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Abstract Quasi-elliptic cohomology is a variant of Tate K-theory. It is the orbifold
K-theory of a space of constant loops. For global quotient orbifolds, it can be expressed
in terms of equivariant K-theories. In this paper we show how this theory is equipped
with power operations. We also prove that the Tate K-theory of symmetric groups
modulo a certain transfer ideal classify the finite subgroups of the Tate curve.
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1 Introduction

An elliptic cohomology theory is an even periodicmultiplicative generalized cohomol-
ogy theorywhose associated formal group is the formal completion of an elliptic curve.
It is an old idea of Witten, as shown in [17], that the elliptic cohomology of a space
X is related to the T-equivariant K-theory of the free loop space LX = C

∞(S1, X)

with the circle T acting on LX by rotating loops.
It is surprisingly difficult to make this precise, especially if one wishes to consider

equivariant generalization of this construction. In this case the loop space LX with
the natural rotation action is a rich orbifold. In this paper we offer a new formulation
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716 Z. Huan

between the loop space and Tate K-theory via a new theorywhichwe call quasi-elliptic
cohomology.

Tate K-theory is the generalized elliptic cohomology associated to the Tate curve.
The Tate curve Tate(q) is an elliptic curve over SpecZ((q)), which is classified as the
completion of the algebraic stack of some nice generalized elliptic curves at infinity. A
good reference for Tate(q) is Section 2.6 of [1].We give a sketch of it in Sect. 6.1. The
relation between Tate K-theory and string theory is better understood than for most
known elliptic cohomology theories. The definition of G-equivariant Tate K-theory
for finite groupsG is modelled on the loop space of a global quotient orbifold, which is
formulated explicitly in Section 2, [10]. Its relation with string theory and loop space
makes Tate K-theory itself a distinctive subject to study.

The idea of quasi-elliptic cohomology is motivated by Ganter’s construction of
Tate K-theory. It is not an elliptic cohomology but from it we can recover the Tate
K-theory. This new theory can be interpreted in a neat form by equivariant K-theories,
which makes many constructions on it easier and more natural than those on the Tate
K-theories. Some formulations can be generalized to other equivariant cohomology
theories. In addition, quasi-elliptic cohomology provides a method that reduces facts
such as the classification of geometric structures on the Tate curve into questions in
representation theory.

1.1 Loop space

Quasi-elliptic cohomology is modelled on a version of equivariant loop space. For
background on orbifolds and Lie groupoids, we refer the readers to Sections 2, 3,
[18,23].

For any compact Lie group G and a manifold X with a smooth G-action, there is
a Lie groupoid X//G which is explained in detail in Chapter 11, [6]. Smooth unbased
loops in the orbifold X//G carries a lot of structure: on the one hand, it includes loops
represented by smoothmaps γ : R −→ X such that γ (t+1) = γ (t)g for some g ∈ G;
other than the group action by the loop group LG := C

∞(S1,G), the loop space also
has the circle action by rotation. Lerman discussed thoroughly in Section 3, [18] that
the strict 2-category of Lie groupoids can be embedded into a weak 2-category whose
objects are Lie groupoids, 1-morphisms are bibundles and 2-morphisms equivariant
diffeomorphisms between bibundles. Thus, the free loop space of an orbifold M is the
category of bibundles from the trivial groupoid S1//∗ to the Lie groupoid M . We will
write

Loop1(X//G) := Bibun(S1//∗, X//G),

which is discussed in Definition 2.2. In Definition 2.3, we extend Loop1(X//G) to a
groupoid Loopext1 (X//G) by adding rotations as morphisms.

Especially we are interested in the ghost loops groupoid GhLoop(X//G), which
is defined to be the full subgroupoid of Loopext1 (X//G) consisting of objects (π, f )
with the image of f contained in a single G-orbit. Ghost loops are introduced by Rezk
in his unpublished manuscript [26]. Another reference is Section 2.1.3, [12]. This
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Quasi-elliptic cohomology and its power operations 717

groupoid has several good properties. They are computed locally in X . For instance,
if X = U ∪ V where U and V are G-invariant open subsets, then

GhLoop(X//G) ∼= GhLoop(U//G) ∪GhLoop((U∩V )//G) GhLoop(V//G).

So it satisfies a kind of Mayer–Vietoris property. In addition, if H is a closed sub-
group of G and X is the quotient space G/H , GhLoop(X//G) is equivalent to
GhLoop(pt//H). In other words, it has the change-of-group property.

WhenG is finite,GhLoop(X//G) is isomorphic to the full subgroupoid�(X//G)of
Loopext1 (X//G) consisting of constant loops. This groupoid�(X//G) can be regarded
as an extended version of the inertia groupoid I (X//G). Please see Definition 3.7 for
inertia groupoid.

1.2 Quasi-elliptic cohomology

For any compact orbifold groupoid G, the orbifold K-theory Korb(G) is defined to be
the Grothendieck ring of isomorphism classes ofG-vector bundles onG. In particular,
Korb(X//G) is KG(X). A reference for orbifold K-theory is Chapter 3, [3] and a
reference for equivariant K-theory is [27].

Quasi-elliptic cohomology QEll∗(X//G) is defined to be the orbifold K-theory of
a subgroupoid �(X//G) of GhLoop(X//G) consisting of constant loops. When G is
a finite group, QEll∗G(X) can be expressed in terms of the equivariant K-theory of X
and its subspaces as

QEll∗G(X) := Korb(GhLoop(X//G)) ∼=
∏

σ∈Gconj

K ∗
�G (σ )(X

σ ) =
( ∏

σ∈G
K ∗

�G (σ )(X
σ )

)G
,

(1.1)
where Gconj is a set of representatives of G-conjugacy classes in G. The group
�G(σ ) := CG(σ )×R/〈(σ,−1)〉 acts on the fixed point space Xσ by [g, t]·m = g ·m.
In a coming paper by the author [13], we will present the construction of QEll∗G(X)

for any compact Lie group G.
QEllG(X) has the structure of a Z[q±]-algebra. We have

QEll∗G(X) ⊗Z[q±] Z((q)) = (K ∗
Tate)G(X). (1.2)

We formulate the Künneth map, restriction map, change of group isomorphism
and transfer for QEll. In general, if H∗ is an equivariant cohomology theory, then the
functor

X//G �→ H∗(GhLoop(X//G))

gives a new equivariant cohomology theory. Moreover, for each global cohomology
theory, we can formulate a new global cohomology theory via the ghost loops.
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718 Z. Huan

1.3 Power operation

One significant feature of quasi-elliptic cohomology is that it has power operations,
which was first observed by Ganter, as shown in [10,11]. In Sect. 4 we construct
the total power operation of quasi-elliptic cohomology. It satisfies the axioms for
equivariant power operations that Ganter gave inDefinition 4.3 in [9]. Formore details,
please see Theorem 4.12.

The power operation {Pn}n≥0 mixes the power operation in K -theory with the
natural operations of dilating and rotating loops. The key point of the construction of
the power operation is an intermediate groupoid d(g,σ )(X) with (g, σ ) ∈ G � �n . It

is constructed from �(X//G) and isomorphic to (X×n)(g,σ )//�G��n (g, σ ). For more
details of the construction, please see Sect. 4.2.

