract Homotopical geometry over differential operators is a convenient setting
for a coordinate-free investigation of nonlinear partial differential equations modulo
symmetries.One of the first issues onemeets in the functor of points approach to homo-
topicalD-geometry, is the question of a model structure on the category DGAlg(D) of
differential non-negatively gradedO-quasi-coherent sheaves of commutative algebras
over the sheafD of differential operators of an appropriate underlying variety (X,O).
We define a cofibrantly generated model structure on DGAlg(D) via the definition of
its weak equivalences and its fibrations, characterize the class of cofibrations, and build
an explicit functorial ‘cofibration–trivial fibration’ factorization.We then use the latter
to get a functorial model categorical Koszul–Tate resolution forD-algebraic ‘on-shell
function’ algebras (which contains the classical Koszul–Tate resolution). The paper is
also the starting point for a homotopical D-geometric Batalin–Vilkovisky formalism.
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1 Introduction

The solution functor of a linear PDE D · m = 0 is a functor Sol : Mod(D) → Set
defined on the category of left modules over the ringD of linear differential operators
of a suitable underlying space: for D ∈ D and M ∈ Mod(D), we have

Sol(M) = {m ∈ M : D · m = 0}.
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For a polynomial PDE, we get a representable functor Sol : Alg(D) → Set defined
on the category of D-algebras, i.e., of commutative monoids in Mod(D). According
to [2], the solution functor of a nonlinear PDE should be viewed as a ‘locally repre-
sentable’ sheaf Sol : Alg(D) → Set. To allow for still more general spaces, sheaves
Alg(D) → SSet valued in simplicial sets, or sheaves DGAlg(D) → SSet on (the
opposite of) the category DGAlg(D) of differential graded D-algebras, have to be
considered.

More precisely, when constructing a derived algebraic variant of the jet bundle
approach to the Lagrangian Batalin–Vilkovisky formalism, not, as usual, in the world
of function algebras, but, dually, on the space side, we first consider the quotient
of the infinite jet space by the global gauge symmetries. It turns out [7] that this
quotient should be thought of as a 1-geometric derived X -DX -stack, where X is
an underlying smooth affine algebraic variety. This new homotopical algebraic D-
geometry provides in particular a convenient way to encode total derivatives and it
allows actually to recover the classical Batalin-Vilkovisky complex as a specific case
of its general constructions [24]. In the functor of points approach to spaces, the
derived X -DX -stacks F are those presheaves F : DGAlg(D) → SSet that satisfy
the fibrant object (sheaf-)condition for the local model structure on the presheaf cat-
egory Fun(DGAlg(D),SSet)—the category of derived X -DX -stacks is in fact the
homotopy category of this model category of functors. More precisely, the choice of
an adequate model (pre-)topology allows us to construct the local model structure,
via a double Bousfield localization, from the global model structure of the considered
presheaf category, which is implemented ‘object-wise’ by the model structure of the
target category SSet. The first of the two Bousfield localizations is the localization of
this globalmodel structurewith respect to theweak equivalences of the (category oppo-
site to the) source category DGAlg(D). Furthermore, the D-geometric counterpart of
an algebraC∞(�) of on-shell functions is an algebra A ∈ Alg(D) ⊂ DGAlg(D), and
it appears [23] that the Koszul–Tate resolution of C∞(�) corresponds to the cofibrant
replacement of A in a coslice category of DGAlg(D).

In view of the two preceding reasons, it is clear that our first task is the definition
of a model structure on DGAlg(D) (we draw the attention of the reader to the fact
that we will use two different definitions of model categories, namely the definition
of [12] and that of [19]—for the details we refer to Appendix 11.4). In the present
paper, we give an explicit description of a cofibrantly generated model structure on the
category DGAlg(D) of differential non-negatively graded O-quasi-coherent sheaves
of commutative algebras over the sheaf D of differential operators of a smooth affine
algebraic variety (X,O). In particular, we characterize the cofibrations as the retracts
of the relative Sullivan D-algebras and we give an explicit functorial ‘Cof–TrivFib’
factorization (as well as the corresponding functorial cofibrant replacement functor—
which is specific to our setting and is of course different from the one provided, for
arbitrary cofibrantly generated model categories, by the small object argument).

To develop the afore-mentioned homotopical D-geometry, we have to show inter
alia that the triplet (DGMod(D),DGMod(D),DGAlg(D)) is a homotopical algebraic
context [29]. This includes proving that the model category DGAlg(D) is proper
and that the base change functor B ⊗A − , from modules in DGMod(D) over A ∈
DGAlg(D) tomodules overB ∈ A ↓ DGAlg(D), preservesweak equivalences. These
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results [7] are based on our characterization of cofibrations in DGAlg(D), as well as
on the explicit functorial ‘ Cof–TrivFib’ factorization.

Notice finally that our two assumptions—smooth and affine—on the underlying
variety X are necessary. Exactly the same smoothness condition is indeed used in
[2] [Remark p.56], since for an arbitrary singular scheme X , the notion of left DX -
module is meaningless. On the other hand, the assumption that X is affine is needed
to substitute global sections of sheaves to the sheaves themselves, i.e., to replace the
category of differential non-negatively graded O-quasi-coherent sheaves of commu-
tative algebras over the sheaf D by the category of differential non-negatively graded
commutative algebras over the ring D(X) of global sections of D. However, this
confinement is not merely a comfort solution: the existence of the projective model
structure—that we transfer from DGMod(D) to DGAlg(D)—requires that the under-
lying category has enough projectives, and this is in general not the case for a category
of sheaves over a not necessarily affine scheme [11], [13, Ex.III.6.2]. In addition, the
confinement to the affine case allows us to use the artefacts of the model categorical
environment, as well as to extract the fundamental structure of the main actors of the
considered problem, which may then be extended to an arbitrary smooth scheme X
[23].

Let us still stress that the special behavior of the noncommutative ring D turns
out to be a source of possibilities, as well as a source of problems. For instance, a
differential graded commutative algebra over a field or a commutative ring k is a com-
mutative monoid in the category of differential graded k-modules. The extension of
this concept to noncommutative rings R is problematic, since the category of differen-
tial graded (left) R-modules is not symmetric monoidal. In the case R = D, we deal
with differential graded (left) D-modules and these are symmetric monoidal—and
also closed. However, the tensor product and the internal Hom are taken, not over D,
but overO: one considers theO-modules given, for M, N ∈ DGMod(D), by M⊗O N
and HomO(M, N ), and shows that their O-module structures can be extended to D-
module structures [18]. This and other—in particular related—specificities must be
kept in mind throughout the whole paper.

We conclude this introduction by drawing the attention of the interested reader to
the follow-up works [7,23], and [24], which provide a more complete picture of our
ongoing research project.

2 Conventions and notation

According to the anglo-saxon nomenclature, we consider the number 0 as being neither
positive, nor negative.

All the rings used in this text are implicitly assumed to be unital.

3 Sheaves of modules

Let Top be the category of topological spaces and, for X ∈ Top, let OpenX be
the category of open subsets of X . If RX is a sheaf of rings, a left RX -module is
a sheaf PX , such that, for each U ∈ OpenX , PX (U ) is an RX (U )-module, and
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theRX (U )-actions are compatible with the restrictions. We denote by Mod(RX ) the
abelian category of RX -modules and of their (naturally defined) morphisms.

In the following, we omit subscript X if no confusion arises.
If P,Q ∈ Mod(R), the (internal) Hom denoted by HomR(P,Q) is the sheaf of

abelian groups (of R-modules, i.e., is the element of Mod(R), if R is commutative)
that is defined by

HomR(P,Q)(U ) := HomR|U (P|U ,Q|U ), (1)

U ∈ OpenX . The RHS is made of themorphisms of (pre)sheaves ofR|U -modules, i.e.,
of the families φV : P(V ) → Q(V ), V ∈ OpenU , of R(V )-linear maps that com-
mute with restrictions. Note thatHomR(P,Q) is a sheaf of abelian groups, whereas
HomR(P,Q) is the abelian group of morphisms of (pre)sheaves of R-modules. We
thus obtain a bi-functor

HomR(•, •) : (Mod(R))op × Mod(R) → Sh(X), (2)

valued in the category of sheaves of abelian groups, which is left exact in both argu-
ments.

Further, if P ∈ Mod(Rop) and Q ∈ Mod(R), we denote by P ⊗R Q the sheaf of
abelian groups (of R-modules, ifR is commutative) associated to the presheaf

(P �R Q)(U ) := P(U )⊗R(U ) Q(U ), (3)

U ∈ OpenX . The bi-functor

• ⊗R• : Mod(Rop)× Mod(R) → Sh(X) (4)

is right exact in its two arguments.
If S is a sheaf of commutative rings and R a sheaf of rings, and if S → R is a

morphism of sheafs of rings, whose image is contained in the center ofR, we say that
R is a sheaf of S-algebras. Remark that, in this case, the above functorsHomR(•, •)
and • ⊗R • are valued in Mod(S).

4 D-modules and D-algebras

Depending on the author(s), the concept ofD-module is considered over a base space
X that is a finite-dimensional smooth [8] or complex [20] manifold, or a smooth
algebraic variety [18] or scheme [2], over a fixed base fieldK of characteristic zero.We
denote byOX (resp., �X , DX ) the sheaf of functions (resp., vector fields, differential
operators acting on functions) of X , and take an interest in the category Mod(OX )

(resp., Mod(DX )) of OX -modules (resp., DX -modules).
Sometimes a (sheaf of) DX -module(s) is systematically required to be coherent or

quasi-coherent as (sheaf of) OX -module(s). In this text, we will explicitly mention
such extra assumptions.
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798 G. di Brino et al.

4.1 Construction of D-modules from O-modules

It is worth recalling the following

Proposition 1 Let MX be an OX -module. A left DX -module structure on MX that
extends its OX -module structure is equivalent to a K-linear morphism

∇ : �X → EndK(MX ),

such that, for all f ∈ OX , θ, θ ′ ∈ �X , and all m ∈ MX ,

1. ∇ f θ m = f · ∇θm ,

2. ∇θ ( f · m) = f · ∇θm + θ( f ) · m ,

3. ∇[θ,θ ′]m = [∇θ ,∇θ ′ ]m .

In the following, we omit again subscript X , whenever possible.
In Proposition 1, the target EndK(M) is interpreted in the sense of Eq. (1), and ∇

is viewed as a morphism of sheaves of K-vector spaces. Hence, ∇ is a family ∇U ,
U ∈ OpenX , ofK-linear maps that commute with restrictions, and ∇U

θU
, θU ∈ �(U ),

is a family (∇U
θU

)V , V ∈ OpenU , of K-linear maps that commute with restrictions. It

follows that
(
∇U

θU
mU

)
|V = ∇V

θU |V mU |V , with self-explaining notation: the concept

of sheaf morphism captures the locality of the connection ∇ with respect to both
arguments.

Further, the requirement that the conditions (1)–(3) be satisfied for all f ∈ O,
θ, θ ′ ∈ �, and m ∈ M, means that they must hold for any U ∈ OpenX and all
fU ∈ O(U ), θU , θ ′U ∈ �(U ), and mU ∈ M(U ).
We now detailed notation used in Proposition 1. An explanation of the underlying

idea of this proposition can be found in Appendix 11.2.

4.2 Closed symmetric monoidal structure on Mod(D)

If we apply the Hom bi-functor (resp., the tensor product bi-functor) over D (see (2)
(resp., see 4)) to two left D-modules (resp., a right and a left D-module), we get
only a (sheaf of) K-vector space(s) (see remark at the end of Sect. 3). The proper
concept is the Hom bi-functor (resp., the tensor product bi-functor) over O. Indeed,
if P,Q ∈ Mod(DX ) ⊂ Mod(OX ), the Hom sheaf HomOX (P,Q) (resp., the tensor
product sheaf P ⊗OX Q) is a sheaf ofOX -modules. To define on thisOX -module, an
extending leftDX -module structure, it suffices, as easily checked, to define the action
of θ ∈ �X on φ ∈ HomOX (P,Q), for any p ∈ P , by

(∇θφ)(p) = ∇θ (φ(p))− φ(∇θ p) (5)

(resp., on p ⊗ q, p ∈ P, q ∈ Q, by

∇θ (p ⊗ q) = (∇θ p) ⊗ q + p ⊗ (∇θq)). (6)
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The functor

HomOX (P, •) : Mod(DX ) → Mod(DX ),

P ∈ Mod(DX ), is the right adjoint of the functor

• ⊗OX P : Mod(DX ) → Mod(DX ) :

for any N ,P,Q ∈ Mod(DX ), there is an isomorphism

HomDX (N ⊗OX P,Q) � f

�→ (n �→ (p �→ f (n ⊗ p))) ∈ HomDX (N ,HomOX (P,Q)).

Hence, the category (Mod(DX ),⊗OX ,OX ,HomOX ) is abelian closed symmetric
monoidal. More details on D-modules can be found in [20,26,27].

Remark 2 In the following, the underlying space X is a smooth algebraic variety over
an algebraically closed field K of characteristic 0.

We denote by qcMod(OX ) (resp., qcMod(DX )) the abelian category of quasi-
coherent OX -modules (resp., DX -modules that are quasi-coherent as OX -modules
[18]). This category is a full subcategory of Mod(OX ) (resp., Mod(DX )). Since fur-
ther the tensor product of two quasi-coherentOX -modules (resp.,OX -quasi-coherent
DX -modules) is again of this type, and since OX ∈ qcMod(OX ) (resp., OX ∈
qcMod(DX )), the category (qcMod(OX ),⊗OX ,OX ) (resp., (qcMod(DX ),⊗OX ,

OX )) is a symmetric monoidal subcategory of (Mod(OX ),⊗OX ,OX ) (resp.,
(Mod(DX ),⊗OX ,OX )). For additional information on quasi-coherent modules over
a ringed space, we refer to Appendix 11.1.

4.3 Commutative D-algebras

A DX -algebra is a commutative monoid in the symmetric monoidal category
Mod(DX ). More explicitly, a commutative DX -algebra is a DX -module A, together
with DX -linear maps

μ : A⊗OX A → A and ι : OX → A,

which respect the usual associativity, unitality, and commutativity conditions. This
means exactly that A is a commutative associative unital OX -algebra, which is
endowed with a flat connection∇—see Proposition 1—such that vector fields θ act as
derivations ∇θ . Indeed, when omitting the latter requirement, we forget the linearity
of μ and ι with respect to the action of vector fields. Let us translate the �X -linearity
of μ. If θ ∈ �X , a, a′ ∈ A, and if a ∗ a′ := μ(a ⊗ a′), we get

∇θ (a∗a′) = ∇θ (μ(a⊗a′)) = μ((∇θa)⊗a′ +a⊗(∇θa
′)) = (∇θa)∗a′ +a∗(∇θa

′).
(7)
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If we set now 1A := ι(1), Eq. (7) shows that ∇θ (1A) = 0. It is easily checked that
the �X -linearity of ι does not encode any new information. Hence,

Definition 3 A commutativeDX -algebra is a commutative monoid in Mod(DX ), i.e.,
a commutative associative unital OX -algebra that is endowed with a flat connection
∇ such that ∇θ , θ ∈ �X , is a derivation.

Remark 4 All DX -algebras considered throughout this text are implicitly assumed to
be commutative.

5 Differential graded D-modules and differential graded D-algebras

5.1 Monoidal categorical equivalence between chain complexes of DX -modules
and their global sections

It is well known that any equivalence F : C � D : G between abelian categories is
exact. Moreover, if F : C � D : G is an equivalence between monoidal categories,
and if one of the functors F or G is strong monoidal, then the other is strong monoidal
as well [21].