We illustrate what this power operation looks like by examples. Let G be the trivial
group and X a space. Let (−)k denote the rescaling map defined in (4.11).

When n = 2, P(1,(1)(1))(x) = x � x and P(1,(12))(x) = (x)2.
When n = 3, P(1,(1)(1)(1))(x) = x � x � x , P(1,(12)(1))(x) = (x)2 � x , and

P(1,(123))(x) = (x)3.
In these cases, the number of factors corresponds to the number of cycles in the

permutation and the rescaling map corresponds to the length of each cycle. For more
examples please see Example 4.13.

For any equivariant cohomology theory {H∗
G(−)}G with an H∞-structure in Gan-

ter’s sense, we can formulate a power operation for the equivariant cohomology
theories

H
∗
G(−) :=

∏

σ∈Gconj

H∗
�G (σ )(−)σ

in the same way.
In addition, we can formulate the total power operation for the orbifold quasi-

elliptic cohomology in the sense of Definition 3.9, [11]. The construction of the power
operation is shown in Sect. 5.3.

1.4 Classification of the finite subgroups of the Tate curve

Though the general formulas for the power operations in QEllG are complicated, to
understand it, it is useful to consider special cases. It is already illuminating to consider
the case that X is a point and G is the trivial group, the power operation has a neat
form, as shown in Example 4.13. It has a natural interpretation in terms of the Tate
elliptic curve.

In Sect. 6.3 applying the power operation we prove that the Tate K-theory of sym-
metric groups modulo the transfer ideal classifies the finite subgroups of the Tate
curve, which is analogous to the principal result in Strickland [28] that the Morava
E-theory of the symmetric group �n modulo a certain transfer ideal classifies the
power subgroups of rank n of the formal group GE .
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Quasi-elliptic cohomology and its power operations 719

The finite subgroups of the Tate curve are classified by

∏

d|N
Z((q))[q ′]/〈qd − q ′ Nd 〉.

First we prove the parallel conclusion for quasi-elliptic cohomology.

Theorem 1.1

QEll0�N
(pt)/IQEll

tr
∼=

∏

d|N
Z[q±][q ′]/〈qd − q ′ Nd 〉, (1.3)

where IQEll
tr is the transfer ideal defined in (6.4) and q ′ is the image of q under the

power operation PN .

Then applying the relationship between QEll∗ and Tate K-theory, we obtain the
main theorem.

Theorem 1.2 The Tate K-theory of symmetric groups modulo the transfer ideal I Tatetr
defined in (6.3) classifies finite subgroups of the Tate curve. Explicitly,

(K 0
Tate)�N (pt)/I Tatetr

∼=
∏

d|N
Z((q))[q ′]/〈qd − q ′ Nd 〉, (1.4)

where q ′ is the image of q under the power operation PTate constructed in Definition
5.10, [10].

Moreover, via the isomorphism in Theorem 1.1, we can define a ring homomor-
phism

PN :QEllG(X)
PN−→ QEllG��N (X×N )

res−→ QEllG×�N (X×N )

diag∗
−→ QEllG×�N (X) ∼= QEllG(X) ⊗Z[q±] QEll�N (pt)

−→ QEllG(X) ⊗Z[q±] QEll�N (pt)/IQEll
tr ,

as shown in Proposition 6.5. Under the identification (1.2), it extends uniquely to the
ring homomorphism

Pstring
N : (KTate)G(X) −→ (KTate)G(X) ⊗Z((q)) (KTate)�N (pt)/I Tatetr

constructed in Section 5.4, [10]. In [14] we construct the universal finite subgroup of
the Tate curve via the operation PN .
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720 Z. Huan

2 Models for orbifold loops and ghost loops

To understand QEll∗G(X), it is essential to understand the orbifold loop space. In this
section, we will describe several models for the loop space of X//G. In Definition 2.2
wediscuss Loop1(X//G) and introduce anothermodel Loop2(X//G) inDefinition 2.4.

The groupoid structure of Loop1(X//G) generalizes Map(S1, X)//G, which is a
subgroupoid of it. Other than the G-action, we also consider the rotation by the circle
group T on the objects and form the groupoids Loopext1 (X//G) and Loopext2 (X//G).
The groupoid Loopext2 (X//G) has a skeleton

L(X//G) :=
∐

g
1Lg X//L1

gG � T,

where each 1Lg X = MapZ/ lZ(R/ lZ, X) with l the order of g is equipped with an
evidentCG(g)-action.L(X//G)has the same space of objects as the groupoid L(X//G)

discussed in Definition 2.3, [21], from which equivariant Tate K-theory is defined. It
has richer morphisms. The circle groupT acts onR/ lZ by rotation, and so in principle
on the orbifold 1Lg X .

The key groupoid �(X//G) in the construction of quasi-elliptic cohomology is the
full subgroupoid of L(X//G) consisting of the constant loops. In order to unravel the
relevant notations in the construction of QEll∗G(X), we study the orbifold loop space
in Sects. 2.1.2 and 2.1.3.

In Sect. 2.1.1 we define Loop1(X//G). In Sect. 2.1.2 we interpret the enlarged
groupoid Loopext1 (X//G) and introduce a skeleton L(X//G) of it. In Sect. 2.1.3 we
show the construction of quasi-elliptic cohomology by ghost loops. In Sect. 3.1 we
show the representation ring of �G(g). In Sect. 3.2 we introduce the construction
of quasi-elliptic cohomology first in terms of orbifold K-theory and then equivariant
K-theory. We show the properties of the theory in Sect. 3.3.

2.1 Loop space

2.1.1 Bibundles

A standard reference for groupoids and bibundles is Sections 2 and 3, [18]. For each
pair of Lie groupoids H and G, the bibundles from H to G are defined in Definition
3.25, [18]. The category Bibun(H, G) has bibundles from H to G as the objects and
bundle maps as the morphisms.

Example 2.1 (Bibun(S1//∗, ∗//G))According to the definition, a bibundle from S1//∗
to ∗//G withG a Lie group is a smooth manifold P together with twomaps π : P −→
S1 a smooth principal G-bundle and the constant map r : P −→ ∗. So a bibundle
in this case is equivalent to a smooth principal G-bundle over S1. The morphisms in
Bibun(S1//∗, ∗//G) are bundle isomorphisms.

Definition 2.2 (Loop1(X//G)) LetG be aLie group acting smoothly on amanifold X .
We use Loop1(X//G) to denote the category Bibun(S1//∗, X//G), which generalizes
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Quasi-elliptic cohomology and its power operations 721

Example 2.1. Each object consists of a smooth manifold P and two structure maps
P

π−→ S1 a smooth principal G-bundle and f : P −→ X a G-equivariant map. We
use the same symbol P to denote both the object and the smooth manifold when there
is no confusion. A morphism is a G-bundle map α : P −→ P ′ making the diagram
below commute.

S1 P
π

α

f
X

P ′
π ′ f ′

Thus, the morphisms in Loop1(X//G) from P to P ′ are bundle isomorphisms.

Only the G-action on X is considered in Loop1(X//G). We add the rotations by
adding more morphisms into the groupoid.

Definition 2.3 (Loopext1 (X//G)) Let Loopext1 (X//G) denote the groupoid with the
same objects as Loop1(X//G). Each morphism consists of the pair (t, α) where t ∈ T

is a rotation and α is a G-bundle map. They make the diagram below commute.

S1

t

P
π

α

f
X

S1 P ′
π ′

f ′

The groupoid Loop1(X//G) is a subgroupoid of Loopext1 (X//G).

2.1.2 Another model for orbifold loop space

We give an equivalent description of the groupoids discussed in Sect. 2.1.1. The new
models Loop2(X//G) and Loopext2 (X//G) are more practicable to compute. We give
a skeleton L(X//G) of Loopext2 (X//G) when G is finite in Proposition 2.7.

Definition 2.4 (Loop2(X//G)) Let Loop2(X//G) denote the groupoid whose objects
are (σ, γ )withσ ∈ G andγ : R −→ X a continuousmap such thatγ (s+1) = γ (s)·σ ,
for any s ∈ R. A morphism α : (σ, γ ) −→ (σ ′, γ ′) is a continuous map α : R −→ G
satisfying γ ′(s) = γ (s)α(s). Note that α(s)σ ′ = σα(s + 1), for any s ∈ R.

Moreover, we can extend the groupoid Loop2(X//G) by adding the rotations.

Definition 2.5 (Loopext2 (X//G))
Let Loopext2 (X//G) denote the groupoid with the same objects as Loop2(X//G).

A morphism (σ, γ ) −→ (σ ′, γ ′) consists of the pair (α, t) with α : R −→ G a
continuous map and t ∈ R satisfying γ ′(s) = γ (s − t)α(s − t). Note that (α, t + 1)
and (ασ ′, t) are the same morphism and each morphism can be represented by a pair
(α, t) with t ∈ [0, 1).

Loop2(X//G) is a subgroupoid of Loopext2 (X//G).
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722 Z. Huan

Lemma 2.6 The groupoid Loopext1 (X//G) is isomorphic to a full subgroupoid of
Loopext2 (X//G).

Proof Define a functor

F : Loopext1 (X//G) −→ Loopext2 (X//G)

by sending an object

S1
π←−−−− P

f−−−−→ X

to (σ, γ ) with γ (s) := f ([s, e]) and σ = γ (0)−1γ (1) and sending a morphism

S1

t

P
π

F

f
X

S1 P ′
π ′

f ′

to (α, t) : (σ, γ ) −→ (σ ′, γ ′) with α(s) := F([s, e])−1.

F is a fully faithful functor but not essentially surjective. ��
Therefore, the groupoid Loopext2 (X//G) contains all the information of

Loopext1 (X//G). Next we will show a skeleton of this larger groupoid when G is
finite. Before that, we introduce some symbols.

Let k ≥ 0 be an integer and g an element in the compact Lie group G. Let Lk
gG

denote the twisted loop group

{γ : R −→ G|γ (s + k) = g−1γ (s)g}. (2.1)

The multiplication of it is defined by

(δ · δ′)(t) = δ(t)δ′(t), for anyδ, δ′ ∈ Lk
gG, and t ∈ R. (2.2)

The identity element e is the constant map sending all the real numbers to the identity
element of G. We extend this group by adding the rotations. Let Lk

gG � T denote the
group with elements (γ, t), γ ∈ Lk

gG and t ∈ T. The multiplication is defined by

(γ, t) · (γ ′, t ′) := (s �→ γ (s)γ ′(s + t), t + t ′). (2.3)

The set of constant maps R −→ G in Lk
gG is a subgroup of it, i.e. the centralizer

CG(g). When G is finite, Lk
gG = CG(g).

When G is finite, the objects of Loop2(X//G) can be identified with the space

∐

g∈G
1Lg X
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Quasi-elliptic cohomology and its power operations 723

where
kLg X := MapZ/ lZ(R/klZ, X), (2.4)

and l is the order of the element g. The cyclic groupZ/ lZ is isomorphic to the subgroup
kZ/klZ of R/klZ. The isomorphism Z/ lZ −→ kZ/klZ sends the generator [1]
corresponding to 1 to the generator [k] of kZ/klZ corresponding to k. kZ/klZ acts
on R/klZ by group multiplication. Thus, via the isomorphism, Z/ lZ acts on R/klZ.
Z/ lZ is also isomorphic to the cyclic group 〈g〉 by identifying the generater [1] with
g. So it acts on X via the G-action on it.

1Lg X//L1
gG is a full subgroupoid of Loop2(X//G). Moreover, 1Lg X//L1

gG � T is
a full subgroupoid of Loopext2 (X//G) where Lk

gG � T acts on kLg X by

δ · (γ, t) := (s �→ δ(s + t) · γ (s + t)), for any (γ, t) ∈ Lk
gG � T, and δ ∈ kLg X.

(2.5)
The action by g on kLg X coincides with that by k ∈ R. So we have the isomorphism

Lk
gG � T = Lk

gG � R/〈(g,−k)〉, (2.6)

where g represents the constant loop T −→ {g} ⊆ G.
In fact we have already proved Proposition 2.7.

Proposition 2.7 Let G be a finite group. The groupoid

L(X//G) :=
∐

[g]
1Lg X//L1

gG � T

is a skeleton of Loopext2 (X//G), where the coproduct goes over conjugacy classes in
π0G.

Next we show the physical meaning of L1
σG. Recall that the gauge group of a

principal bundle is defined to be the group of its vertical automorphisms. The readers
may refer [22] for more details. For a G-bundle P −→ S1, let LPG denote its gauge
group.

We have the well-known facts below.

Lemma 2.8 The principal G-bundles over S1 are classified up to isomorphism by
homotopy classes

[S1, BG] ∼= π0G/conj.

Up to isomorphism every principal G-bundle over S1 is isomorphic to one of the forms
Pσ −→ S1 with σ ∈ G and

Pσ := R × G/(s + 1, g) ∼ (s, σg).

A complete collection of isomorphism classes is given by a choice of representatives
for each conjugacy class of π0G.
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724 Z. Huan

For the gauge group LPσ G we have the conclusion below.

Proposition 2.9 For the bundle Pσ −→ S1, L Pσ G is isomorphic to the twisted loop
group L1

σG.

Proof Each automorphism f of the bundle Pσ −→ S1 has the form

Pσ

[s,g]�→[s,γ f (s)g]−−−−−−−−−−→ Pσ
⏐⏐�

⏐⏐�

S1
=−−−−→ S1

(2.7)

for some γ f : R −→ G. The morphism is well-defined if and only if γ f (s + 1) =
σ−1γ f (s)σ . So we get a well-defined map

F : LPσ G −→ L1
σG, f �→ γ f .

It is a bijection. Moreover, by the property of group action, F sends the identity map to
the constant map R −→ G, s �→ e, which is the trivial element in L1

σG, and for two
automorphisms f1 and f2 at the object, F( f1 ◦ f2) = γ f1 ·γ f2 . So LPσ G is isomorphic
to L1

σG. ��

2.1.3 Ghost loops

Let G be a compact Lie group and X a G-space. In this section we introduce a
subgroupoid GhLoop(X//G) of Loopext1 (X//G), which can be computed locally.