In addition, see (91), for any affine algebraic variety X , we have the equivalence

�(X, •) : qcMod(OX ) � Mod(OX (X)) : •̃ (8)

between abelian symmetricmonoidal categories, where •̃ is isomorphic toOX⊗OX (X)

•. Since the latter is obviously strongmonoidal, both functors,�(X, •) and •̃ , are exact
and strong monoidal. Similarly,

Proposition 5 If X is a smooth affine algebraic variety, its global section functor
�(X, •) yields an equivalence

�(X, •) : (qcMod(DX ),⊗OX ,OX ) → (Mod(DX (X)),⊗OX (X),OX (X)) (9)

between abelian symmetric monoidal categories, and it is exact and strong monoidal.

Proof For the categorical equivalence, see [18, Proposition 1.4.4]. Exactness is now
clear and it suffices to show that �(X, •) is strong monoidal. We know that �(X, •)
is strong monoidal as functor between modules over functions, see (8). Hence, if
P,Q ∈ qcMod(DX ), then

�(X,P ⊗OX Q) � �(X,P) ⊗OX (X) �(X,Q) (10)

asOX (X)-modules. Recall now that we defined theDX -module structure onP⊗OX Q
by ‘extending’ the �X -action (6) on the presheaf P �OX Q, see (3). In view of (10),
the action ∇X of �X (X) on P(X) ⊗OX (X) Q(X) and on (P ⊗OX Q)(X) ‘coincide’,
and so do the DX (X)-module structures of these modules. Finally, the global section
functor is strong monoidal. ��
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Koszul–Tate resolutions as cofibrant... 801

Remark 6 In the following, we work systematically over a smooth affine algebraic
variety X over an algebraically closed field K of characteristic 0.

Since the category qcMod(DX ) is abelian symmetric monoidal, the category
DG+qcMod(DX ) of differential non-negatively graded OX -quasi-coherent DX -
modules is abelian and symmetric monoidal as well—for the usual tensor product
of chain complexes and chain maps. The unit of this tensor product is the chain com-
plex OX concentrated in degree 0. The symmetry β : P• ⊗Q• → Q• ⊗ P• is given
by

β(p ⊗ q) = (−1) p̃q̃q ⊗ p,

where ‘tilde’ denotes the degree and where the sign is necessary to obtain a chain map.
Let us also mention that the zero object of DG+qcMod(DX ) is the chain complex
({0}, 0).
Proposition 7 If X is a smooth affine algebraic variety, its global section functor
induces an equivalence

�(X, •) : (DG+qcMod(DX ),⊗OX ,OX ) → (DG+Mod(DX (X)),⊗OX (X),OX (X))

(11)
of abelian symmetric monoidal categories, and is exact and strong monoidal.

Proof Let F = �(X, •) andG be quasi-inverse (additive) functors that implement the
equivalence (9). They induce functors F and G between the corresponding categories
of chain complexes. Moreover, the natural isomorphism a : id ⇒ G ◦ F induces,
for each chain complex P• ∈ DG+qcMod(DX ), a chain isomorphism aP• : P• →
(G ◦ F)(P•), which is functorial inP•. Both, the chain morphism property of aP• and
the naturality of a, are direct consequences of the naturality of a—since the action of
a on a chain complex is given by the degreewise action of a. Similarly, the natural
isomorphism b : F ◦ G ⇒ id induces a natural isomorphism b : F ◦ G ⇒ id, so
that DG+qcMod(DX ) and DG+Mod(DX (X)) are actually equivalent categories. Since
F : qcMod(DX ) → Mod(DX (X)) is strong monoidal and commutes with colimits
(as left adjoint of G), it is straightforwardly checked that F is strong monoidal. ��

5.2 Differential graded DX -algebras vs. differential graded DX (X)-algebras

The strong monoidal functors F : DG+qcMod(DX ) � DG+Mod(DX (X)) : G yield
an equivalence between the corresponding categories of commutative monoids:

Corollary 8 For any smooth affine variety X, there is an equivalence of categories

�(X, •) : DG+qcCAlg(DX ) → DG+CAlg(DX (X)) (12)

between the category of differential graded quasi-coherent commutativeDX -algebras
and the category of differential graded commutative DX (X)-algebras.
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The main goal of the present paper is to construct a model category structure on the
LHS category. In view of the preceding corollary, it suffices to build thismodel structure
on the RHS category. We thus deal in the following exclusively with the category of
differential graded D-algebras (resp., D-algebras), where D := DX (X), which
we denote simply by DGDA (resp., DA). Similarly, the objects of DG+Mod(DX (X))

(resp.,Mod(DX (X))) are termed differential gradedD-modules (resp.,D-modules)
and their category is denoted by DGDM (resp., DM).

5.3 The category DGDA

In this subsection we describe the category DGDA and prove first properties.
Whereas HomDM(P, Q), P, Q ∈ DM, is aK-vector space, the set HomDA(A, B),

A, B ∈ DA, is not even an abelian group. Hence, we cannot consider the category of
chain complexes over commutativeD-algebras and the objects of DGDA are (probably
useless to say) no chain complexes of algebras.

As explained above, a D-algebra is a commutative unital O-algebra, endowed
with a D-module structure (which extends the O-module structure), such that vector
fields act by derivations. Analogously, a differential gradedD-algebra is easily seen to
be a differential graded commutative unital O-algebra (a graded O-module together
with an O-bilinear degree respecting multiplication, which is associative, unital, and
graded-commutative; this module comes with a square 0, degree− 1,O-linear, graded
derivation), which is also a differential graded D-module (for the same differential,
grading, and O-action), such that vector fields act as degree zero derivations.

Proposition 9 A differential graded D-algebra is a differential graded commutative
unital O-algebra, as well as a differential graded D-module, such that vector fields
act as derivations. Further, the morphisms of DGDA are the morphisms of DGDM that
respect the multiplications and units.

In fact:

Proposition 10 The category DGDA is symmetric monoidal for the tensor product of
DGDMwith values on objects that are promoted canonically from DGDM to DGDA and
same values on morphisms. The tensor unit is O; the initial object (resp., terminal
object) is O (resp., {0}).
Proof Let A•, B• ∈ DGDA. Consider homogeneous vectors a ∈ Aã , a′ ∈ Aã′ , b ∈ Bb̃,
b′ ∈ Bb̃′ , such that ã + b̃ = m and ã′ + b̃′ = n. Endow now the tensor product
A• ⊗O B• ∈ DGDM with the multiplication 	 defined by

(A• ⊗O B•)m × (A• ⊗O B•)n � (a ⊗ b, a′ ⊗ b′)
�→ (a ⊗ b) 	 (a′ ⊗ b′) = (−1)ã

′b̃(a 	A a′) ⊗ (b 	B b′) ∈ (A• ⊗O B•)m+n, (13)

where the multiplications of A• and B• are denoted by 	A and 	B , respectively. The
multiplication 	 equips A• ⊗O B• with a structure of differential graded D-algebra.
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Note also that the multiplication of A• ∈ DGDA is a DGDA-morphism μA : A• ⊗O
A• → A•.

Further, the unit of the tensor product in DGDA is the unit (O, 0) of the tensor
product in DGDM.

Finally, let A•, B•,C•, D• ∈ DGDA and let φ : A• → C• and ψ : B• → D• be
two DGDA-morphisms. Then the DGDM-morphism φ⊗ψ : A• ⊗O B• → C• ⊗O D•
is also a DGDA-morphism.

All these claims (aswell as all the additional requirements for a symmetricmonoidal
structure) are straightforwardly checked.

The initial and terminal objects in DGDA are the differential graded D-algebras
(O, 0) and ({0}, 0), respectively. Indeed, in view of the adjunction (18), the initial
object of DGDA is the image by S of the initial object of DGDM. ��

Let us still mention the following

Proposition 11 If φ : A• → C• and ψ : B• → C• are DGDA-morphisms, then
χ : A• ⊗O B• → C•, which is well-defined by χ(a ⊗ b) = φ(a) 	C ψ(b), is a
DGDA-morphism that restricts to φ (resp., ψ) on A• (resp., B•).

Proof It suffices to observe that χ = μC ◦ (φ ⊗ ψ). ��

6 Finitely generated model structure on DGDM

Whendealingwithmodel categories,weuse the definitions of [19].A short comparison
of various definitions used in the literature can be found in Appendix 11.4 below. For
additional information, we refer the reader to [12,16,19], and [25].

Let us recall that DGDM is the category Ch+(D) of non-negatively graded chain
complexes of left modules over the non-commutative unital ring D = DX (X) of
differential operators of a smooth affine algebraic variety X . The remaining part of
this section actually holds for any not necessarily commutative unital ring R and the
corresponding category Ch+(R). We will show that Ch+(R) is a finitely (and thus
cofibrantly) generated model category.

In fact,most of the familiarmodel categories are cofibrantly generated. For instance,
in the model category SSet of simplicial sets, the generating cofibrations I (resp., the
generating trivial cofibrations J ) are the canonical simplicial maps ∂
[n] → 
[n],
whose sources are the boundaries of the standard simplicial n-simplices (resp., the
canonical maps �r [n] → 
[n], whose sources are the r -horns of the standard n-
simplices, 0 ≤ r ≤ n). The generating cofibrations and trivial cofibrations of the
model category Top of topological spaces—which is Quillen equivalent to SSet—
are defined similarly. The homological situation is analogous to the topological and
combinatorial ones. In the case of Ch+(R), the set I of generating cofibrations (resp.,
the set J of generating trivial cofibrations) is made (roughly) of the maps Sn−1 → Dn

from the (n − 1)-sphere to the n-disc (resp., of the maps 0 → Dn). In fact, the n-disc
Dn is the chain complex

Dn• : · · · → 0 → 0 →(n)

R→(n−1)
R → 0 → · · · →(0)

0 , (14)
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whereas the n-sphere Sn is the chain complex

Sn• : · · · → 0 → 0 →(n)

R→ 0 → · · · →(0)
0 . (15)

Definition (14), in which the differential is necessarily the identity of R, is valid for
n ≥ 1. Definition (15) makes sense for n ≥ 0. We extend the first (resp., second)
definition to n = 0 (resp., n = −1) by setting D0• := S0• (resp., S−1• := 0•). The chain
maps Sn−1 → Dn are canonical (in degree n−1, they necessarily coincide with idR),
and so are the maps 0 → Dn . We now define the set I (resp., J ) by

I = {ιn : Sn−1 → Dn, n ≥ 0} (16)

(resp.,
J = {ζn : 0 → Dn, n ≥ 1}). (17)

Theorem 12 For any unital ring R, the category Ch+(R) of non-negatively graded
chain complexes of left R-modules is a finitely (and thus a cofibrantly) generatedmodel
category (in the sense of [12] and in the sense of [19]), with I as its generating set of
cofibrations and J as its generating set of trivial cofibrations. The weak equivalences
are the maps that induce isomorphisms in homology, the cofibrations are the injec-
tive maps with degree-wise projective cokernel (projective object in Mod(R)), and
the fibrations are the maps that are surjective in (strictly) positive degrees. Further,
the trivial cofibrations are the injective maps i whose cokernel coker(i) is strongly
projective as a chain complex (strongly projective object coker(i) in Ch+(R), in the
sense that, for any map c : coker(i) → C and any map p : D → C, there is a map
� : coker(i) → D such that p ◦ � = i , if p is surjective in (strictly) positive degrees).

Proof The following proof uses the definitions of (cofibrantly generated) model cate-
gories used in [9] and [12], as well as the non-equivalent definitions of these concepts
given in [19]: we refer again to the Appendix 11.4 below.

It is known that Ch+(R), with the described weak equivalences, cofibrations, and
fibrations is a model category (Theorem 7.2 in [9]). A model category in the sense
of [9] contains all finite limits and colimits; the Cof–TrivFib and TrivCof–Fib factor-
izations are neither assumed to be functorial, nor, of course, to be chosen functorial
factorizations.Moreover, we have Fib = RLP(J ) and TrivFib = RLP(I ) (Proposition
7.19 in [9]).

Note first that Ch+(R) has all small limits and colimits, which are taken degree-
wise.

Observe also that the domains and codomains Sn (n ≥ 0) and Dn (n ≥ 1) of
the maps in I and J are bounded chain complexes of finitely presented R-modules
(the involved modules are all equal to R). However, every bounded chain complex of
finitely presented R-modules is n-small, n ∈ N, relative to all chain maps (Lemma
2.3.2 in [19]). Hence, the domains and codomains of I and J satisfy the smallness
condition of a finitely generated model category, and are therefore small in the sense
of the finite and transfinite definitions of a cofibrantly generated model category.
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It thus follows from the Small Object Argument that there exist in Ch+(R) a func-
torial Cof–TrivFib and a functorial TrivCof–Fib factorization. Hence, the first part of
Theorem 12.

As for the part on trivial cofibrations, its proof is the same as the proof of Lemma
2.2.11 in [19]. ��

In view of Theorem 12, let us recall that any projective chain complex (K , d) is
degree-wise projective. Indeed, consider, for n ≥ 0, an R-linearmap kn : Kn → N and
a surjective R-linear map p : M → N , and denote by Dn+1(N ) (resp., Dn+1(M)) the
disc defined as in (14), except that R is replaced by N (resp., M). Then there is a chain
map k : K → Dn+1(N ) (resp., a surjective chain map π : Dn+1(M) → Dn+1(N ))
that is zero in each degree, except in degree n + 1 where it is kn ◦ dn+1 (resp., p) and
in degree n where it is kn (resp., p). Since (K , d) is projective as chain complex, there
is a chain map � : K → Dn+1(M) such that π ◦ � = k. In particular, �n : Kn → M
is R-linear and p ◦ �n = kn .

7 Finitely generated model structure on DGDA

7.1 Adjoint functors between DGDM and DGDA

We aim at transferring to DGDA the just described finitely generated model structure
on DGDM. Therefore, we need a pair of adjoint functors.

Proposition 13 The graded symmetric tensor algebra functor S and the forgetful
functor For provide an adjoint pair

S : DGDM � DGDA : For (18)

between the category of differential gradedD-modules and the category of differential
graded D-algebras.

Proof For any M• ∈ DGDM, the sum

⊗∗
OM• = O ⊕

⊕
n≥1

M⊗On• ∈ DGDM

is the free associative unital O-algebra over the O-module M• . When passing to
graded symmetric tensors, we divide by the obviousO-ideal I, which is further a sub
DG D-module. Therefore, the free graded symmetric unital O-algebra

S∗
OM• = ⊗∗

OM•/I, (19)

withmultiplication [S]�[T ] = [S⊗T ] , is also a DGD-module. It is straightforwardly
checked that S∗

OM• ∈ DGDA. The definition of S on morphisms is obvious.
As concerns the proof that the functors For and S are adjoint, i.e., that

HomDGDA(S∗
OM•, A•) � HomDGDM(M•,For A•), (20)
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functorially in M• ∈ DGDM and A• ∈ DGDA , let φ : M• → For A• be a DGDM-map.
Since S∗

OM• is free in the category GCA of graded commutative associative unital
graded O-algebras, a GCA-morphism is completely determined by its restriction to
the graded O-module M•. Hence, the extension φ̄ : S∗

OM• → A• of φ, defined by
φ̄(1O) = 1A and by

φ̄(m1 � · · · � mk) = φ(m1) 	A · · · 	A φ(mk),

is a GCA-morphism. This extension is also a DGDA-map, i.e., a DGDM-map that
respects the multiplications and the units, if it intertwines the differentials and is
D-linear. These requirements, as well as functoriality, are straightforwardly checked.

��
Recall that a free object in a category D over an object C in a category C, such that

there is a forgetful functor For : D → C, is a universal pair (F(C), i), where F(C) ∈ D
and i ∈ HomC(C,For F(C)).

Remark 14 Equation (20) means that S	
OM• is the free differential graded D-

algebra over the differential graded D-module M•.

A definition of S∗
OM• via invariants can be found in Appendix 11.5.