Definition 2.10 (Ghost loops) The groupoid of ghost loops is defined to be the full

subgroupoid GhLoop(X//G) of Loopext1 (X//G) consisting of objects S1 ← P
δ̃→ X

such that δ̃(P) ⊆ X is contained in a single G-orbit.

For a given σ ∈ G, define the space

GhLoopσ (X//G) := {δ ∈ 1Lσ X |δ(R) ⊆ Gδ(0)}. (2.8)

We have a corollary of Proposition 2.7 below.

Proposition 2.11 GhLoop(X//G) is equivalent to the groupoid

�(X//G) :=
∐

[σ ]
GhLoopσ (X//G)//L1

σG � T

where the coproduct goes over conjugacy classes in π0G.

Example 2.12 If G is a finite group, it has the discrete topology. In this case, LG
consists of constant loops and, thus, is isomorphic to G. The space of objects of
GhLoop(X//G) can be identified with X . For σ ∈ G and any integer k, Lk

σG can
be identified with CG(σ ); Lk

σG � T ∼= CG(σ ) × R/〈(σ,−k)〉; and GhLoopσ (X//G)

can be identified with Xσ .
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Quasi-elliptic cohomology and its power operations 725

Unlike true loops, ghost loops have the property that they can be computed locally,
as shown in the lemma below. The proof is left to the readers.

Proposition 2.13 If X = U ∪ V where U and V are G-invariant open subsets, then
GhLoop(X//G) is isomorphic to the fibred product of groupoids

GhLoop(U//G) ∪GhLoop((U∩V )//G) GhLoop(V//G).

Thus, the ghost loop construction satisfies Mayer–Vietoris property. Moreover, it has
the change-of-group property.

Proposition 2.14 Let H be a closed subgroup of G. It acts on the space of
left cosets G/H by left multiplication. Let pt denote the single point space with
the trivial H-action. Then we have the equivalence of topological groupoids
between Loopext1 ((G/H)//G) and Loopext1 (pt//H). Especially, there is an equiva-
lence between the groupoids GhLoop((G/H)//G) and GhLoop(pt//H).

Proof First we define a functor F : Loopext1 ((G/H)//G) −→ Loopext1 (pt//H) send-

ing an object S1 ← P
δ̃→ G/H to S1 ← Q → {eH} = pt where Q −→ eH is the

constant map, and Q −→ S1 is the pull back bundle

Q {eH}

P G/H.

It sends a morphism

P ′ P G/H

S1 S1

to the morphism

Q′ Q {eH}

P ′ P G/H

S1 S1

where all the squares are pull-back.
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In addition,we candefine a functor F ′ : Loopext1 (pt//H) −→ Loopext1 ((G/H)//G)

sending an object S1 ← Q → pt to S1 ← G×H Q → G×H pt = G/H and sending
a morphism

Q′ Q

S1 S1

to

G ×H Q′ G ×H Q G ×H pt = G/H

S1 S1

F ◦ F ′ and F ′ ◦ F are both identity maps. So the topological groupoids
Loopext1 ((G/H)//G) and Loopext1 (pt//H) are equivalent.

We can prove the equivalence between GhLoop((G/H)//G) and GhLoop(pt//H)

in the same way. ��

Remark 2.15 In general, if H∗ is an equivariant cohomology theory, Proposition 2.14
implies the functor

X//G �→ H∗(GhLoop(X//G))

gives a new equivariant cohomology theory. When H∗ has the change of group iso-
morphism, so does H∗(GhLoop(−)).

3 Quasi-elliptic cohomology QEll∗G

Unless otherwise indicated, we assume G is a finite group and X is a G-space in the
rest part of the paper. The main references for Sect. 3 are Rezk’s unpublished work
[25] and the author’s PhD thesis [12]. The construction of the theory QEll∗G for any
compact Lie group G will be shown in the paper [13]. In Sect. 3.2 we define QEll∗G
and prove some of its main properties. Before that we discuss in Sect. 3.1 the complex
representation ring of

�G(g) := L1
gG � T ∼= CG(g) × R/〈(g,−1)〉, (3.1)

which is a factor of QEll∗G(pt). We assume familiarity with [5,27].

123



Quasi-elliptic cohomology and its power operations 727

3.1 Preliminary: representation ring of �G(g)

Let q : T −→ U (1) be the isomorphism t �→ e2π i t . The complex representation ring
RT is Z[q±].

We have an exact sequence

1 −→ CG(g) −→ �G(g)
π−→ T −→ 0

where the first map is g �→ [g, 0] and the second map is

π([g, t]) = e2π i t . (3.2)

The map π∗ : RT −→ R�G(g) equips the representation ring R�G(g) the structure
as an RT-module.

There is a relation between the complex representation ring of CG(g) and that of
�G(g), which is shown as Lemma 1.2 in [25] and Lemma 2.4.1 in [12].

Lemma 3.1 The RT-module R�G(g) with the action defined by π∗ : RT −→
R�G(g) is a free module.

In particular, there is an RT-basis of R�G(g) given by irreducible representations
{Vλ}, such that restriction Vλ �→ Vλ|CG (g) to CG(g) defines a bijection between {Vλ}
and the set {λ} of irreducible representations of CG(g).

Proof Let l be the order of g. Note that �G(g) is isomorphic to

CG(g) × R/ lZ/〈(g,−1)〉.

Thus, it is the quotient of the product of two compact Lie groups.
Let λ : CG(g) −→ GL(n, C) be an n-dimensional CG(g)-representation with

representation space V and η : R −→ GL(n, C) be a representation of R such that
λ(g) acts on V via scalar multiplication by η(1). Define a n-dimensional �G(g)-
representation λ �C η with representation space V by

λ �C η([h, t]) := λ(h)η(t). (3.3)

Any irreducible n-dimensional representation of the quotient group �G(g) =
CG(g) × R/〈(g,−1)〉 is an irreducible n-dimensional representation of the prod-
uct CG(g) × R. And any finite dimensional irreducible complex representation of the
product of two compact Lie groups is the tensor product of an irreducible representa-
tion of each factor. So any irreducible representation of the quotient group�G (g) is the
tensor product of an irreducible representation λ of CG(g) with representation space
V and an irreducible representation η of R. Any irreducible complex representation η

of R is one dimensional. So the representation space of λ �C η is still V . η(1)l = I .

We need η(1) = λ(g). So η(1) = e
2π ik
l for some k ∈ Z. So

η(t) = e
2π i(k+lm)t

l .
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Any m ∈ Z gives a choice of η in this case. And η is a representation of R/ lZ ∼= T.
Therefore, we have a bijective correspondence between

1. isomorphism classes of irreducible �G(g)-representation ρ, and
2. isomorphism classes of pairs (λ, η)whereλ is an irreducibleCG(g)-representation

and η : R −→ C
∗ is a character such that λ(g) = η(1)I . λ = ρ|CG (g).

Then as a corollary, the RT-module R�G(g) with the RT-action defined by π∗ :
RT −→ R�G(g)

π∗ : RT −→ R�G(g) exhibits R�G(g) as a free RT-module. ��
Remark 3.2 We can make a canonical choice of Z[q±]-basis for R�G(g). For each
irreducibleG-representation ρ : G −→ Aut (G), write ρ(σ) = e2π icid for c ∈ [0, 1),
and set χρ(t) = e2π ict . Then the pair (ρ, χρ) corresponds to a unique irreducible
�G(g)-representation

ρ �C χρ([h, t]) := ρ(h)χρ(t). (3.4)

Example 3.3 (G = Z/NZ) Let G = Z/NZ for N ≥ 1, and let σ ∈ G. Given an
integer k ∈ Z which projects to σ ∈ Z/NZ, let xk denote the representation of�G(σ )

defined by

�G(σ ) = (Z × R)/(Z(N , 0) + Z(k, 1))
[a,t]�→[(kt−a)/N ]−−−−−−−−−−−→ R/Z = T

q−−−−→ U (1).
(3.5)

R�G(σ ) is isomorphic to the ring Z[q±, xk]/(xNk − qk).

Example 3.4 (G = �3) G = �3 has three conjugacy classes represented by 1, (12),
(123) respectively.

��3(1) = �3 × T, thus, R��3(1) = R�3 ⊗ RT = Z[X,Y ]/(XY − Y, X2 −
1,Y 2 − X − Y − 1) ⊗ Z[q±] where X is the sign representation on �3 and Y is the
standard representation.

C�3((12)) = 〈(12)〉 = �2, thus, ��3((12)) ∼= ��2((12)). So we have

R��3((12)) ∼= R��2((12)) = Z[q±, x1]/(x21 − q) ∼= Z[q± 1
2 ].

C�3(123) = 〈(123)〉 = Z/3Z, thus, ��3((123)) ∼= �Z/3Z(1). So we have

R��3((123)) ∼= Z[q±, x1]/(x31 − q) ∼= Z[q± 1
3 ].

Moreover, we have the conclusion below about the relation between the induced
representations I nd|�G (σ )

�H (σ )(−) and I nd|CG (σ )
CH (σ )(−).

Lemma 3.5 Let H be a subgroup of G and σ an element of H. Let m denote [CG(σ ) :
CH (σ )]. Let V denote a�H (σ )-representationλ�Cχ withλ aCH (σ )-representation,
χ a R-representation and �C defined in (3.4).

(i)
res�G (σ )

�H (σ )(λ �C η) = (resCG (σ )
CH (σ )λ) �C η. (3.6)
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(ii) The induced representation

Ind�G (σ )
�H (σ )(λ �C χ)

is isomorphic to the �G(σ )-representation

(I ndCG (σ )
CH (σ )λ) �C χ.

Their underlying vector spaces are both V⊕m.

Thus, the computation of both Ind�G (σ )
�H (σ )(λ �C χ) and res�G (σ )

�H (σ )(λ �C η) can be
reduced to the computation of representations of finite groups.

The proof is straightforward and left to the readers.
Let k be any integer. Next we describe the relation between

�k
G(g) := Lk

gG � T ∼= CG(g) × R/〈(g,−k)〉 (3.7)

and �G(g), which gives the relation between their representation rings.
There is an exact sequence

1 −−−−→ CG(g)
g �→[g,0]−−−−−→ �k

G(g)
πk−−−−→ R/kZ −−−−→ 0

where the second map πk : �k
G(g) −→ R/kZ is πk([g, t]) = e2π i t .

Let q
1
k : R/kZ −→ U (1) denote the composition

R/kZ
t �→ t

k−−−−→ R/Z
q−−−−→ U (1).

The representation ring R(R/kZ) is Z[q± 1
k ].

Analogous to Lemma 3.1, we have the conclusion about R�k
G(g) below.

Lemma 3.6 The map π∗
k : R(R/kZ) −→ R�k

G(g) exhibits it as a free Z[q± 1
k ]-

module. There is a Z[q± 1
k ]-basis of R�k

G(g) given by irreducible representations
{ρk} such that the restrictions ρk |CG (g) of them to CG(g) are precisely the Z-basis of
RCG(g) given by irreducible representations.

In other words, any irreducible �k
G(g)-representation has the form ρ �C χ where

ρ is an irreducible representation of CG(g), χ : R/kZ −→ GL(n, C) such that
χ(k) = ρ(g), and

ρ �C χ([h, t]) := ρ(h)χ(t), for any [h, t] ∈ �k
G(g). (3.8)

R�k
G(g) is a Z[q±]-module via the inclusion Z[q±] −→ Z[q± 1

k ].
By Lemma 3.6, we can make a Z[q± 1

k ]-basis {ρ �C χρ,k} for R�k
G(g) with each

ρ : G −→ Aut (G) an irreducible G-representation and χρ,k(t) = e2π i
ct
k with c ∈
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[0, 1) such that ρ(σ) = e2π icid. This collection {ρ �C χρ,k} gives a Z[q± 1
k ]-basis of

R�k
G(g).
There is a group isomorphism αk : �k

G(g) −→ �G(g) sending [g, t] to [g, t
k ].

Observe that there is a pullback square of groups

�k
G(g)

αk

πk

�G(g)

π

R/kZ
t �→ t

k
R/Z

(3.9)

So we have the commutative square of a pushout square in the category of λ-rings.

R�k
G(g) R�G(g)

R(R/kZ) RT

(3.10)

It gives a canonical isomorphism of λ-rings R�G(g) −→ R�k
G(g) sending q to q

1
k .

A good reference for λ-rings is Chapters 1 and 2, [29].

3.2 Quasi-elliptic cohomology

In this section we introduce the definition of quasi-elliptic cohomology QEll∗G in
terms of orbifold K-theory, and then express it via equivariant K-theory. We assume
familiarity with [27]. The reader may read Chapter 3 in [3,23] for a reference of
orbifold K-theory.

When G is finite, quasi-elliptic cohomology is defined from the ghost loops in
Definition 2.10. By Proposition 2.11 and Example 2.12, we can see the groupoid
GhLoop(X//G) is equivalent to the disjoint union of some translation groupoids.
Before describing this equivalent groupoid �(X//G) in detail, we recall what inertia
groupoid is. A reference for that is Section 4, [20].

Definition 3.7 Let G be a groupoid. The inertia groupoid I (G) of G is defined as
follows.

An object a is an arrow in G such that its source and target are equal. A morphism
v joining two objects a and b is an arrow v in G such that

v ◦ a = b ◦ v.

In other words, b is the conjugate of a by v, b = v ◦ a ◦ v−1.

Let X a G-space.
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Example 3.8 The inertia groupoid I (X//G) is the groupoid with
objects: the space

∐
g∈G Xg

morphisms: the space
∐

g,g′∈G CG(g, g′)×Xg whereCG(g, g′) = {σ ∈ G|g′σ =
σg} ⊆ G.

For x ∈ Xg and (σ, g) ∈ CG(g, g′) × Xg , (σ, g)(x) = σ x ∈ Xg′
.

Definition 3.9 The groupoid �(X//G) has the same objects as I (X//G) but richer
morphisms

∐

g,g′∈G
�G(g, g′) × Xg

where �G(g, g′) is the quotient of CG(g, g′) × R under the equivalence

(x, t) ∼ (gx, t − 1) = (xg′, t − 1).