7.2 Relative Sullivan D-algebras

If V• is a non-negatively graded D-module and (A•, dA) a differential graded D-
algebra, the tensor product A• ⊗O S	

OV• is a graded D-algebra. In the following
definition, we assume that this algebra is equipped with a differential d, such that

(A• ⊗O S	
OV•, d) ∈ DGDA

contains (A•, dA) as sub-DGDA. The point is that (A•, dA) is a differential submodule
of the tensor product differential module, but that usually the module S	

OV• is not. The
condition that (A•, dA) be a sub-DGDA can be rephrased by asking that the inclusion

A• � a �→ a ⊗ 1 ∈ A• ⊗O S	
OV•

be a DGDA-morphism. This algebra morphism condition or subalgebra condition
would be automatically satisfied if the differential d on A• ⊗O S	

OV• were defined by

d = dA ⊗ id + id ⊗ dS , (21)

where dS is a differential on S	
OV• (in particular the differential dS = 0). However,

as mentioned, this is generally not the case.
Weomit in the following •, 	, aswell as subscriptO, provided clarity does not suffer

hereof. Further, to avoid confusion, we sometimes substitute � for ⊗ to emphasize
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that the differential d of A � SV is not necessarily obtained from the differential dA
and a differential dS .1

We now give theD-algebraic version of the definition of a relative Sullivan algebra
[10].Note that the factorizations that are considered in [10] are not, as the factorizations
here below, obtained via pushouts and are not functorial.

Definition 15 A relative Sullivan D-algebra (RSDA) is a DGDA-morphism

(A, dA) → (A � SV, d)

that sends a ∈ A to a⊗1 ∈ A�SV . Here V is a free non-negatively gradedD-module

V =
⊕
α∈J

D · vα,

which admits a homogeneous basis (vα)α∈J that is indexed by a well-ordered set J ,
and is such that

dvα ∈ A � SV<α, (22)

for all α ∈ J . In the last requirement, we set V<α := ⊕
β<α D · vβ . We refer to

Property (22) by saying that d is lowering.
A RSDA with Property (21) (resp., over (A, dA) = (O, 0)) is called a split RSDA

(resp., a Sullivan D-algebra (SDA) ) and it is often simply denoted by (A ⊗ SV, d)

(resp., (SV, d)).

The next two lemmas are of interest for the split situation.

Lemma 16 Let (vα)α∈I be a family of generators of homogeneous non-negative
degrees, and let

V := 〈vα : α ∈ I 〉 :=
⊕
α∈I

D · vα

be the free non-negatively gradedD-module over (vα)α∈I . Then, any degree− 1 map
d ∈ Set((vα), V ) uniquely extends to a degree − 1 map d ∈ DM(V, V ). If moreover
d2 = 0 on (vα), then (V, d) ∈ DGDM .

Since SV is the free differential graded D-algebra over the differential graded D-
module V , amorphism f ∈ DGDA(SV, B), valued in (B, dB) ∈ DGDA, is completely
defined by its restriction f ∈ DGDM(V, B). Hence, the

Lemma 17 Consider the situation of Lemma 16. Any degree 0map f ∈ Set((vα), B)

uniquely extends to a morphism f ∈ GDM(V, B). Furthermore, if dB f = f d on
(vα), this extension is a morphism f ∈ DGDM(V, B), which in turn admits a unique
extension f ∈ DGDA(SV, B).

1 Such twisted differentials typically appear when one adds new generators to improve homological prop-
erties and in particular to kill homology in lower degrees.
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7.3 Quillen’s transfer theorem

We use the adjoint pair
S : DGDM � DGDA : For (23)

to transfer the cofibrantly generated model structure from the source category DGDM
to the target categoryDGDA. This is possible if Quillen’s transfer theorem [25] applies.

Theorem 18 Let F : C � D : G be a pair of adjoint functors. Assume that C is a
cofibrantly generated model category and denote by I (resp., J ) its set of generating
cofibrations (resp., trivial cofibrations). Define a morphism f : X → Y in D to be a
weak equivalence (resp., a fibration), if G f is a weak equivalence (resp., a fibration)
in C. If

1. the right adjoint G : D → C commutes with sequential colimits, and
2. any map in D with the LLP with respect to all fibrations is a weak equivalence,

then D is a cofibrantly generated model category that admits {Fi : i ∈ I } (resp.,
{F j : j ∈ J }) as set of generating cofibrations (resp., trivial cofibrations).

Of course, in this version of the transfer principle, the mentioned model structures
are cofibrantly generated model structures in the sense of [12].

Condition 2 is themain requirement of the transfer theorem. It can be checked using
the following lemma [25]:

Lemma 19 (Quillen’s path object argument) Assume in a category D (which is not
yet a model category, but has weak equivalences and fibrations),

1. there is a functorial fibrant replacement functor, and
2. every object has a natural path object, i.e., for any D ∈ D, we have a natural

commutative diagram

D D × D

Path(D)




i q

where 
 is the diagonal map, i is a weak equivalence and q is a fibration. Then every
map in D with the LLP with respect to all fibrations is a weak equivalence.

We think about Path(D) ∈ D is an internalized ‘space’ of paths in D. In simple
cases, Path(D) = HomD(I, D), where I ∈ D and where HomD is an internal Hom.
Moreover, by fibrant replacement of an object D ∈ D, we mean a weak equivalence
D → D̄ whose target is a fibrant object.
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7.4 Proof of Condition 1 of Theorem 18

Let λ be a non-zero ordinal and let X : λ → C be a diagram of type λ in a category
C, i.e., a functor from λ to C. Since an ordinal number is a totally ordered set, the
considered ordinal λ can be viewed as a directed poset (λ,≤). Moreover, the diagram
X is a direct system in C over λ—made of the C-objects Xβ , β < λ, and the C-
morphisms Xβγ : Xβ → Xγ , β ≤ γ , and the colimit colimβ<λXβ of this diagram X
is the inductive limit to the system (Xβ, Xβγ ).

Let now A : λ → DGDA be a diagram of type λ in DGDA and let For ◦ A : λ →
DGDM be the corresponding diagram in DGDM. To simplify notation, we denote the
latter diagram simply by A. As mentioned in the proof of Theorem 12, the colimit of
A does exist in DGDM and is taken degree-wise in Mod(D). For any degree r ∈ N,
the colimit Cr of the functor Ar : λ → Mod(D) is the inductive limit in Mod(D) to
the direct system (Aβ,r , Aβγ,r )—which is obtained via the usual construction in Set.
Due to universality, one naturally gets a Mod(D)-morphism dr : Cr → Cr−1. The
complex (C•, d) is the colimit in DGDM of A. It is now straightforwardly checked that
the canonical multiplication � in C• provides an object (C•, d,�) ∈ DGDA and that
this object is the colimit of A in DGDA.

Hence, the

Proposition 20 Let λ be a non-zero ordinal. The forgetful functor For : DGDA →
DGDM creates colimits of diagrams of type λ in DGDA, i.e., for any diagram A of type
λ in DGDA, we have

For(colimβ<λAβ,•) = colimβ<λFor(Aβ,•). (24)

If λ is the zero ordinal, it can be viewed as the empty category ∅. Therefore, the
colimit in DGDA of the diagram of type λ is in this case the initial object (O, 0) of
DGDA. Since the initial object in DGDM is ({0}, 0), we see that For does not commute
with this colimit. The above proof fails indeed, as ∅ is not a directed set.

It follows from Proposition 20 that the right adjoint For in (23) commutes with
sequential colimits, so that the first condition of Theorem 18 is satisfied.

Remark 21 Since a right adjoint functor between accessible categories preserves all
filtered colimits, the first condition of Theorem 18 is a consequence of the accessibility
of DGDM and DGDA. We gave a direct proof to avoid the proof of the accessibility of
DGDA.

7.5 Proof of Condition 2 of Theorem 18

We prove Condition 2 using Lemma 19. In our case, the adjoint pair is

S : DGDM � DGDA : For.
As announced in Sect. 7.2, we omit •, 	, and O, whenever possible. It is clear that
every object A ∈ D = DGDA is fibrant. Hence, we can choose the identity as fibrant
replacement functor, with the result that the latter is functorial.
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As for the second condition of the lemma, we will show that any DGDA-morphism
φ : A → B naturally factors into a weak equivalence followed by a fibration.

Since in the standard model structure on the category of differential graded com-
mutative algebras over Q, cofibrations are retracts of relative Sullivan algebras [15],
the obvious idea is to decompose φ as A → A⊗SV → B, where i : A → A⊗SV is
a (split) relative SullivanD-algebra, such that there is a projection p : A⊗SV → B,
or, even better, a projection ε : V → B in positive degrees. The first attempt might
then be to use

ε : V =
⊕
n>0

⊕
bn∈Bn

D · 1bn � 1bn �→ bn ∈ B,

whose source incorporates a copy of the sphere Sn for each bn ∈ Bn , n > 0 .However,
ε is not a chain map, since in this case we would have dBbn = dBε1bn = 0, for all bn .
The next candidate is obtained by replacing Sn by Dn : if B ∈ DGDM, set

P(B) =
⊕
n>0

⊕
bn∈Bn

Dn• ∈ DGDM,

where Dn• is a copy of the n-disc

Dn• : · · · → 0 → 0 → D · Ibn → D · s−1
Ibn → 0 → · · · → 0.

Since

Pn(B) =
⊕

bn+1∈Bn+1

D · s−1
Ibn+1 ⊕

⊕
bn∈Bn

D · Ibn (n > 0) and P0(B) =
⊕
b1∈B1

D · s−1
Ib1 ,

the free non-negatively graded D-module P(B) is projective in each degree, what
justifies the chosen notation. On the other hand, the differential dP of P(B) is the
degree − 1 square 0 D-linear map induced by the differentials in the n-discs and thus
defined on Pn(B) by

dP (s−1
Ibn+1) = 0 ∈ Pn−1(B) and dP (Ibn ) = s−1

Ibn ∈ Pn−1(B)

(see Lemma 16). The canonical projection ε : P(B) → B , is defined on Pn(B), as
degree 0 D-linear map, by

ε(s−1
Ibn+1) = dB(bn+1) ∈ Bn and ε(Ibn ) = bn ∈ Bn .

It is clearly a DGDM-morphism and extends to a DGDA-morphism ε : S(P(B)) → B
(see Lemma 17).

We define now the aforementioned DGDA-morphisms i : A → A⊗ S(P(B)) and
p : A ⊗ S(P(B)) → B, where i is a weak equivalence and p a fibration such that
p ◦ i = φ . We set i = idA ⊗ 1 and p = μB ◦ (φ ⊗ ε) . It is readily checked that i and
p are DGDA-morphisms (see Proposition 11) with composite p ◦ i = φ . Moreover,
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by definition, p is a fibration in DGDA, if it is surjective in degrees n > 0 – what
immediately follows from the fact that ε is surjective in these degrees.

It thus suffices to show that i is a weak equivalence in DGDA, i.e., that

H(i) : H(A) � [a] → [a ⊗ 1] ∈ H (A ⊗ S(P(B)))

is an isomorphism of graded D-modules. Since ı̃ : A → A⊗O is an isomorphism in
DGDM, it induces an isomorphism

H(ı̃) : H(A) � [a] → [a ⊗ 1] ∈ H(A ⊗O).

In view of the graded D-module isomorphism

H(A ⊗ S(P(B))) � H(A ⊗O)⊕ H(A ⊗ S∗≥1(P(B))),

we just have to prove that

H(A ⊗ Sk≥1(P(B))) = 0 (25)

as graded D-module, or, equivalently, as graded O-module.
To that end, note that

0 −→ kerk S
ι−→ P(B)⊗k S−→ (P(B)⊗k)Sk −→ 0,

where k ≥ 1 andwhereS is the averagingmap, is a short exact sequence in the abelian
category DGOM of differential non-negatively gradedO-modules (see Appendix 11.5,
in particular Eq. (94)). Since it is canonically split by the injection

I : (P(B)⊗k)Sk → P(B)⊗k,

and

(P(B)⊗k)Sk � Sk(P(B))

as DG O-modules (see Eq. (96)), we get

P(B)⊗k � Sk(P(B)) ⊕ kerk S and

A ⊗ P(B)⊗k � A ⊗ Sk(P(B)) ⊕ A ⊗ kerk S,

as DG O-modules. Therefore, it suffices to show that the LHS is an acyclic chain
complex of O-modules.

We begin showing that D = DX (X), where X is a smooth affine algebraic variety,
is a flat module over O = OX (X). Note first that, the equivalence (8)

�(X, •) : qcMod(OX ) � Mod(O) : •̃
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is exact and strong monoidal (see remark below Eq. (8)). Second, observe thatDX is a
locally freeOX -module, hence, a flat (and quasi-coherent) sheaf ofOX -modules, i.e.,
DX ⊗OX • is exact in Mod(OX ). To show that D⊗O • is exact in Mod(O), consider
an exact sequence

0 → M ′ → M → M ′′ → 0

in Mod(O). From what has been said it follows that

0 → DX ⊗OX M̃ ′ → DX ⊗OX M̃ → DX ⊗OX M̃ ′′ → 0

is an exact sequence in Mod(OX ), as well as an exact sequence in qcMod(OX )

(kernels and cokernels of morphisms of quasi-coherent modules are known to be
quasi-coherent). When applying the exact and strong monoidal global section functor,
we see that

0 → D ⊗O M ′ → D ⊗O M → D ⊗O M ′′ → 0

is exact in Mod(O).
Next, observe that

H(A ⊗ P(B)⊗k) =
⊕
n>0

⊕
bn∈Bn

H(Dn• ⊗ A ⊗ P(B)⊗(k−1)).

To prove that each of the summands of the RHS vanishes, we apply Künneth’s Theorem
[31, Theorem 3.6.3] to the complexes Dn• and A ⊗ P(B)⊗(k−1), noticing that both,
the n-disc Dn• (which vanishes, except in degrees n, n− 1, where it coincides withD)
and its boundary d(Dn• ) (which vanishes, except in degree n − 1, where it coincides
withD), are termwise flatO-modules. We thus get, for any m, a short exact sequence

0 →
⊕

p+q=m

Hp(D
n• ) ⊗ Hq(A ⊗ P(B)⊗(k−1)) → Hm(Dn• ⊗ A ⊗ P(B)⊗(k−1))

→
⊕

p+q=m−1

Tor1(Hp(D
n• ), Hq(A ⊗ P(B)⊗(k−1))) → 0.

Finally, since Dn• is acyclic, the central term of this exact sequence vanishes, since
both, the first and the third, do.

To completely finish checking the requirements of Lemma 19 and thus of The-
orem 18, we still have to prove that the factorization (i, p) = (i(φ), p(φ)) of φ is
functorial. In other words, we must show that, for any commutative DGDA-square

A

u

φ
B

v ,

A′ φ′
B ′

(26)
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there is a commutative DGDA-diagram

A

u

∼
i(φ)

A ⊗ SU
w

p(φ)
B

v ,

A
∼

i(φ )
A ⊗ SU

p(φ )
B

(27)

where we wrote U (resp., U ′) instead of P(B) (resp., P(B ′)).
To construct the DGDA-morphismw, we first define a DGDA-morphism ṽ : SU →

SU ′, then we obtain the DGDA-morphism w by setting w = u ⊗ ṽ.
To get the DGDA-morphism ṽ, it suffices, in view of Lemma 17, to define a degree

0 Set-map ṽ on G := {s−1
Ibn , Ibn : bn ∈ Bn, n > 0}, with values in the differential

graded D-algebra (SU ′, dU ′), which satisfies dU ′ ṽ = ṽ dU on G. We set

ṽ(s−1
Ibn ) = s−1

Iv(bn) ∈ SU ′ and ṽ(Ibn ) = Iv(bn) ∈ SU ′,

and easily see that all the required properties hold.
We still have to verify that the diagram (27) actually commutes. Commutativity of

the left square is obvious. As for the right square, let t := a⊗x1�· · ·�xk ∈ A⊗SU ,
where the xi are elements of U , and note that

v p(φ)(t) = v (μB ◦ (φ ⊗ ε))(t) = v φ(a) 	 v ε(x1) 	 · · · 	 v ε(xk)

and

p(φ′)w(t) = (μB′ ◦ (φ′ ⊗ ε′))(u(a) ⊗ ṽ(x1) � · · · � ṽ(xk))

= φ′u(a) 	 ε′ ṽ(x1) 	 · · · 	 ε′ ṽ(xk),

where 	 denotes the multiplication in B ′. Since the square (26) commutes, it suffices
to check that

v ε(x) = ε′ ṽ(x), (28)

for any x ∈ U. However, the D-module U is freely generated by G and the four
involved morphisms areD-linear: it is enough that (28) holds on G—what is actually
the case.

7.6 Transferred model structure

We proved in Theorem 12 that DGDM is a finitely generated model category whose
set of generating cofibrations (resp., trivial cofibrations) is

I = {ιk : Sk−1• → Dk•, k ≥ 0} (29)

(resp.,
J = {ζk : 0 → Dk•, k ≥ 1}). (30)
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Theorem 18 thus allows us to conclude that:

Theorem 22 The category DGDA of differential non-negatively graded commutative
D-algebras is a finitely (and thus a cofibrantly) generated model category (in the sense
of [12] and in the sense of [19]), with S I = {Sιk : ιk ∈ I } as its generating set of
cofibrations and S J = {Sζk : ζk ∈ J } as its generating set of trivial cofibrations. The
weak equivalences are theDGDA-morphisms that induce an isomorphism in homology.
The fibrations are the DGDA-morphisms that are surjective in all positive degrees
p > 0.

The cofibrations will be described below.
Quillen’s transfer principle actually provides a [12]-cofibrantly-generated (hence,

a [19]-cofibrantly-generated) [12]-model structure on DGDA (hence, a [19]-model
structure, if we choose for instance the functorial factorizations given by the small
object argument). In fact, this model structure is finitely generated, i.e. the domains
and codomains of the maps in S I and S J are n-small DGDA-objects, n ∈ N, relative
to Cof. Indeed, these sources and targets are SDk• (k ≥ 1), SSk• (k ≥ 0), and O.
We already observed (see Theorem 12) that Dk• (k ≥ 1), Sk• (k ≥ 0), and 0 are n-
small DGDM-objects with respect to all DGDM-morphisms. If S• denotes any of the
latter chain complexes, this means that the covariant Hom functor HomDGDM(S•,−)

commutes with all DGDM-colimits colimβ<λMβ,• for all limit ordinals λ. It therefore
follows from the adjointness property (20) and the equation (24) that, for any DGDA-
colimit colimβ<λAβ,•, we have

HomDGDA(SS•, colimβ<λAβ,•) � HomDGDM(S•,For(colimβ<λAβ,•))
= HomDGDM(S•, colimβ<λFor(Aβ,•))
= colimβ<λHomDGDM(S•,For(Aβ,•))
� colimβ<λHomDGDA(SS•, Aβ,•).

8 Description of DGDA-cofibrations

8.1 Preliminaries

The next lemma allows us to define non-split RSDA-s, as well as DGDA-morphisms
from such an RSDA into another differential graded D-algebra.

Lemma 23 Let (T, dT ) ∈ DGDA, let (g j ) j∈J be a family of symbols of degree n j ∈
N, and let V = ⊕

j∈J D · g j be the free non-negatively graded D-module with
homogeneous basis (g j ) j∈J .

(i) To endow the graded D-algebra T ⊗ SV with a differential graded D-algebra
structure d, it suffices to define

dg j ∈ Tn j−1 ∩ d−1
T {0}, (31)
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to extend d as D-linear map to V , and to equip T ⊗ SV with the differential d
given, for any t ∈ Tp, v1 ∈ Vn1 , . . . , vk ∈ Vnk , by

d(t ⊗ v1 � · · · � vk)

= dT (t) ⊗ v1 � · · · � vk + (−1)p
k∑

�=1

(−1)n�

∑
j<� n j (t ∗ d(v�))

⊗v1 � · · · �̂ · · · � vk, (32)

where ∗ is the multiplication in T . If J is a well-ordered set, the natural map

(T, dT ) � t �→ t ⊗ 1O ∈ (T � SV, d)

is a RSDA.
(ii) Moreover, if (B, dB) ∈ DGDA and p ∈ DGDA(T, B), it suffices—to define a

morphism q ∈ DGDA(T � SV, B) (where the differential graded D-algebra
(T � SV, d) is constructed as described in (i))—to define

q(g j ) ∈ Bn j ∩ d−1
B {p d(g j )}, (33)

to extend q as D-linear map to V , and to define q on T ⊗ SV by

q(t ⊗ v1 � · · · � vk) = p(t) 	 q(v1) 	 · · · 	 q(vk), (34)

where 	 denotes the multiplication in B.

The reader might consider that the definition of d(t ⊗ f ), f ∈ O, is not an edge
case of Eq. (32); if so, it suffices to add the definition d(t⊗ f ) = dT (t)⊗ f .Note also
that Eq. (32) is the only possible one. Indeed, denote the multiplication in T ⊗ SV
(see Eq. (13)) by � and choose, to simplify, k = 2. Then, if d is any differential, which
is compatible with the graded D-algebra structure of T ⊗ SV , and which coincides
with dT (t) ⊗ 1O � dT (t) on any t ⊗ 1O � t ∈ T (since (T, dT ) → (T � SV, d)

must be a DGDA-morphism) and with d(v) ⊗ 1O � d(v) on any 1T ⊗ v � v ∈ V
(since d(v) ∈ T ), then we have necessarily

d(t ⊗ v1 � v2)

= d(t ⊗ 1O) � (1T ⊗ v1) � (1T ⊗ v2)

+ (−1)p(t ⊗ 1O) � d(1T ⊗ v1) � (1T ⊗ v2)

+ (−1)p+n1(t ⊗ 1O) � (1T ⊗ v1) � d(1T ⊗ v2)

= (dT (t)⊗ 1O) � (1T ⊗ v1) � (1T ⊗ v2)

+ (−1)p(t ⊗ 1O) � (d(v1) ⊗ 1O) � (1T ⊗ v2)

+ (−1)p+n1(t ⊗ 1O) � (1T ⊗ v1) � (d(v2) ⊗ 1O)

= dT (t)⊗ v1 � v2 + (−1)p(t ∗ d(v1))⊗ v2 + (−1)p+n1n2(t ∗ d(v2)) ⊗ v1.

An analogous remark holds for Eq. (34).
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Fig. 1 Pushout diagram

Fig. 2 Completed pushout
diagram

Proof It is easily checked that the RHS of Eq. (32) is graded symmetric in its arguments
vi and O-linear with respect to all arguments. Hence, the map d is a degree −1 O-
linear map that is well-defined on T ⊗ SV . To show that d endows T ⊗ SV with
a differential graded D-algebra structure, it remains to prove that d squares to 0, is
D-linear and is a graded derivation for �. The last requirement follows immediately
from the definition, for D-linearity it suffices to prove linearity with respect to the
action of vector fields—what is a straightforward verification, whereas 2-nilpotency
is a consequence of Condition (31). The proof of (ii) is similar. ��

We are now prepared to give an example of a non-split RSDA.

Example 24 Consider the generating cofibrations ιn : Sn−1 → Dn , n ≥ 1, and
ι0 : 0 → S0 of the model structure of DGDM. The pushouts of the induced generating
cofibrations

ψn = S(ιn) and ψ0 = S(ι0)

of the transferred model structure on DGDA are important instances of RSDA-s—see
Fig. 2 and Eq. (35), (36), (37), (39) and (40).

Proof We first consider a pushout diagram for ψ := ψn , for n ≥ 1: see Fig. 1, where
(T, dT ) ∈ DGDA and where φ : (S(Sn−1), 0) → (T, dT ) is a DGDA-morphism.

In the following, the generator of Sn−1 (resp., the generators of Dn) will be denoted
by 1n−1 (resp., by In and s−1

In , where s−1 is the desuspension operator).
Note that, since S(Sn−1) is the free DGDA over the DGDM Sn−1, the DGDA-

morphism φ is uniquely defined by the DGDM-morphism φ|Sn−1 : Sn−1 →
For(T, dT ), where For is the forgetful functor. Similarly, since Sn−1 is, as GDM,
free over its generator 1n−1, the restriction φ|Sn−1 is, as GDM-morphism, completely
defined by its value φ(1n−1) ∈ Tn−1. The map φ|Sn−1 is then a DGDM-morphism if
and only if we choose

κn−1 := φ(1n−1) ∈ kern−1 dT . (35)

Wenowdefine the pushout of (ψ, φ): see Fig. 2. In the latter diagram, the differential
d of the GDA T � S(Sn) is defined as described in Lemma 23. Indeed, we deal here
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with the free non-negatively graded D-module Sn = Snn = D · 1n and set

d(1n) := κn−1 = φ(1n−1) ∈ kern−1 dT .

Hence, if x� · 1n ∈ D · 1n (to simplify notation we denote in the following by x� both,
the differential operator x� ∈ D and the element x� ·1n ∈ Sn), we get d(x�) = x� ·κn−1,
and, if t ∈ Tp, we obtain

d(t ⊗ x1 � · · · � xk) = dT (t)⊗ x1 � · · · � xk

+ (−1)p
k∑

�=1

(−1)n(�−1)(t ∗ (x� · κn−1)) ⊗ x1 � · · · �̂ · · · � xk, (36)

see Eq. (32). Finally the map

i : (T, dT ) � t �→ t ⊗ 1O ∈ (T � S(Sn), d) (37)

is a (non-split) RSDA, see Definition 15.
Just as φ, the DGDA-morphism j is completely defined if we define it as DGDM-

morphism on Dn . The choices of j (In) and j (s−1
In) define j as GDM-morphism. The

commutation condition of j with the differentials reads

j (s−1
In) = d j (In) : (38)

only j (In) can be chosen freely in (T ⊗ S(Sn))n .
The diagramof Fig. 2 is now fully described. To show that it commutes, observe that,

since the involved maps φ, i, ψ , and j are all DGDA-morphisms, it suffices to check
commutation for the arguments 1O and 1n−1. Since differential gradedD-algebras are
systematically assumed to be unital, only the second case is non-obvious. We get the
condition

d j (In) = κn−1 ⊗ 1O. (39)

It now suffices to set
j (In) = 1T ⊗ 1n ∈ (T ⊗ S(Sn))n . (40)

To prove that the commuting diagram of Fig. 2 is the searched for pushout, it
now suffices to prove its universality. Therefore, take (B, dB) ∈ DGDA, as well as
two DGDA-morphisms i ′ : (T, dT ) → (B, dB) and j ′ : S(Dn) → (B, dB), such that
j ′ ◦ψ = i ′ ◦φ, and show that there is a uniqueDGDA-morphismχ : (T �S(Sn), d) →
(B, dB), such that χ ◦ i = i ′ and χ ◦ j = j ′.

If χ exists, we have necessarily

χ(t ⊗ x1 � · · · � xk) = χ((t ⊗ 1O) � (1T ⊗ x1) � · · · � (1T ⊗ xk))

= χ(i(t)) 	 χ(1T ⊗ x1) 	 · · · 	 χ(1T ⊗ xk), (41)
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where we used the same notation as above. Since any differential operator is generated
by functions and vector fields, we get

χ(1T ⊗ xi ) = χ(1T ⊗ xi · 1n) = xi · χ(1T ⊗ 1n) = xi · χ( j (In))

= xi · j ′(In) = j ′(xi · In). (42)

When combining (41) and (42), we see that, if χ exists, it is necessarily defined by

χ(t ⊗ x1 � · · · � xk) = i ′(t) 	 j ′(x1 · In) 	 · · · 	 j ′(xk · In). (43)

This solves the question of uniqueness.
We now convince ourselves that (43) defines a DGDA-morphism χ (let us mention

explicitly that we set in particularχ(t⊗ f ) = f ·i ′(t), if f ∈ O). It is straightforwardly
verified that χ is a well-defined D-linear map of degree 0 from T ⊗ S(Sn) to B,
which respects the multiplications and the units. The interesting point is the chain map
property of χ . Indeed, consider, to simplify, the argument t ⊗ x , what will disclose all
relevant insights. Assume again that t ∈ Tp and x ∈ Sn , and denote the differential of
S(Dn), just as its restriction to Dn , by s−1. It follows that

dB(χ(t ⊗ x)) = i ′(dT (t)) 	 j ′(x · In) + (−1)p i ′(t) 	 j ′(x · s−1
In).

Since ψ(1n−1) = s−1
In and j ′ ◦ ψ = i ′ ◦ φ, we obtain j ′(s−1

In) = i ′(φ(1n−1)) =
i ′(κn−1). Hence,

dB(χ(t ⊗ x)) = χ(dT (t)⊗ x) + (−1)p i ′(t) 	 i ′(x · κn−1)

= χ(dT (t)⊗ x + (−1)pt ∗ (x · κn−1)) = χ(d(t ⊗ x)).

As afore-mentioned, no new feature appears, if we replace t⊗x by a general argument.
As the conditions χ ◦ i = i ′ and χ ◦ j = j ′ are easily checked, this completes the

proof of the statement that any pushout of any ψn , n ≥ 1, is a RSDA.
The proof of the similar claim for ψ0 is analogous and even simpler, and will not

be detailed here. ��
Actually pushouts of ψ0 are border cases of pushouts of the ψn-s, n ≥ 1. In other

words, to obtain a pushout of ψ0, it suffices to set, in Fig. 2 and in Eq. (36), the degree
n to 0. Since we consider exclusively non-negatively graded complexes, we then get
S(S−1) = S(0) = O, S(D0) = S(S0), and κ−1 = 0.

8.2 DGDA-cofibrations

The following theorem characterizes the cofibrations of the cofibrantly generated
model structure we constructed on DGDA.

Theorem 25 The DGDA-cofibrations are exactly the retracts of the relative Sullivan
D-algebras.
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Since the DGDA-cofibrations are exactly the retracts of the transfinite compositions
of pushouts of generating cofibrations

ψn : S(Sn−1) → S(Dn), n ≥ 0,

the proof of Theorem 25 reduces to the proof of

Theorem 26 The transfinite compositions of pushouts of ψn-s, n ≥ 0, are exactly the
relative Sullivan D-algebras.

Lemma 27 For any M, N ∈ DGDM, we have

S(M ⊕ N ) � SM ⊗ SN

in DGDA.

Proof It suffices to remember that the binary coproduct in the category DGDM
= Ch+(D) (resp., the category DGDA = CMon(DGDM)) of non-negatively graded
chain complexes ofD-modules (resp., of commutative monoids in DGDM) is the direct
sum (resp., the tensor product). The conclusion then follows from the facts thatS is the
left adjoint of the forgetful functor and that any left adjoint commutes with colimits.

��
Any ordinal is zero, a successor ordinal, or a limit ordinal. We denote the class of

all successor ordinals (resp., all limit ordinals) byOs (resp., O�).

Proof of Theorem 26 (i) Consider an ordinal λ and a λ-sequence in DGDA, i.e., a
colimit respecting functor X : λ → DGDA (here λ is viewed as the category whose
objects are the ordinals α < λ and which contains a unique morphism α → β if and
only if α ≤ β):

X0 → X1 → · · · → Xn → Xn+1 → · · · Xω → Xω+1 → · · · → Xα → Xα+1 → · · ·

We assume that, for any α such that α+1 < λ, themorphism Xα → Xα+1 is a pushout
of some ψnα+1 (nα+1 ≥ 0). Then the morphism X0 → colimα<λXα is exactly what
we call a transfinite composition of pushouts of ψn-s. Our task is to show that this
morphism is a RSDA.