For an object x ∈ Xg and a morphism ([σ, t], g) ∈ �G(g, g′) × Xg , ([σ, t], g)(x) =
σ x ∈ Xg′

. The composition of the morphisms is defined by

[σ1, t1][σ2, t2] = [σ1σ2, t1 + t2]. (3.11)

Definition 3.10 The quasi-elliptic cohomology QEll∗G(X) is defined to be
K ∗
orb(GhLoop(X//G)) ∼= K ∗

orb(�(X//G)).

We can unravel the definition and express it via equivariant K-theory.
Let σ ∈ G. The fixed point space Xσ is a CG(σ )-space. We can define a �G(σ )-

action on Xσ by

[g, t] · x := g · x .

Then we have

Proposition 3.11

QEll∗G(X) =
∏

g∈Gconj

K ∗
�G (g)(X

g) =
( ∏

g∈G
K ∗

�G (g)(X
g)

)G

, (3.12)

where Gconj is a set of representatives of G-conjugacy classes in G.

Thus, for each g ∈ �G(g), we can define the projection

πg : QEll∗G(X) −→ K ∗
�G (g)(X

g).

For the singe point space, we have

QEll0G(pt) ∼=
∏

g∈Gconj

R�G(g). (3.13)
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We have the ring homomorphism

Z[q±] = K 0
T
(pt)

π∗−→ K 0
�G (g)(pt) −→ K 0

�G (g)(X)

where π : �G(g) −→ T is the projection defined in (3.2) and the second is via the
collapsing map X −→ pt. So QEll∗G(X) is naturally a Z[q±]-algebra.

3.3 Properties

In this section we discuss some properties of QEll∗G , including the restriction map,
the Künneth map on it, its tensor product and the change-of-group isomorphism.

Since each homomorphism φ : G −→ H induces a well-defined homomorphism
φ� : �G(τ ) −→ �H (φ(τ)) for each τ inG, we can get the proposition belowdirectly.

Proposition 3.12 For each homomorphism φ : G −→ H, it induces a ring map

φ∗ : QEll∗H (X) −→ QEll∗G(φ∗X)

characterized by the commutative diagrams

QEll∗H (X)
φ∗

−−−−→ QEll∗G(φ∗X)

πφ(τ)

⏐⏐� πτ

⏐⏐�

K ∗
�H (φ(τ))(X

φ(τ))
φ∗

�−−−−→ K ∗
�G (τ )(X

φ(τ))

(3.14)

for any τ ∈ G. So QEll∗G is functorial in G.

Moreover, we can define Künneth map of quasi-elliptic cohomology induced from
that on equivariant K -theory.

Let G and H be two finite groups. X is a G-space and Y is a H -space. Let σ ∈ G
and τ ∈ H . Let �G(σ ) ×T �H (τ ) denote the fibered product of the morphisms

�G(σ )
π−→ T

π←− �H (τ ).

It is isomorphic to �G×H (σ, τ ) under the correspondence

([α, t], [β, t]) �→ [α, β, t].

Consider the composition below

T :K�G (σ )(X
σ ) ⊗ K�H (τ )(Y

τ ) −→ K�G (σ )×�H (τ )(X
σ × Y τ )

res−→
K�G (σ )×T�H (τ )(X

σ × Y τ )
∼=−→ K�G×H (σ,τ )((X × Y )(σ,τ )),
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where the first map is the Künneth map of equivariant K-theory, the second is the
restriction map and the third is the isomorphism induced by the group isomorphism
�G×H (σ, τ ) ∼= �G(σ ) ×T �H (τ ).

For any g ∈ G, let 1 denote the trivial line bundle over Xg and let q denote the line
bundle 1�C q over Xg . The map T above sends both 1⊗ q and q ⊗ 1 to q. So we get
the well-defined map

K ∗
�G (σ )(X

σ ) ⊗Z[q±] K ∗
�H (τ )(Y

τ ) −→ K�G×H (σ,τ )((X × Y )(σ,τ )). (3.15)

Definition 3.13 The tensor produce of quasi-elliptic cohomology is defined by

QEll∗G(X) ⊗Z[q±] QEll∗H (Y ) ∼=
∏

σ∈Gconj , τ∈Hconj

K ∗
�G (σ )(X

σ ) ⊗Z[q±] K ∗
�H (τ )(Y

τ ).

(3.16)
The direct product of the maps defined in (3.15) gives a ring homomorphism

QEll∗G(X) ⊗Z[q±] QEll∗H (Y ) −→ QEll∗G×H (X × Y ),

which is the Künneth map of quasi-elliptic cohomology.

By Lemma 3.1 we have

QEll∗G(pt) ⊗Z[q±] QEll∗H (pt) = QEll∗G×H (pt).

More generally, we have the proposition below.

Proposition 3.14 Let X be a G × H-space with trivial H-action and let pt be the
single point space with trivial H-action. Then we have

QEllG×H (X) ∼= QEllG(X) ⊗Z[q±] QEllH (pt).

Especially, if G acts trivially on X, we have

QEllG(X) ∼= QEll(X) ⊗Z[q±] QEllG(pt).

Here QEll∗(X) is QEll∗{e}(X) = K ∗
T
(X).

Proof

QEllG×H (X) =
∏

g∈Gconj
h∈Hconj

K�G×H (g,h)(X
(g,h)) ∼=

∏

g∈Gconj
h∈Hconj

K�G (g)×T�H (h)(X
g)

∼=
∏

g∈Gconj
h∈Hconj

K�G (g)(X
g) ⊗Z[q±] K�H (h)(pt) = QEllG(X) ⊗Z[q±] QEllH (pt).

��
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Proposition 3.15 If G acts freely on X,

QEll∗G(X) ∼= QEll∗e (X/G).

Proof Since G acts freely on X ,

Xσ =
{

∅, if σ �= e;
X, if σ = e.

Thus, QEll∗G(X) ∼= ∏
σ∈Gconj

K ∗
�G (σ )/CG (σ )(X

σ /CG(σ )) ∼= K ∗
T
(X/G).

Since T acts trivially on X , we have K ∗
T
(X/G) = QEll∗e (X/G) by definition. It

is isomorphic to K ∗(X/G) ⊗ RT. ��
We also have the change-of-group isomorphism as in equivariant K -theory.
Let H be a subgroup of G and X a H -space. Let φ : H −→ G denote the inclusion

homomorphism. The change-of-group map ρG
H : QEll∗G(G ×H X) −→ QEll∗H (X)

is defined as the composite

ρG
H : QEll∗G(G ×H X)

φ∗
−→ QEll∗H (G ×H X)

i∗−→ QEll∗H (X) (3.17)

where φ∗ is the restriction map and i : X −→ G ×H X is the H -equivariant map
defined by i(x) = [e, x].
Proposition 3.16 The change-of-group map

ρG
H : QEll∗G(G ×H X) −→ QEll∗H (X)

defined in (3.17) is an isomorphism.