We first compute the terms Xα , α < λ, of the λ-sequence, then we determine its
colimit. For α < λ (resp., for α < λ, α ∈ Os), we denote the differential graded D-
algebra Xα (resp., the DGDA-morphism Xα−1 → Xα) by (Aα, dα) (resp., by Xα,α−1 :
(Aα−1, dα−1) → (Aα, dα)). Since Xα,α−1 is the pushout of some ψnα along some
DGDA-morphism φα , its target algebra is of the form

(Aα, dα) = (Aα−1 � S〈aα〉, dα) (44)

and Xα,α−1 is the canonical inclusion

Xα,α−1 : (Aα−1, dα−1) � aα−1 �→ aα−1 ⊗ 1O ∈ (Aα−1 � S〈aα〉, dα), (45)
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see Example 24. Here aα is the generator 1nα of S
nα and 〈aα〉 is the free non-negatively

graded D-module Snα = D · aα concentrated in degree nα; further, the differential

dα is defined by (36) from dα−1 and κnα−1 := φα(1nα−1). (46)

In particular, A1 = A0 � S〈a1〉 , d1(a1) = κn1−1 = φ1(1n1−1) ∈ A0 , and X10 :
A0 → A1 is the inclusion.

Lemma 28 For any α < λ, we have

Aα � A0 ⊗ S〈aδ : δ ≤ α, δ ∈ Os〉 (47)

as a graded D-algebra, and

dα(aδ) ∈ A0 ⊗ S〈aε : ε < δ, ε ∈ Os〉, (48)

for all δ ≤ α, δ ∈ Os . Moreover, for any γ ≤ β ≤ α < λ, we have

Aβ = Aγ ⊗ S〈aδ : γ < δ ≤ β, δ ∈ Os〉

and the DGDA-morphism Xβγ is the natural inclusion

Xβγ : (Aγ , dγ ) � aγ �→ aγ ⊗ 1O ∈ (Aβ, dβ). (49)

Since the latter statement holds in particular for γ = 0 and β = α, the DGDA-
inclusion Xα0 : (A0, d0) → (Aα, dα) is a RSDA (for the natural ordering of {aδ : δ ≤
α, δ ∈ Os}).
Proof of Lemma 28 To prove that this claim (i.e., Eqs. (47)–(49)) is valid for all ordi-
nals that are smaller thanλ, we use a transfinite induction. Since the assertion obviously
holds for α = 1, it suffices to prove these properties for α < λ, assuming that they
are true for all β < α. We distinguish (as usually in transfinite induction) the cases
α ∈ Os and α ∈ O�.

If α ∈ Os , it follows from Eq. (44), from the induction assumption, and from
Lemma 27, that

Aα = Aα−1 ⊗ S〈aα〉 � A0 ⊗ S〈aδ : δ ≤ α, δ ∈ Os〉,

as graded D-algebra. Further, in view of Eq. (46) and the induction hypothesis, we
get

dα(aα) = φα(1nα−1) ∈ Aα−1 = A0 ⊗ S〈aδ : δ < α, δ ∈ Os〉,

and, for δ ≤ α − 1, δ ∈ Os ,

dα(aδ) = dα−1(aδ) ∈ A0 ⊗ S〈aγ : γ < δ, γ ∈ Os〉.
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Finally, as concerns Xβγ , the unique case to check is γ ≤ α − 1 and β = α. The
DGDA-map Xα−1,γ is an inclusion

Xα−1,γ : Aγ � aγ �→ aγ ⊗ 1O ∈ Aα−1

(by induction), and so is the DGDA-map

Xα,α−1 : Aα−1 � aα−1 �→ aα−1 ⊗ 1O ∈ Aα

(in view of (45)). The composite Xαγ is thus a DGDA-inclusion as well.
In the case α ∈ O�, i.e., α = colimβ<αβ, we obtain (Aα, dα) = colimβ<α(Aβ, dβ)

inDGDA, since X is a colimit respecting functor. The index setα iswell-ordered, hence,
it is a directed poset. Moreover, for any δ ≤ γ ≤ β < α, the DGDA-maps Xβδ , Xγ δ ,
and Xβγ satisfy Xβδ = Xβγ ◦ Xγ δ . It follows that the family (Aβ, dβ)β<α, together
with the family Xβγ , γ ≤ β < α, is a direct system in DGDA, whose morphisms are,
in view of the induction assumption, natural inclusions

Xβγ : Aγ � aγ �→ aγ ⊗ 1O ∈ Aβ.

The colimit (Aα, dα) = colimβ<α(Aβ, dβ) is thus a direct limit. However, a direct
limit in DGDA coincides with the corresponding direct limit in DGDM, or even in Set
(which is then naturally endowed with a differential graded D-algebra structure). As
a set, the direct limit (Aα, dα) = colimβ<α(Aβ, dβ) is given by

Aα =
∐
β<α

Aβ/ ∼,

where ∼ means that we identify aγ , γ ≤ β, with

aγ ∼ Xβγ (aγ ) = aγ ⊗ 1O,

i.e., that we identify Aγ with

Aγ ∼ Aγ ⊗O ⊂ Aβ.

It follows that

Aα =
⋃
β<α

Aβ = A0 ⊗ S〈aδ : δ < α, δ ∈ Os〉 = A0 ⊗ S〈aδ : δ ≤ α, δ ∈ Os〉.

As just mentioned, this set Aα can naturally be endowed with a differential graded
D-algebra structure. For instance, the differential dα is defined in the obvious way
from the differentials dβ , β < α. In particular, any generator aδ , δ ≤ α, δ ∈ Os ,
belongs to Aδ . Hence, by definition of dα and in view of the induction assumption, we
get

dα(aδ) = dδ(aδ) ∈ A0 ⊗ S〈aε : ε < δ, ε ∈ Os〉.
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Finally, since X is colimit respecting, not only Aα = colimβ<αAβ = ⋃
β<α Aβ ,

but, furthermore, for any γ < α, the DGDA-morphism Xαγ : Aγ → Aα is the map
Xαγ : Aγ → ⋃

β<α Aβ , i.e., the canonical inclusion. ��
We now come back to the proof of Part (i) of Theorem 26, i.e., we now explain

why the morphism i : (A0, d0) → C , where C = colimα<λ(Aα, dα) and where i
is the first of the morphisms that are part of the colimit construction, is a RSDA –
see above. If λ ∈ Os , the colimit C coincides with (Aλ−1, dλ−1) and i = Xλ−1,0.
Hence, the morphism i is a RSDA in view of Lemma 28. If λ ∈ O�, the colimit
C = colimα<λ(Aα, dα) is, like above, the direct limit of the direct DGDA-system
(Xα = (Aα, dα), Xαβ) indexed by the directed poset λ, whose morphisms Xαβ are, in
view of Lemma 28, canonical inclusions. Hence, C is again an ordinary union:

C =
⋃
α<λ

Aα = A0 ⊗ S〈aδ : δ < λ, δ ∈ Os〉, (50)

where the last equality is due to Lemma 28. We define the differential dC onC exactly
as we defined the differential dα on the direct limit in the proof of Lemma 28. It is
then straightforwardly checked that i is a RSDA.

(ii) We still have to show that any RSDA (A0, d0) → (A0 � SV, d) can be
constructed as a transfinite composition of pushouts of generating cofibrations ψn ,
n ≥ 0. Let (a j ) j∈J be the basis of the free non-negatively graded D-module
V . Since J is a well-ordered set, it is order-isomorphic to a unique ordinal μ =
{0, 1, . . . , n, . . . , ω, ω+1, . . .}, whose elements can thus be utilized to label the basis
vectors. However, we prefer using the following order-respecting relabelling of these
vectors:

a0 � a1, a1 � a2, . . . , an � an+1, . . . , aω � aω+1, aω+1 � aω+2, . . .

In other words, the basis vectors of V can be labelled by the successor ordinals that
are strictly smaller than λ := μ+ 1 (this is true, whether μ ∈ Os , or μ ∈ O� ):

V =
⊕

δ<λ, δ∈Os

D · aδ.

For any α < λ, we now set

(Aα, dα) := (A0 � S〈aδ : δ ≤ α, δ ∈ Os〉, d|Aα ).

It is clear that Aα is a graded D-subalgebra of A0 ⊗ SV . Since Aα is generated, as
an algebra, by the elements of the types a0 ⊗ 1O and D · (1A0 ⊗ aδ), D ∈ D, δ ≤ α,

δ ∈ Os , and since

d(a0 ⊗ 1O) = d0(a0) ⊗ 1O ∈ Aα

and

d(D · (1A0 ⊗ aδ)) ∈ A0 ⊗ S〈aε : ε < δ, ε ∈ Os〉 ⊂ Aα,
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Fig. 3 i as pushout of ψn

the derivation d stabilizes Aα . Hence, (Aα, dα) = (Aα, d|Aα ) is actually a differential
graded D-subalgebra of (A0 � SV, d).

If β ≤ α < λ, the algebra (Aβ, d|Aβ ) is a differential graded D-subalgebra of
(Aα, d|Aα ), so that the canonical inclusion iαβ : (Aβ, dβ) → (Aα, dα) is a DGDA-
morphism. In view of the techniques used in (i), it is obvious that the functor X =
(A−, d−) : λ → DGDA respects colimits, and that the colimit of the whole λ-sequence
(remember that λ = μ + 1 ∈ Os) is the algebra (Aμ, dμ) = (A0 � SV, d), i.e., the
original algebra.

The RSDA (A0, d0) → (A0 �SV, d) has thus been built as transfinite composition
of canonical DGDA-inclusions i : (Aα, dα) → (Aα+1, dα+1), α + 1 < λ. Recall that

Aα+1 = Aα ⊗ S〈aα+1〉 � Aα ⊗ S(Sn),

if we set n := deg(aα+1). It suffices to show that i is a pushout of ψn , see Fig. 3.
We will detail the case n ≥ 1. Since all the differentials are restrictions of d, we
have κn−1 := dα+1(aα+1) ∈ Aα ∩ kern−1 dα , and φ(1n−1) := κn−1 defines a DGDA-
morphism φ, see Example 24. When using the construction described in Example 24,
we get the pushout i : (Aα, dα) → (Aα � S(Sn), ∂) of ψn along φ. Here i is the
usual canonical inclusion and ∂ is the differential defined by Eq. (36). It thus suffices
to check that ∂ = dα+1. Let aα ∈ Ap

α and let x1 � x1 · aα+1, . . . , xk � xk · aα+1 ∈
D · aα+1 = Sn . Assume, to simplify, that k = 2; the general case is similar. When
denoting the multiplication in Aα (resp., Aα+1 = Aα ⊗ S(Sn)) as usual by ∗ (resp.,
	 ), we obtain

∂(aα ⊗ x1 � x2)

= dα(aα)⊗ x1 � x2 + (−1)p(aα ∗ (x1 · κn−1)) ⊗ x2
+ (−1)p+n(aα ∗ (x2 · κn−1)) ⊗ x1

= (dα(aα) ⊗ 1O) 	 (1Aα ⊗ x1) 	 (1Aα ⊗ x2)

+ (−1)p(aα ⊗ 1O) 	 ((x1 · κn−1) ⊗ 1O) 	 (1Aα ⊗ x2)

+ (−1)p+n(aα ⊗ 1O) 	 (1Aα ⊗ x1) 	 ((x2 · κn−1) ⊗ 1O)

= dα+1(aα ⊗ 1O) 	 (1Aα ⊗ x1) 	 (1Aα ⊗ x2)

+ (−1)p(aα ⊗ 1O) 	 dα+1(1Aα ⊗ x1) 	 (1Aα ⊗ x1)

+ (−1)p+n(aα ⊗ 1O) 	 (1Aα ⊗ x1) 	 dα+1(1Aα ⊗ x2)

= dα+1(aα ⊗ x1 � x2).

��
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9 Explicit functorial factorizations

The main idea of Sect. 7.5 is the decomposition of an arbitrary DGDA-morphism
φ : A → B into aweak equivalence i : A → A⊗SU and afibration p : A⊗SU → B.
It is easily seen that i is a split relative Sullivan D-algebra. Indeed,

U = P(B) =
⊕
n>0

⊕
bn∈Bn

Dn• ∈ DGDM (51)

with differential dU = dP defined by

dU (s−1
Ibn ) = 0 and dU (Ibn ) = s−1

Ibn . (52)

Hence, SU ∈ DGDA, with differential dS induced by dU , and A⊗SU ∈ DGDA, with
differential

d1 = dA ⊗ id + id ⊗ dS . (53)

Therefore, i : A → A⊗SU is a DGDA-morphism. SinceU is the free non-negatively
graded D-module with homogeneous basis

G = {s−1
Ibn , Ibn : bn ∈ Bn, n > 0},

all the requirements of the definition of a split RSDA are obviously satisfied, except
that we still have to check the well-ordering and the lowering condition.

Since every set can be well-ordered, we first choose a well-ordering on each Bn ,
n > 0: if λn denotes the unique ordinal that belongs to the same equivalence class
of well-ordered sets, the elements of Bn can be labelled by the elements of λn . Then
we define the following total order: the s−1

Ib1 , b1 ∈ B1, are smaller than the Ib1 ,
which are smaller than the s−1

Ib2 , and so on ad infinitum. The construction of an
infinite decreasing sequence in this totally ordered set amounts to extracting an infinite
decreasing sequence from a finite number of ordinals λ1, λ1, . . . , λk . Since this is
impossible, the considered total order is a well-ordering. The lowering condition is
thus a direct consequence of Eqs. (52) and (53).

Let now {γα : α ∈ J } be the set G of generators endowed with the just defined
well-order. Observe that, if the label α of the generator γα increases, its degree deg γα

increases as well, i.e., that

α ≤ β ⇒ deg γα ≤ deg γβ. (54)

Finally, any DGDA-morphism φ : A → B admits a functorial factorization

A
i−→ A ⊗ SU p−→ B, (55)

where p is a fibration and i is a weak equivalence, as well as a split RSDA. In view
of Theorem 25, the morphism i is thus a cofibration, with the result that we actually
constructed a natural decomposition φ = p ◦ i of an arbitrary DGDA-morphism φ into
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i ∈ TrivCof and p ∈ Fib. The description of this factorization is summarized below, in
Theorem 29, which provides essentially an explicit natural ‘Cof–TrivFib’ decomposition

A
i ′−→ A ⊗ SU ′ p′−→ B. (56)

Before stating Theorem 29, we sketch the construction of the factorization (56). To
simplify, we denote algebras of the type A ⊗ SVk by RVk , or simply Rk .

We start from the ‘small’ ‘Cof–Fib’ decomposition (55) of aDGDA-morphism A
φ−→

B, i.e., from the factorization A
i−→ RU

p−→ B. To find a substitute q for p, which
is a trivial fibration, we mimic an idea used in the construction of the Koszul–Tate
resolution: we add generators to improve homological properties.

Note first that H(p) is surjective if, for any homology class [βn] ∈ Hn(B), there
is a class [ρn] ∈ Hn(RU ), such that [p ρn] = [βn]. Hence, consider all the homology
classes [βn], n ≥ 0, of B, choose in each class a representative β̇n � [βn], and add
generators Iβ̇n to those of U . It then suffices to extend the differential d1 (resp., the
fibration p) defined on RU = A ⊗ SU , so that the differential of Iβ̇n vanishes (resp.,

so that the projection of Iβ̇n coincides with β̇n) (�1—this triangle is just a mark that
allows us to retrieve this place later on). To get a functorial ‘Cof–TrivFib’ factorization,
we do not add a new generator Iβ̇n , for each homology class β̇n � [βn] ∈ Hn(B),
n ≥ 0, but we add a new generator Iβn , for each cycle βn ∈ kern dB , n ≥ 0. Let us
implement this idea in a rigorous manner. Assign the degree n to Iβn and set

V0 := U ⊕ G0 := U ⊕ 〈Iβn : βn ∈ kern dB, n ≥ 0〉
= 〈s−1

Ibn , Ibn , Iβn : bn ∈ Bn, n > 0, βn ∈ kern dB, n ≥ 0〉. (57)

Set now

δV0(s
−1

Ibn ) = d1(s
−1

Ibn ) = 0, δV0Ibn = d1Ibn = s−1
Ibn , δV0Iβn = 0, (58)

thus defining, in view of Lemma 16, a differential graded D-module structure on V0.
It follows that (SV0, δV0) ∈ DGDA and that

(R0, δ0) := (A ⊗ SV0, dA ⊗ id + id ⊗ δV0) ∈ DGDA. (59)

Similarly, we set

qV0(s
−1

Ibn ) = p(s−1
Ibn ) = ε(s−1

Ibn ) = dBbn, qV0Ibn = pIbn = εIbn = bn,

qV0Iβn = βn . (60)

We thus obtain, see Lemma 17, a morphism qV0 ∈ DGDM(V0, B)—which uniquely
extends to a morphism qV0 ∈ DGDA(SV0, B). Finally,

q0 = μB ◦ (φ ⊗ qV0) ∈ DGDA(R0, B), (61)
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where μB denotes the multiplication in B. Let us emphasize that RU = A⊗ SU is a
direct summand of R0 = A ⊗ SV0, and that δ0 and q0 just extend the corresponding
morphisms on RU : δ0|RU = d1 and q0|RU = p.

So far we ensured that H(q0) : H(R0) → H(B) is surjective; however, it must be
injective as well, i.e., for any σn ∈ ker δ0, n ≥ 0, such that H(q0)[σn] = 0, i.e., such
that q0σn ∈ im dB , there should exist σn+1 ∈ R0 such that

σn = δ0σn+1. (62)

We denote by B0 the set of δ0-cycles that are sent to dB-boundaries by q0 :

B0 = {σn ∈ ker δ0 : q0σn ∈ im dB, n ≥ 0}.

In principle it now suffices to add, to the generators of V0, generators I1σn of degree
n + 1, σn ∈ B0, and to extend the differential δ0 on R0 so that the differential of I1σn
coincides with σn (�2). However, it turns out that to obtain a functorial ‘Cof – TrivFib’
decomposition, we must add a new generator I1

σn ,bn+1
of degree n + 1, for each pair

(σn, bn+1) such that σn ∈ ker δ0 and q0σn = dBbn+1 : we set

B0 = {(σn, bn+1) : σn ∈ ker δ0, bn+1 ∈ d−1
B {q0σn}, n ≥ 0} (63)

and
V1 := V0 ⊕ G1 := V0 ⊕ 〈I1σn ,bn+1

: (σn, bn+1) ∈ B0〉. (64)

To endow the graded D-algebra

R1 := A ⊗ SV1 � R0 ⊗ SG1 (65)

with a differential graded D-algebra structure δ1, we apply Lemma 23, with

δ1(I
1
σn ,bn+1

) = σn ∈ (R0)n ∩ ker δ0, (66)

exactly as suggested by Eq. (62). The differential δ1 is then given by Eq. (32) and it
extends the differential δ0 on R0. The extension of the DGDA-morphism q0 : R0 → B
by a DGDA-morphism q1 : R1 → B is built from its definition

q1(I
1
σn ,bn+1

) = bn+1 ∈ Bn+1 ∩ d−1
B {q0δ1(I1σn ,bn+1

)} (67)

on the generators and from Eq. (34) in Lemma 23.
Finally, starting from (RU , d1) ∈ DGDA and p ∈ DGDA(RU , B), we end

up—when trying to make H(p) bijective—with (R1, δ1) ∈ DGDA and q1 ∈
DGDA(R1, B)—so that the question is whether H(q1) : H(R1) → H(B) is bijective
or not. Since (R1, δ1) extends (R0, δ0) and H(q0) : H(R0) → H(B) is surjective, it
is easily checked that this property holds a fortiori for H(q1). However, when working
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with R1 ⊃ R0, the ‘critical set’B1 ⊃ B0 increases, so that wemust add new generators
I
2
σn
, σn ∈ B1\B0, where

B1 = {σn ∈ ker δ1 : q1σn ∈ im dB, n ≥ 0}. (�3)

To build a functorial factorization, we consider not only the ‘critical set’

B1 = {(σn, bn+1) : σn ∈ ker δ1, bn+1 ∈ d−1
B {q1σn}, n ≥ 0}, (68)

but also the module of new generators

G2 = 〈I2σn ,bn+1
: (σn, bn+1) ∈ B1〉, (69)

indexed, not byB1\B0, but byB1. Hence an iteration of the procedure (63)–(67) and
the definition of a sequence

(R0, δ0) → (R1, δ1) → (R2, δ2) → · · · → (Rk−1, δk−1) → (Rk, δk) → · · ·

of canonical inclusions of differential graded D-algebras (Rk, δk), Rk = A ⊗ SVk ,
δk |Rk−1 = δk−1, together with a sequence of DGDA-morphisms qk : Rk → B, such
that qk |Rk−1 = qk−1. The definitions of the differentials δk and the morphisms qk are
obtained inductively, and are based on Lemma 23, as well as on equations of the same
type as (66) and (67).

The direct limit of this sequence is a differential graded D-algebra (RV , d2) =
(A ⊗ SV, d2), together with a morphism q : A ⊗ SV → B.

As a set, the colimit of the considered system of canonically included algebras
(Rk, δk), is just the union of the sets Rk , see Eq. (50). We proved above that this set-
theoretical inductive limit can be endowed in the standard manner with a differential
graded D-algebra structure and that the resulting algebra is the direct limit in DGDA.
One thus obtains in particular that d2|Rk = δk .

Finally, the morphism q : RV → B comes from the universality property of the
colimit and it allows us to factor the morphisms qk : Rk → B through RV . We have:
q|Rk = qk .

We will show that this morphism A ⊗ SV q−→ B really leads to a ‘Cof–TrivFib’

decomposition A
j−→ A ⊗ SV q−→ B of A

φ−→ B.

Theorem 29 In DGDA, a functorial ‘TrivCof–Fib’ factorization (i, p) and a functorial
‘Cof–TrivFib’ factorization ( j, q) of an arbitrary morphism

φ : (A, dA) → (B, dB),

see Fig. 4, can be constructed as follows:

(1) The module U is the free non-negatively graded D-module with homogeneous
basis

⋃
{s−1

Ibn , Ibn },
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Fig. 4 Functorial factorizations

where the union is over all bn ∈ Bn and all n > 0, and where deg(s−1
Ibn ) = n−1

and deg(Ibn ) = n . In other words, the module U is a direct sum of copies of the
discs

Dn = D · Ibn ⊕D · s−1
Ibn ,

n > 0. The differentials

s−1 : Dn � Ibn → s−1
Ibn ∈ Dn

induce a differential dU in U, which in turn implements a differential dS in SU.
The differential d1 is then given by d1 = dA⊗ id+ id⊗dS . The trivial cofibration
i : A → A ⊗ SU is a split RSDA defined by i : a �→ a ⊗ 1O, and the fibration
p : A⊗SU → B is defined by p = μB ◦ (φ⊗ ε), where μB is the multiplication
of B and where ε(Ibn ) = bn and ε(s−1

Ibn ) = dBbn.
(2) The module V is the free non-negatively graded D-module with homogeneous

basis

⋃
{s−1

Ibn , Ibn , Iβn , I
1
σn ,bn+1

, I2σn ,bn+1
, . . . , Ikσn ,bn+1

, . . .},

where the union is over all bn ∈ Bn, n > 0, all βn ∈ kern dB, n ≥ 0, and all
pairs

(σn, bn+1), n ≥ 0, in B0,B1, . . . ,Bk, . . . ,

respectively. The sequence of sets

Bk−1 = {(σn, bn+1) : σn ∈ ker δk−1, bn+1 ∈ d−1
B {qk−1σn}, n ≥ 0}

is defined inductively, together with an increasing sequence of differential graded
D-algebras (A⊗ SVk, δk) and a sequence of morphisms qk : A⊗ SVk → B, by
means of formulas of the type (63)–(67) (see also (57)–(61)). The degrees of the
generators of V are

n − 1, n, n, n + 1, n + 1, . . . , n + 1, . . . (70)
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The differential graded D-algebra (A ⊗ SV, d2) is the colimit of the preceding
increasing sequence of algebras:

d2|A⊗SVk = δk . (71)

The trivial fibration q : A ⊗ SV → B is induced by the qk-s via universality of
the colimit:

q|A⊗SVk = qk . (72)

Finally, the cofibration j : A → A ⊗ SV is a (non-split) RSDA, which is defined
as in (1) as the canonical inclusion; the canonical inclusion jk : A → A⊗SVk ,
k > 0 , is also a (non-split) RSDA, whereas j0 : A → A ⊗ SV0 is a split RSDA.

Proof See Appendix 11.6. ��
Remark 30 • If we are content with a non-functorial ‘Cof–TrivFib’ factorization, we

may consider the colimit A ⊗ SV of the sequence A ⊗ SVk that is obtained by
adding only generators (see (�1))

Iβ̇n
, n ≥ 0, β̇n � [βn] ∈ Hn(B),

and by adding only generators (see (�2) and (�3))

I
1
σn

, I2σn , . . . , n ≥ 0, σn ∈ B0,B1\B0, . . .

• An explicit description of the functorial fibrant and cofibrant replacement functors,
induced by the ‘TrivCof–Fib’ and ‘Cof–TrivFib’ decompositions of Theorem 29, can
be found in Appendix 11.7.

10 First remarks on Koszul–Tate resolutions

In this last section, we provide a first insight intoKoszul–Tate resolutions. TheKoszul–
Tate resolution (KTR), which is used in Mathematical Physics and more precisely in
[1], relies on horizontal differential operators, whose coordinate expression contains
total derivatives. For instance, in the case of a unique base coordinate t , the total
derivative with respect to t is

Dt = ∂t + q̇∂q + q̈∂q̇ + · · · ,

where q, q̇, q̈, . . . are infinite jet bundle fiber coordinates. The main concept of the
jet bundle formalism is the Cartan connection C, which allows to lift base differential
operators ∂t acting on base functions O = O(X) to horizontal differential operators
Dt acting on the functions O(J∞E) of the infinite jet bundle J∞E → X of a vector
bundle E → X . Hence, the total derivative Dk

t F of a jet bundle function F can be
viewed as the action ∂kt · F on F of the corresponding base-derivative. In other words,
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one defines this action as the natural action by the corresponding lifted operator. Jet
bundle functions O(J∞E) thus become an algebra

O(J∞E) ∈ DA

over D = D(X). In our algebraic geometric setting, there exists an infinite jet bundle
functor J∞ : OA → DA, which transforms the algebraO(E) ∈ OA of vector bundle
functions into an algebra

J∞(O(E)) ∈ DA.

The latter is the algebraic geometric counterpart of the D-algebra O(J∞E) used in
smooth geometry. Recall now that (the prolongation of) a partial differential equation
on the sections of E can be viewed as an algebraic equation on the points of J∞E .
The solutions of the latter form the critical surface � ⊂ J∞E . The function algebra

O(J∞E)/I (�) ∈ DA

of this stationary surface � is the quotient of the D-algebra O(J∞E) by the D-ideal
I (�) of those jet bundle functions that vanish on �. The Koszul–Tate resolution
resolves this quotient. Now, for any D-ideal I, we think about

J∞(O(E))/I ∈ DA

as the function algebra of some critical locus �. In our model categorical con-
text, its (Koszul–Tate) resolution should be related to a cofibrant replacement of
J∞(O(E))/I ∈ DA in the model category DGDA. This will be explained in detail
below. Let us stress again, before proceeding, that in the present model categorical
setting, the algebraD is the algebraDX (X) of global sections of the sheafDX , where
X is a smooth affine algebraic variety.

In a separate paper [23], we will give a new, general, and precise definition of
Koszul–Tate resolutions. Instead of defining, as in homological algebra, a KTR for the
quotient of some type of ring by an ideal, we will consider a (sheaf of)DX -algebra(s)
A over an arbitrary smooth scheme X , as well as a differential graded DX -algebra
(sheaf) morphism φ : A → B. We will denote by A[DX ] the ring of differential
operators on X with coefficients in A and will define a D-geometric KTR of φ as a
differential graded A[DX ]-algebra morphism ψ : C → B, whose definition mimics
the essential characteristics of ourmodel categorical or cofibrant replacement KTR here
above. It will turn out that such a KTR does always exist. We will further show that
the KTR of a quotient ring [28], the KTR used in Mathematical Physics [14], the KTR

implemented by a compatibility complex [30], as well as our model categorical KTR,
are allD-geometricKoszul–Tate resolutions.Wewill actually give precise comparison
results for these Koszul–Tate resolutions, thus providing a kind of dictionary between
different fields of science and their specific languages.

Hence, the present section should be viewed as an introduction to topics on which
we will elaborate in [23].
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10.1 Undercategories of model categories

When recalling that the coproduct in DGDA is the tensor product, we get from [17]
that:

Proposition 31 For any differential graded D-algebra A, the coslice category A ↓
DGDA carries a cofibrantly generated model structure given by the adjoint pair L⊗ :
DGDA � A ↓ DGDA : For, in the sense that its distinguished morphism classes are
defined by For and its generating cofibrations and generating trivial cofibrations are
given by L⊗.

10.2 Basics of jet bundle formalism

The jet bundle formalism allows for a coordinate-free approach to partial differential
equations (PDE-s), i.e., to (not necessarily linear) differential operators (DO-s) acting
between sections of smooth vector bundles (the confinement to vector bundles does
not appear in more advanced approaches). To uncover the main ideas, we implicitly
consider in this subsection trivialized line bundles E over a 1-dimensional manifold
X , i.e., we assume that E � R× R.

The key-aspect of the jet bundle approach to PDE-s is the passage to purely algebraic
equations. Consider the order k differential equation (DE)

F(t, φ(t), dtφ, . . . , dkt φ) = F(t, φ, φ′, . . . , φ(k))| j kφ = 0, (73)

where (t, φ, φ′, . . . , φ(k)) are coordinates of the k-th jet space J k E and where j kφ is
the k-jet of the section φ(t). Note that the algebraic equation

F(t, φ, φ′, . . . , φ(k)) = 0 (74)

defines a ‘surface’ Ek ⊂ J k E , and that a solution of the considered DE is nothing but
a section φ(t) whose k-jet is located on Ek .

A second fundamental feature is that one prefers replacing the original system of
PDE-s by an enlarged system, its infinite prolongation, which also takes into account
the consequences of the original one. More precisely, if φ(t) satisfies the original PDE,
we have also

d�
t (F(t, φ(t), dtφ, . . . , dkt φ)) = (∂t + φ′∂φ + φ′′∂φ′ + · · · )�F(t, φ, φ′, . . . , φ(k))| j∞φ

=: D�
t F(t, φ, φ′, . . . , φ(k))| j∞φ = 0, ∀� ∈ N. (75)

Let us stress that the ‘total derivative’ Dt or horizontal lift Dt of dt is actually an
infinite sum. The two systems of PDE-s, (73) and (75), have clearly the same solutions,
so we may focus just as well on (75). The corresponding algebraic system

D�
t F(t, φ, φ′, . . . , φ(k)) = 0, ∀� ∈ N (76)
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defines a ‘surface’ E∞ in the infinite jet bundle π∞ : J∞E → X . A solution of the
original system (73) is now a section φ ∈ �(X, E) such that ( j∞φ)(X) ⊂ E∞. The
‘surface’ E∞ is often referred to as the ‘stationary surface’ or the ‘shell’.

The just described passage from prolonged PDE-s to prolonged algebraic equa-
tions involves the lift of differential operators d�

t acting on O(X) = �(X, X × R)

(resp., sending—more generally—sections �(X,G) of some vector bundle to sec-
tions �(X, K )), to horizontal differential operators D�

t acting on O(J∞E) (resp.,
acting from �(J∞E, π∗∞G) to �(J∞E, π∗∞K )). As seen from Eq. (75), this lift is
defined by

(D�
t F) ◦ j∞φ = d�

t (F ◦ j∞φ)

(note that composites of the type F ◦ j∞φ, where F is a section of the pullback
bundle π∗∞G, are sections of G). The interesting observation is that the jet bundle
formalism naturally leads to a systematic base change X � J∞E . The remark is
fundamental in the sense that both the classical Koszul–Tate resolution (i.e., the Tate
extension of theKoszul resolution of a regular surface) andVerbovetsky’sKoszul–Tate
resolution (i.e., the resolution induced by the compatibility complex of the linearization
of the equation), use the jet formalism to resolve on-shell functions O(E∞), and thus
contain the base change • → X � • → J∞E . This means, dually, that we pass
from DGDA, i.e., from the coslice category O(X) ↓ DGDA to the coslice category
O(J∞E) ↓ DGDA.