Proof For any τ ∈ Hconj , there exists a unique στ ∈ Gconj such that τ = gτ στ g−1
τ

for some gτ ∈ G. Consider the maps

�G(τ ) ×�H (τ ) X τ [[a,t],x]�→[a,x]−−−−−−−−−→ (G ×H X)τ
[u,x]�→[g−1

τ u,x]−−−−−−−−−→ (G ×H X)σ .
(3.18)

The first map is �G(τ )-equivariant and the second is equivariant with respect to the
homomorphism cgτ : �G(σ ) −→ �G(τ ) sending [u, t] �→ [gτug−1

τ , t]. Taking a
coproduct over all the elements τ ∈ Hconj that are conjugate to σ ∈ Gconj in G, we
get an isomorphism

γσ :
∐

τ

�G(τ ) ×�H (τ ) X
τ −→ (G ×H X)σ

which is �G(σ )-equivariant with respect to cgτ . Then we have the map

γ :=
∏

σ∈Gconj

γσ :
∏

σ∈Gconj

K ∗
�G (σ )(G ×H X)σ −→

∏

σ∈Gconj

K ∗
�G (σ )

(
∐

τ

�G(τ ) ×�H (τ ) X
τ

)

(3.19)
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It is straightforward to check the change-of-group map coincide with the composite

QEll∗G(G ×H X)
γ−→

∏

σ∈Gconj

K ∗
�G (σ )

(
∐

τ

�G(τ ) ×�H (τ ) X
τ

)
−→

∏

τ∈Hconj

K ∗
�H (τ )(X

τ )

= QEll∗H (X)

with the second map the change-of-group isomorphism in equivariant K -theory. ��

4 Power operation

In Sect. 4.2 we define power operations for equivariant quasi-elliptic cohomology
QEll∗G(−). We show in Theorem 4.12 that they satisfy the axioms that Ganter estab-
lished in Definition 4.3, [9] for equivariant power operations.

The power operation of quasi-elliptic cohomology is of the form

Pn =
∏

(g,σ )∈(G��n)conj

P(g,σ ) :

QEll∗G(X) −→ QEll∗G��n
(X×n) =

∏

(g,σ )∈(G��n)conj

K�G��n (g,σ )((X
×n)(g,σ )),

where Pn maps a bundle over the groupoid

�(X//G)

to a bundle over

�(X×n//(G � �n)),

and each P(g,σ ) maps a bundle over

�(X//G)

to a �G��n (g, σ )-bundle over the space (X×n)(g,σ )//�G��n (g, σ ).

We construct each P(g,σ ) as the composition below.

QEll∗G(X)
U∗−→ K ∗

orb(�
1
(g,σ )(X))

( )�k−→ K ∗
orb(�

var
(g,σ )(X)) (4.1)

�−→ K ∗
orb(d(g,σ )(X))

f ∗
(g,σ )−→ K ∗

�G��n (g,σ )((X
×n)(g,σ )), (4.2)

where k ∈ Z and (i1, . . . ik) goes over all the k-cycles of σ . We explain the first three
functors in detail in Sect. 4.2. In Sect. 4.1we construct the isomorphism f(g,σ ) between
the groupoid
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�(X×n//(G � �n))

and the groupoid d((X//G) ��n) constructed in Definition 4.5.With it, it is convenient
to construct the explicit formula of the power operation.

4.1 Loop space of symmetric power

4.1.1 The groupoid d((X//G) � �n)

For an introduction of actions of wreath product G ��n on X×n and symmetric power
G ��n of a groupoidG, we refer the readers to Section 4.1, [10]. The symmetric power
(X//G) � �n is isomorphic to X×n//(G � �n).

Before introducing the groupoid d((X//G) � �n), we need to introduce several
ingredients.

Definition 4.1 (�k(X//G)) The groupoid�k(X//G) has the sameobjects as�(X//G)

but different morphisms

∐

g,g′∈G
�k

G(g, g′) × Xg

where �k
G(g, g′) is the quotient of CG(g, g′) × R under the equivalence

(x, t) ∼ (gx, t − k) = (xg′, t − k).

For an object x ∈ Xg and a morphism ([σ, t], g) ∈ �k
G(g, g′) × Xg , ([σ, t], g)(x) =

σ x ∈ Xg′
. The composition of the morphisms is defined by

[σ1, t1][σ2, t2] = [σ1σ2, t1 + t2]. (4.3)

Definition 4.2 (Fibred wreath product) The groupoid �k(X//G) �T �N is defined to
be the subgroupoid of the symmetric power �k(X//G) ��N with the same objects but
only those morphisms

(([b1, t1], · · · [bN , tN ], τ ), x)

with all the t j s having the same image under the quotient map R/kZ −→ R/Z.
The isotropy group of each object in

∏N
1 Xg is �k

G(g) �T �N .

Let Y be an H -space.

Definition 4.3 (Fibred product and fibred coproduct) The groupoid

(
�k1(X//G) �T �N1

) ×T

(
�k2(Y//H) �T �N2

)
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is defined to be the subgroupoid of �k1(X//G) �T �N1 × �k2(Y//H) �T �N2 with the
same objects but only those morphisms

(
(([g1, t1,1], . . . [gN1, t1,N1 ], σ1), x), (([h1, t2,1], . . . [hN2 , t2,N2 ], σ2), y)

)

with all the ti, ji s having the same image under the quotient map R/kiZ −→ R/Z, for
i = 1, 2 and ji = 1, . . . Ni .

The isotropy group of each object in
∏N1

1 Xg ∏N2
1 Y h is

(
�

k1
G (g) �T �N1

) ×T

(
�

k2
H (h) �T �N2

)
.

We can define the fibred coproduct
(
�k1(X//G) �T �N1

) ∐
T

(
�k2(Y//H) �T �N2

)

in the same way.

Let σ ∈ �n correspond to the partition n = ∑
k kNk , i.e. it has Nk k-cycles. Assume

that for each cycle (i1, . . . ik) of σ , i1 < i2 · · · < ik .
For (g, σ ) ∈ G � �n , we consider the orbits of the bundle G × n −→ n under the

action by (g, σ ). The orbits of n under the action by σ corresponds to the cycles in
the cycle decomposition of σ . The bundle G × n −→ n is the disjoint union of the
G-bundles

⊔

(i1...ik )

(G × {i1, . . . ik} −→ {i1, . . . ik})

where (i1, . . . ik) goes over all the cycles of σ . Each bundle G × {i1, . . . ik} −→
{i1, . . . ik} is an orbit of G × n −→ n under the action by (g, σ ).

Let CG(g, g′) denote {x ∈ G|gx = xg′}. Two G-subbundles

G × {i1, . . . ik} −→ {i1, . . . ik} and G × { j1, . . . jm} −→ { j1, . . . jm}

are (g, σ )-equivariant equivalent if and only if k = m and CG(gik . . . gi1, g jk . . . g j1)

is nonempty. For each k-cycle i = (i1, . . . ik) of σ , let W σ
i denote the set of all

the G-subbundles G × { j1, . . . jm} −→ { j1, . . . jm} that are (g, σ )-isomorphic to
G × {i1, . . . ik} −→ {i1, . . . ik}. There is a bijection between W σ

i and the set

{ j = ( j1, . . . jk) | ( j1, . . . jk) is a k-cycle of σ and CG(gik . . . gi1 , g jk . . . g j1 ) is nonempty}.