10.3 Revisiting classical Koszul–Tate resolution

We first recall the local construction of the Koszul resolution of the function algebra
O(�) of a regular surface � ⊂ R

n . Such a surface �, say of codimension r , can
locally always be described—in appropriate coordinates—by the equations

� : xa = 0, ∀a ∈ {1, . . . , r}. (77)

The Koszul resolution ofO(�) is then the chain complex made of the free Grassmann
algebra, i.e., the free graded commutative algebra

K = O(Rn) ⊗ S[φa∗]

on r odd generators φa∗ – associated to the Eq. (77)—and of the Koszul differential

δK = xa∂φa∗ . (78)

Of course, the claim that this complex is a resolution ofO(�)means that the homology
of (K, δK) is given by

H0(K) = O(�) and Hk(K) = 0, ∀k > 0. (79)
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The Koszul–Tate resolution of the algebra O(E∞) of on-shell functions is a gen-
eralization of the preceding Koszul resolution. In gauge field theory (our main target),
E∞ is the stationary surface given by a system

E∞ : Dα
x Fi = 0, ∀α, i (80)

of prolonged algebraized (see (76)) Euler–Lagrange equations that correspond to some
action functional (here x ∈ R

p and α ∈ N
p). However, there is a difference between

the situations (77) and (80): in the latter, there exist gauge symmetries that implement
Noether identities and their extensions—i.e., extensions

Dβ
x Gi

jα Dα
x Fi = 0, ∀β, j (81)

ofO(J∞E)-linear relations Gi
jα Dα

x Fi = 0 between the equations Dα
x Fi = 0 of E∞,

which do not have any counterpart in the former. It turns out that, to kill the homology
(see (79)), we must introduce additional generators that take into account these rela-
tions.More precisely, we do not only associate degree 1 generators φα∗

i to the Eq. (80),

but assign further degree 2 generators Cβ∗
j to the relations (81). The Koszul–Tate res-

olution of O(E∞) is then (under appropriate irreducibility and regularity conditions)
the chain complex, whose chains are the elements of the free Grassmann algebra

KT = O(J∞E) ⊗ S[φα∗
i ,Cβ∗

j ], (82)

and whose differential is defined in analogy with (78) by

δKT = Dα
x Fi ∂φα∗

i
+ Dβ

x Gi
jα Dα

x φ∗
i ∂

Cβ∗
j

, (83)

where we substituted φ∗
i to Fi (and where total derivatives have to be interpreted in

the extended sense that puts the ‘antifields’ φ∗
i and C∗

j on an equal footing with the

‘fields’ φi (fiber coordinates of E), i.e., where we set

Dxk = ∂xk + φi
kα∂φi

α
+ φkα∗

i ∂φα∗
i
+ Ckβ∗

j ∂
Cβ∗

j
).

The homology of this Koszul–Tate chain complex is actually concentrated in degree
0, where it coincides with O(E∞) (compare with (79)) [14].

10.4 D-algebraic version of the Koszul–Tate resolution

In this subsection, we briefly report on theD-algebraic approach to ‘Koszul–Tate’ (see
[23] for additional details).

Proposition 32 The functor

For : DA → OA
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has a left adjoint

J∞ : OA → DA,

i.e., for B ∈ OA and A ∈ DA, we have

HomDA(J∞(B), A) � HomOA(B,For(A)), (84)

functorially in A, B.

Let now π : E → X be a smooth map of smooth affine algebraic varieties (or a
smooth vector bundle). The function algebra B = O(E) (in the vector bundle case, we
only consider those smooth functions on E that are polynomial along the fibers, i.e.,
O(E) := �(SE∗)) is canonically anO-algebra, so that the jet algebraJ∞(O(E)) is a
D-algebra.The latter canbe thought of as theD-algebraic counterpart ofO(J∞E). Just
aswe considered above a scalar PDEwith unknown in�(E) as a function F ∈ O(J∞E)

(see (74)), an element P ∈ J∞(O(E)) can be viewed as a polynomial PDE acting
on sections of π : E → X . Finally, the D-algebraic version of on-shell functions
O(E∞) = O(J∞E)/(F) is the quotient R(E, P) := J∞(O(E))/(P) of the jet
D-algebra by the D-ideal (P).

A first candidate for a Koszul–Tate resolution of R := R(E, P) ∈ DA is of
course the cofibrant replacement of R in DGDA given by the functorial ‘Cof – TrivFib’
factorization of Theorem29,when applied to the canonicalDGDA-morphismO → R.
Indeed, this decomposition implements a functorial cofibrant replacement functor Q
(see Theorem 35 below) with value Q(R) = SV described in Theorem 29:

O � SV ∼
� R.

Since R is concentrated in degree 0 and has 0 differential, it is clear that Hk(SV )

vanishes, except in degree 0 where it coincides with R.
As alreadymentioned, we propose a general and precise definition of a Koszul–Tate

resolution in [23]. Although such a definition does not seem to exist in the literature,
the classical Koszul–Tate resolution of the quotient of a commutative ring k by an
ideal I is a k-algebra that resolves k/I .

The natural idea—to get aJ∞(O(E))-algebra—is to replaceSV byJ∞(O(E))⊗
SV , and, more precisely, to consider the ‘Cof–TrivFib’ decomposition

J∞(O(E)) � J∞(O(E)) ⊗ SV ∼
� J∞(O(E))/(P).

The DGDA

J∞(O(E)) ⊗ SV (85)

is a J∞(O(E))-algebra that resolves R = J∞(O(E))/(P), but it is of course not
a cofibrant replacement, since the left algebra is not the initial object O in DGDA
(further, the considered factorization does not canonically induce a cofibrant replace-
ment in DGDA, since it can be shown that the morphism O → J∞(O(E)) is not
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a cofibration). However, as emphasized above, the Koszul–Tate problem requires a
passage from DGDA to J∞(O(E)) ↓ DGDA. It is easily checked that, in the latter
undercategory, J∞(O(E)) ⊗ SV is a cofibrant replacement of J∞(O(E))/(P).
To further illuminate the D-algebraic approach to Koszul–Tate, let us mention why
the complex (82) is of the same type as (85). Just as the variables φ(k) (see (73))
are algebraizations of the derivatives dkt φ of a section φ of a vector bundle E → X

(fields), the generators φα∗
i andCβ∗

j (see (80) and (81)) symbolize the total derivatives

Dα
x φ∗

i and Dβ
x C∗

j of sections φ∗ and C∗ of some vector bundles π∗∞F1 → J∞E and

π∗∞F2 → J∞E (antifields). Hence, the φα∗
i and Cβ∗

j can be thought of as the hori-
zontal jet bundle coordinates of π∗∞F1 and π∗∞F2. These coordinates may of course
be denoted by other symbols, e.g., by ∂α

x · φ∗
i and ∂

β
x · C∗

j , provided we define the

D-action · as the action Dα
x φ∗

i and Dβ
x C∗

j by the corresponding horizontal lift, so that
we get appropriate interpretations when the φ∗

i -s and the C∗
j -s are the components of

true sections. This convention allows us to write

KT = J ⊗ S[∂α
x · φ∗

i , ∂
β
x · C∗

j ] = J ⊗O SO
(
⊕i D · φ∗

i

⊕
⊕ j D · C∗

j

)
,

where J = J∞(O(E)) , so that the space (82) is really of the type (85). Let us
emphasize that (82) and (85), although of the same type, are of course not equal (for
instance, the classical Koszul–Tate resolution is far from being functorial). For further
details, see [23].
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valuable comments and constructive suggestions. Further, they are indebted to Jim Stasheff for his careful
reading of the first version of this text and his worthwhile remarks. The recommendations of both of these
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11 Appendices

The following appendices do not contain new results but might have a pedagogical
value. Various (also online) sources were used. Notation is the same as in the main
part of the text.

11.1 Appendix 1: Quasi-coherent sheaves of modules

A quasi-coherent R-module is an object P ∈ Mod(R) that is locally presented, i.e.,
for any x ∈ X , there is a neighborhood U � x , such that there is an exact sequence of
sheaves

RKU |U → RJU |U → P|U → 0, (86)

where RKU and RJU are (not necessarily finite) direct sums. Let us recall that an
infinite direct sum of sheaves need not be a sheaf, so that a sheafification is required.
The category qcMod(R) of quasi-coherent R-modules is not abelian in general, but
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is abelian in the context of Algebraic Geometry, i.e., if R is the function sheaf of a
scheme.

11.2 Appendix 2: D-modules

Wealready indicated thatD-modules are fundamental in algebraic analysis: they allow
us to apply methods of homological algebra and sheaf theory to the study of systems
of PDE-s [20].

We first explain the key idea of Proposition 1 considering—to simplify—global
sections instead of sheaves.

We denote by D the ring of differential operators acting on functions of a suitable
base space X , e.g., a finite-dimensional smooth manifold [8]. A D-module M ∈
Mod(D) (resp.,M ∈ Mod(Dop)) is a left (resp., right)module over thenoncommutative
ring D. Since D is generated by smooth functions f ∈ O and smooth vector fields
θ ∈ �, modulo the obvious commutation relations between these types of generators,
aD-action on anO-module M ∈ Mod(O) is completely defined if it is given for vector
fields and satisfies the natural compatibility conditions. More precisely, let

· : O × M � ( f,m) �→ f · m ∈ M

be the O-action, and let

∇ : � × M � (θ,m) �→ ∇θm ∈ M (87)

be an R-bilinear ‘�-action’. For f ∈ O and θ, θ ′ ∈ �, we then necessarily extend ∇
by defining the action ∇θθ ′ (resp., ∇θ f ) of the differential operator θθ ′ = θ ◦ θ ′ (resp.,
θ f = θ ◦ f ) by

∇θθ ′ := ∇θ∇θ ′

(resp.,

∇θ f := ∇θ ( f · −)).

Since f θ = f ◦ θ , we get the compatibility condition

∇ f θ = f · ∇θ , (88)

and, as θ f = f θ + θ( f ) (resp., θθ ′ = θ ′θ + [θ, θ ′])—where θ( f ) (resp., [θ, θ ′])
denotes the Lie derivative Lθ f of f with respect to θ (resp., the Lie bracket of the
vector fields θ, θ ′), we also find the compatibility relations

∇θ ( f · −) = f · ∇θ + θ( f ) · − (89)

(resp.,
∇θ∇θ ′ = ∇θ ′∇θ + ∇[θ,θ ′]). (90)
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Hence, if the compatibility conditions (88)–(90) hold, we defined the unique structure
of left D-module on M that extends the ‘action of �’. In view of Eqs. (87)–(90), a
D-module structure on M ∈ Mod(O) is the same as a flat connection on M .

When resuming now our explanations given in Sect. 4.1, we understand that a
morphism∇ of sheaves ofK-vector spaces satisfying the conditions (1)–(3) is exactly
a family of DX (U )-modulesMX (U ), U ∈ OpenX , such that the DX (U )-actions are
compatible with restrictions, i.e., is exactly a DX -module structure on the considered
sheaf MX of OX -modules.

Typical examples of D-modules are:

• O ∈ Mod(D) with action ∇θ = Lθ ,
• the top differential forms �top ∈ Mod(Dop) with action ∇θ = −Lθ , and
• D ∈ Mod(D) ∩ Mod(Dop) with action given by left and right compositions.

11.3 Appendix 3: Sheaves versus global sections

In Classical Differential Geometry, the fundamental spaces (resp., operators), e.g.,
vector fields, differential forms... (resp., the Lie derivative, the de Rham differen-
tial...) are sheaves (resp., sheaf morphisms). Despite this sheaf-theoretic nature, most
textbooks present Differential Geometry in terms of global sections and morphisms
between them. Since these sections are sections of vector bundles (resp., these global
morphisms are local operators), restriction and gluing is canonical (resp., the existence
of smooth bump functions allows us to localize the global morphisms in such a way
that they commute with restrictions; e.g., for the de Rham differential, we have

(d|UωU )|V = (d(αVωU )) |V and d|Uω|U = (dω)|U ,

where αV is a bump function with constant value 1 in V ⊂ U and support inU ). Such
global viewpoints are not possible in the real-analytic and holomorphic settings, since
no interesting analytic bump functions exist.

There are a number of well-known results on the equivalence of categories of
sheaves and the corresponding categories of global sections, essentially when the
topological space underlying the considered sheaves is an affine scheme or variety.
In the present paper, we use the fact that, for an affine scheme (X,OX ), there is an
equivalence [13]

�(X, •) : qcMod(OX ) � Mod(OX (X)) : •̃ (91)

between the category of quasi-coherent OX -modules and the category of OX (X)-
modules. The functor •̃ is isomorphic to the functor OX ⊗OX (X) •.

11.4 Appendix 4: Model categories

Quite a few non-equivalent definitions of model categories and cofibrantly generated
model categories can be found in the literature. In this paper, we use the definitions of
[19] and of [12].
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In the definition of model categories, both texts [19] and [12] assume the exis-
tence of all small limits and colimits in the underlying category—in contrast with
Quillen’s original definition, which asks only for the existence of finite limits and
colimits. However, the two references use different ‘cofibration–trivial fibration’ and
‘trivial cofibration–fibration’ factorization axioms MC5. Indeed, in [12], the authors
use Quillen’s original axiom, which merely requires the existence of the two factor-
izations, whereas in [19], the author requires the factorizations to be functorial, and
even includes the choice of a pair of such functorial factorizations in the axioms of the
model structure. However, this difference does not play any role in the present paper,
since we are dealing with cofibrantly generated model categories, so that a choice of
functorial factorizations is always possible via the small object argument.

For the definitions of cofibrantly generated model structures, some preparation is
needed.

An ordinal λ is filtered with respect to a cardinal κ , if λ is a limit ordinal such
that the supremum of a subset of λ of cardinality at most κ is smaller than λ. This
condition is actually a largeness condition for λ with respect to κ: if λ is κ-filtered for
κ > κ ′, then λ is also κ ′-filtered. For a finite cardinal κ , a κ-filtered ordinal is just a
limit ordinal.

Smallness of an object A in a category C (assumed to have all small colimits) is
defined with respect to a class of morphismsW in C and a cardinal κ (that can depend
on A) [19]. The point is that the covariant Hom-functor

C(A, •) := HomC(A, •)

commutes with limits, but usually not with colimits. However, if the considered
sequence is sufficiently large with respect to A, then commutation may be proven.
More precisely, for A ∈ C, we consider the colimits of all the λ-sequences (with
arrows in W ) for all κ-filtered ordinals λ (usually for κ = κ(A)), and try to prove that
the covariant Hom-functor C(A, •) commutes with these colimits. In this case, we say
that A ∈ C is small with respect to κ and W . Of course, if κ < κ ′, then κ-smallness
implies κ ′-smallness.

In [12], ‘small’ (with respect toW ) means ‘sequentially small’: the covariant Hom-
functor commutes with the colimits of the ω-sequences. This concept matches the
notion ‘n-small’, i.e., small relative to a finite cardinal n ∈ N: the covariant Hom-
functor commutes with the colimits of the λ-sequences for all limit ordinals λ. In
[19], ‘small’ (relative to W ) means κ-small for some κ: the covariant Hom-functor
commutes with the colimits of all the λ-sequences for all the κ-filtered ordinals λ. It
is clear that n-small implies κ-small, for any κ > n.

More precisely, a λ-sequence in C is a colimit respecting functor X : λ → C.
Usually this diagram is denoted by X0 → X1 → · · · → Xβ → · · · It is natural to
refer to the map

X0 → colimβ<λXβ

as the composite of the λ-sequence X . IfW is a class of morphisms in C and every map
Xβ → Xβ+1, β + 1 < λ, is in W , we refer to the composite X0 → colimβ<λXβ as a
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transfinite composition of maps inW . Let us also recall that, if we have a commutative
square in C, the right down arrow is said to be the pushout of the left down arrow. We
now denote by W -cell the class of transfinite compositions of pushouts of arrows
in W . It turns out thatW -cell is a subclass of the class LLP(RLP(W )) (where notation
is self-explaining).

We are now prepared to give the finite and the transfinite definitions of a cofibrantly
generated model category.

A model category is cofibrantly generated [12], if there exist sets of morphisms
I and J , which generate the cofibrations and the trivial cofibrations, respectively, i.e.,
more precisely, if there are sets I and J such that

1. the source of every morphism in I is sequentially small with respect to the class
Cof, and TrivFib = RLP(I ) ,

2. the source of every morphism in J is sequentially small with respect to the class
TrivCof, and Fib = RLP(J ).

It then follows that I and J are actually the generating cofibrations and the generating
trivial cofibrations:

Cof = LLP(RLP(I )) and TrivCof = LLP(RLP(J )).

Alternatively, a model category is cofibrantly generated [19], if there exist sets I
and J of maps such that

1. the domains of the maps in I are small (κ-small for some fixed κ) relative to I -cell,
and TrivFib = RLP(I ) ,

2. the domains of themaps in J are small (κ-small for some fixed κ) relative to J -cell,
and Fib = RLP(J ).

It is clear that the finite definition [12] is stronger than the transfinite one [19]. First,
n-smallness implies κ-smallness, and, second, smallness with respect to Cof (resp.,
TrivCof) implies smallness with respect to I -cell (resp., J -cell).

The model structures we study in the present paper are all finitely generated. A
finitely generated model structure [19] is a cofibrantly generated model structure,
such that I and J can be chosen so that their sources and targets are n-small, n ∈ N,
relative to Cof. This implies in particular that our model structures are cofibrantly
generated in the sense of [12].

For more information on model categories, we refer the reader to [12,16,19], and
[25]. The background material on category theory can be found in [3,4], and [22].

11.5 Appendix 5: Invariants versus coinvariants

IfG is a (multiplicative) group and k a commutative unital ring, we denote by k[G] the
group k-algebra of G (the free k-module made of all formal finite linear combinations∑

g∈G r(g) g with coefficients in k, endowed with the unital ring multiplication that
extends the group multiplication by linearity).
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In the following, we use notation of Sect. 7.1. Observe that⊗n
OM• is a module over

the group O-algebra O[Sn], where Sn denotes the n-th symmetric group. There is an
O-module isomorphism

Sn
OM• = ⊗n

OM•/I ∩ ⊗n
OM• � (⊗n

OM•)Sn := ⊗n
OM•/〈T − σ · T 〉, (92)

where (⊗n
OM•)Sn is the O-module of Sn-coinvariants and where the denominator is

the O-submodule generated by the elements of the type T − σ · T , T ∈ ⊗n
OM•,

σ ∈ Sn (a Koszul sign is incorporated in the action of σ ). It is known that, since the
cardinality of Sn is invertible in O, we have also an O-module isomorphism

(⊗n
OM•)Sn � (⊗n

OM•)Sn := {T ∈ ⊗n
OM• : σ · T = T,∀σ ∈ Sn} (93)

between the Sn-coinvariants and the Sn-invariants. The averaging map or graded sym-
metrization operator

S : ⊗n
OM• � T �→ 1

n!
∑
σ∈Sn

σ · T ∈ (⊗n
OM•)Sn (94)

coincides with identity on (⊗n
OM•)Sn , what implies that it is surjective. When

viewed as defined on coinvariants (⊗n
OM•)Sn , it provides the mentioned isomor-

phism (93). It is straightforwardly checked that the graded symmetric multiplication
∨ on (⊗∗

OM•)S∗ , defined by

S(S) ∨S(T ) = S(S(S) ⊗S(T )), (95)

endows (⊗∗
OM•)S∗ with aDGD-algebra structure, and that theO-module isomorphism

S∗
OM• � {T ∈ ⊗∗

OM• : σ · T = T,∀σ ∈ S∗} (96)

is in fact a DGDA-isomorphism.

11.6 Appendix 6: Proof of Theorem 29

The proof of functoriality of the decompositions will be given in Appendix 11.7. Thus,
only Part (2) requires immediate explanations. We use again the above-introduced
notation Rk = A ⊗ SVk ; we also set R = A ⊗ SV . The multiplication in Rk (resp.,
in R) will be denoted by �k (resp., �).

To show that j is a RSDA, we have to check that A is a differential graded D-
subalgebra of R, that the basis of V is indexed by a well-ordered set and that d2 is
lowering.

Themain idea to keep inmind is that R = ⋃
k Rk —so that any element of R belongs

to some Rk in the increasing sequence R0 ⊂ R1 ⊂ . . .—and that theDGDA structure on
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R is defined in the standardmanner. For instance, the product of a⊗X, b⊗Y ∈ R∩Rk

is defined by

(a⊗ X) � (b⊗ Y ) = (a⊗ X) �k (b⊗ Y ) = (−1)X̃ b̃(a ∗ b) ⊗ (X � Y ),

where ‘tilde’ (resp., ∗) denotes as usual the degree (resp., the multiplication in A). It
follows that � restricts on A to ∗. Similarly, d2|A = δ0|A = dA, in view of (71) and
(59). Finally, we see that A satisfies actually the mentioned subalgebra condition.

We now order the basis of V . First, we well-order, for any fixed generator degree
m ∈ N (see (70)), the sets

{s−1
Ibm+1}, {Ibm }, {Iβm }, {I1σm−1,bm

}, {I2σm−1,bm
}, . . . (97)

of degree m generators of a given type (for m = 0, only the sets {s−1
Ib1} and {Iβ0}

are non-empty). We totally order the set of all degree m generators by totally ordering
its partition (97):

{s−1
Ibm+1} < {Ibm } < {Iβm } < {I1σm−1,bm

} < {I2σm−1,bm
} < · · ·

A total order on the set of all generators (of all degrees) is now obtained by declaring
that any generator of degree m is smaller than any generator of degree m + 1. This
total order is a well-ordering, since no infinite descending sequence exists in the set
of all generators.

Finally, the differential d2 sends the first and third types of generators (see (97)) to
0 and it maps the second type to the first. Hence, so far d2 is lowering. Further, we
have

d2(I
k
σm−1,bm

) = σm−1 ∈ (Rk−1)m−1,

where m − 1 refers to the term of degree m − 1 in Rk−1. Since this term is generated
by the generators

{s−1
Ib�+1}, {Ib�

}, {Iβ�
}, {I1σ�−1,b�

}, . . . , {Ik−1
σ�−1,b�

} ,

where � < m, the differential d2 is definitely lowering.
It remains to verify that the described construction yields amorphismq : A⊗SV →

B that is actually a trivial fibration.
Since fibrations are exactly the morphisms that are surjective in all positive degrees,

and since q|RU = q0|RU = p is degree-wise surjective, it is clear that q is a fibration.
As for triviality, let [βn] ∈ H(B, dB), n ≥ 0. Since Iβn ∈ ker δ0 ⊂ ker d2, the
homology class [Iβn ] ∈ H(R, d2) makes sense; moreover,

H(q)[Iβn ] = [qIβn ] = [q0Iβn ] = [βn],

so that H(q) is surjective. Finally, let [σn] ∈ H(R, d2) and assume that H(q)[σn] = 0,
i.e., that qσn ∈ im dB . Since there is a lowest k ∈ N such that σn ∈ Rk , we have σn ∈
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ker δk and qkσn = dBbn+1, for some bn+1 ∈ Bn+1. Hence, a pair (σn, bn+1) ∈ Bk

and a generator Ik+1
σn ,bn+1

∈ Rk+1 ⊂ R. Since

σn = δk+1I
k+1
σn ,bn+1

= d2I
k+1
σn ,bn+1

,

we obtain that [σn] = 0 and that H(q) is injective.

11.7 Appendix 7: Explicit functorial cofibrant replacement functor

(1) We proved in Sect. 7.5 that the factorization (i, p) = (i(φ), p(φ)) of the DGDA-
morphisms φ, described in Theorem 29, is functorial:

Proposition 33 In DGDA, the functorial fibrant replacement functor R, which is
induced by the functorial ‘TrivCof–Fib’ factorization (i, p) of Theorem 29, is the identity
functor R = id.

(2) To finish the proof of Theorem 29, we still have to show that the factorization
( j, q) is functorial, i.e., that for any commutative DGDA-square

A

u

φ
B

v ,

A′ φ′
B ′

(98)

there is a commutative DGDA-diagram

A

u

j:=j(φ)
A ⊗ SV

ω

∼
q:=q(φ)

B

v .

A
j :=j(φ )

A ⊗ SV ∼
q :=q(φ )

B

(99)

Let us stress that the following proof fails, if we use the non-functorial factorization
mentioned in Remark 30 (the critical spots are marked by # ).

Just as we constructed in Sect. 9, the RSDA R = A ⊗ SV (resp., R′ = A′ ⊗ SV ′)
as the colimit of a sequence Rk = A ⊗ SVk (resp., R′

k = A′ ⊗ SV ′
k), we will build

ω ∈ DGDA(R, R′) as the colimit of a sequence

ωk ∈ DGDA(Rk, R
′
k). (100)

Recall moreover that q is the colimit of a sequence qk ∈ DGDA(Rk, B), and that j is
nothing but jk ∈ DGDA(A, Rk) viewed as valued in the supalgebra R—and similarly
for q ′, q ′k, j ′, j ′k . Since we look for a morphism ω that makes the left and right squares
of the diagram (99) commutative, we will construct ωk so that

ωk jk = j ′k u and v qk = q ′k ωk . (101)
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Since the RSDA A → R0 = A ⊗ SV0 is split, we define

ω0 ∈ DGDA(A ⊗ SV0, R′
0)

as
ω0 = j ′0 u �0 w0, (102)

where we denoted the multiplication in R′
0 by the same symbol �0 as the multipli-

cation in R0, where j ′0 u ∈ DGDA(A, R′
0), and where w0 ∈ DGDA(SV0, R′

0). As the
differential δV0 , see Sect. 9, has been obtained via Lemma 16, the morphism w0 can
be built as described in Lemma 17: we set

w0(s
−1

Ibn ) = s−1
Iv(bn) ∈ V ′

0 , w0(Ibn ) = Iv(bn) ∈ V ′
0 , and w0(Iβn ) = Iv(βn) ∈ V ′

0,

(103)
and easily check that w0 δV0 = δ′0 w0 on the generators. The first commutation con-
dition (101) is obviously satisfied. As for the verification of the second condition, let
t = a ⊗ x1 � · · · � x� ∈ A ⊗ SV0 and remember (see (61)) that q0 = φ 	 qV0 and
q ′0 = φ′ 	 qV ′

0
, where we denoted again the multiplications in B and B ′ by the same

symbol 	. Then

vq0(t) = vφ(a) 	 vqV0(x1) 	 · · · 	 vqV0(x�)

and

q ′0ω0(t) = q ′0 j ′0u(a) 	 q ′0w0(x1) 	 · · · 	 q ′0w0(x�)

= φ′u(a) 	 q ′0w0(x1) 	 · · · 	 q ′0w0(x�).

It thus suffices to show that v qV0 = q ′0 w0 on the generators s−1
Ibn , Ibn , Iβn of V0,

what follows from Eqs. (60) and (103) (#1).
Assume now that theω� have been constructed according to the requirements (100)

and (101), for all � ∈ {0, . . . , k − 1}, and build their extension

ωk ∈ DGDA(Rk, R
′
k)

as follows. Since ωk−1, viewed as valued in R′
k , is a morphism ωk−1 ∈ DGDA

(Rk−1, R′
k) and since the differential δk of Rk � Rk−1 ⊗ SGk , where Gk is the

free D-module

Gk = 〈Ikσn ,bn+1
: (σn, bn+1) ∈ Bk−1〉,

has been defined by means of Lemma 23, the morphism ωk is, in view of the same
lemma, completely defined by degree n + 1 values

ωk(I
k
σn ,bn+1

) ∈ δ′−1
k (ωk−1δk(I

k
σn ,bn+1

)).
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As the last condition reads

δ′k ωk(I
k
σn ,bn+1

) = ωk−1(σn),

it is natural to set
ωk(I

k
σn ,bn+1

) = I
k
ωk−1(σn),v(bn+1)

, (104)

provided we have

(ωk−1(σn), v(bn+1)) ∈ B′
k−1 (#2).

This requirement means that δ′k−1ωk−1(σn) = 0 and that q ′k−1ωk−1(σn) =
dB′ v(bn+1). To see that both conditions hold, it suffices to remember that (σn, bn+1) ∈
Bk−1, that ωk−1 commutes with the differentials, and that it satisfies the second Eq.
(101). Hence the searched morphism ωk ∈ DGDA(Rk, R′

k), such that ωk |Rk−1 = ωk−1
(where the RHS is viewed as valued in R′

k ). Tofinish the construction ofωk , wemust still
verify that ωk complies with (101). The first commutation relation is clearly satisfied.
For the second, we consider

rk = rk−1 ⊗ g1 � · · · � g� ∈ Rk−1 ⊗ SGk

and proceed as above: recalling that ωk and qk have been defined via Eq. (34) in
Lemma 23, that q ′k and v are algebra morphisms, and that ωk−1 satisfies (101), we see
that it suffices to check that q ′k ωk = v qk on the generators Ik

σn ,bn+1
– what follows

immediately from the definitions (#3).
Remember now that ((R, d2), ir ) is the direct limit of the direct system ((Rk, δk),

ιsr ), i.e., that

R0 · · · Rk · · ·

R

i0 ik

ιk+1,kι10 ιk,k−1

(105)

where all arrows are canonical inclusions, and that the same holds for ((R′, d ′2), i ′r )
and ((R′

k, δ
′
k), ι

′
sr ). Since the just defined morphisms ωk provide morphisms i ′k ωk ∈

DGDA(Rk, R′) (such that the required commutations hold—asωk |R0 = ω0), it follows
from universality that there is a unique morphism ω ∈ DGDA(R, R′), such that ω ik =
i ′k ωk , i.e., such that

ω|Rk = ωk . (106)

When using the last result, one easily concludes that ω j = j ′ u and v q = q ′ ω.
This completes the proof of Theorem 29.

Remark 34 The preceding proof of functoriality fails for the factorization of
Remark 30. The latter adds only one new generator Iβ̇n for each homology class

β̇n � [βn], and it adds only one new generator Ikσn for each σn ∈ Bk−1\Bk−2 , where

Br = {σn ∈ ker δr : qrσn ∈ im dB, n ≥ 0}.
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In (#1), we then get that v qV0(Iβ̇n ) and q ′0 w0(Iβ̇n ) are homologous, but not necessarily
equal. In (#2), althoughσn ∈ Bk−1\Bk−2, its imageωk−1(σn) ∈ B′

k−1 may also belong
to B′

k−2. Finally, in (#3), we find that vqk(Ikσn ) and q ′kωk(I
k
σn

) differ by a cycle, but do
not necessarily coincide.

The next result describes cofibrant replacements.

Theorem 35 In DGDA, the functorial cofibrant replacement functor Q, which is
induced by the functorial ‘Cof–TrivFib’ factorization ( j, q) described in Theorem 29, is
defined on objects B ∈ DGDA by Q(B) = SVB, see Theorem 29 and set A = O, and
on morphisms v ∈ DGDA(B, B ′) by Q(v) = ω, see Eqs. (106), (104) and (103), and
set ω0 = w0. Moreover, the differential graded D-algebra SVB, see Proposition 30
and set A = O, is a cofibrant replacement of B.
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