Let Mσ
i denote the size of the set W σ

i . Let α
i
1, α

i
2, . . . α

i
Mσ

i
denote all the elements of

the set W σ
i . Obviously, i = (i1, . . . ik) is in W σ

i . So we can assume it is αi
1.

For any k-cycle i and m-cycle j of σ , if k = m and CG(gik . . . gi1, g jk . . . g j1) is
nonempty, W σ

i and W σ
j are the same set. Otherwise, they are disjoint. The set of all

the k-cycles of σ can be divided into the disjoint union of several W σ
i s. We can pick a

set of representatives θk of k-cycles of σ such that the set of k-cycles of σ equals the
disjoint union
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∐

i∈θk

W σ
i .

Definition 4.4 (d(g,σ )(X)) The groupoid d(g,σ )(X) is defined to be a full subgroupoid

of
∏

kT
∏

i∈θkT
�k(X//G) �T �Mσ

i
with objects the points of the space

∏

k

∏

(i1,...ik )

Xgik ...gi1 ,

where the second product goes over all the k-cycles of σ .

Definition 4.5 (d((X//G) � �n)) The groupoid d((X//G) � �n) is defined to be

∐

(g,σ )

T d(g,σ )(X)

where (g, σ ) goes over (G � �n)conj .

Proposition 4.6 Each d(g,σ )(X) is isomorphic to the translation groupoid

⎛

⎝
∏

k

∏

(i1,...ik )

Xgik ...gi1

⎞

⎠ //

⎛

⎝
∏

k

T

∏

j∈θk

T�k
G(α j ) �T �Mσ

j

⎞

⎠

where α j = g jk . . . g j1 with j = ( j1, . . . jk).

The proof is straightforward.
To study Korb(d(g,σ )(X)), we start by studying the representation ring of the wreath

product

∏

k

∏

j∈θk

�k
G(α j ) � �Mσ

j
.

Theorem4.7 gives all the irreducible representations of awreath product. It is Theorem
Theorem 4.3.34 in [15].

Theorem 4.7 Let {ρk}N1 be a complete family of irreducible representations of G and
let Vk be the corresponding representation space for ρk . Let (n) be a partition of n.
(n) = (n1, . . . nN ). Let D(n) be the representation

ρ
⊗n1
1 ⊗ · · · ⊗ ρ

⊗nN
N

of G×N on V⊗n1
1 ⊗ · · · ⊗ V⊗nN

N . Let �(n) = �n1 × · · · × �nN .

Let (D(n))
∼ be the extension of D(n) from G×n to G � �(n) defined by

(D(n))
∼((g1,1, . . . g1,n1, . . . gN ,1, . . . gN ,nN ; σ))
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(v1,1 ⊗ · · · ⊗ v1,n1 ⊗ · · · ⊗ vN ,1 ⊗ · · · ⊗ vN ,nN )

=
N⊗

k=1

ρk(gk,1)vk,σ−1
k (1) ⊗ · · · ⊗ ρk(gk,nk )vk,σ−1

k (nk )
,

where σ = σ1 × · · · × σN with each σk ∈ �nk .
Let Dτ with τ ∈ R�(n) be the representation of G � �(n) defined by

Dτ ((g1,n1, . . . gN ,nN ; σ)) := τ(σ ). (4.4)

Then,

{I nd|G��n
G��(n)

(D(n))
∼ ⊗ Dτ |(n) = (n1, . . . nN ) goes over all the partitions;

τgoes over all the irreducible representations of �(n).}

goes over all the irreducible representations of G � �n nonrepeatedly.

The proof of Theorem 4.8 is analogous to that of Theorem 4.7 in [15], applying
Clifford’s theory in [7,8]. Note that

{ρ1 ⊗Z[q±] · · · ⊗Z[q±] ρn | Each ρ j is an irreducible representation of �G(σ ).}

goes over all the irreducible representations of the fibred product

�G(σ ) ×T · · · ×T �G(σ ).

Theorem 4.8 Let {ρk}N1 be a basis of the Z[q±]-module R�G(σ ) and let Vk be
the corresponding representation space for ρk . Let (n) be a partition of n. (n) =
(n1, . . . nN ). Let DT

(n) be the �G(σ )×Tn-representation

ρ
⊗

Z[q±]n1
1 ⊗Z[q±] · · · ⊗Z[q±] ρ

⊗
Z[q±]nN

N

on the space V⊗n1
1 ⊗ · · · ⊗ V⊗nN

N . Let �(n) = �n1 × · · · × �nN .

Let (DT

(n))
∼ be the extension of D(n) from �G(σ )×Tn to �G(σ ) �T �(n) defined by

(DT

(n))
∼(([g1,1, t], . . . [g1,n1, t], . . . [gN ,1, t], . . . [gN ,nN , t]; σ))

(v1,1 ⊗ · · · ⊗ v1,n1 ⊗ · · · ⊗ vN ,1 ⊗ · · · ⊗ vN ,nN )

=
⊗

Z[q±]ρk([gk,1, t])vk,σ−1
k (1) ⊗Z[q±] · · · ⊗Z[q±] ρk([gk,nk , t])vk,σ−1

k (nk)
,

where k is from 1 to N and σ = σ1 × · · · × σN with each σk ∈ �nk .
Let DT

τ with τ ∈ R�(n) be the representation of �G(σ ) �T �(n) defined by

DT

τ (([g1,n1, t], . . . [gN ,nN , t]; σ)) := τ(σ ). (4.5)
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Then,

{I nd|�G (σ )�T�n
�G (σ )�T�(n)

(DT

(n))
∼ ⊗ DT

τ | (n) = (n1, . . . nN ) goes over all the partitions;
τ goes over all the irreducible representations of �(n).}

goes over all the irreducible representation nonrepeatedly of �G(σ ) �T �n.

From Theorem 4.7, the representation ring of each �k
G(α j ) � �Mσ

j
is a Z[q± 1

k ]-
module. Thus, the representation ring of each �k

G(α j ) � �Mσ
j
is a Z[q±]-module via

the map

Z[q±] −→ Z[q± 1
k ], q �→ q± 1

k .

The representation ring

R(
∏

k

∏

j∈θk

�k
G(α j ) � �Mσ

j
) ∼=

⊗

k

⊗

j∈θk

R(�k
G(α j ) � �Mσ

j
)

is a Z[q±]-module. So is R(
∏
k
T

∏
j∈θk

T�k
G(α j ) �T �Mσ

j
).

Moreover, Korb(d(g,σ )(X)) is a Z[q±]-module via the map

R

⎛

⎝
∏

k

T

∏

j∈θk

T�k
G(α j ) �T �Mσ

j

⎞

⎠ ∼= K 0
orb(d(g,σ )(pt)) −→ K 0

orb(d(g,σ )(X)), (4.6)

which is induced by X −→ pt.

4.1.2 The isomorphism f(g,σ )

Before we show in Theorem 4.10 that the groupoids�(X×n//(G ��n)) and d((X//G) �
�n) are isomorphic, we recall some properties of CG��n ((g, σ ), (g′, σ ′)).

(h, τ ) is in CG��n ((g, σ ), (g′, σ ′)) if and only if τσ ′ = στ and gσ(τ(i))hτ(i) =
hτ(σ ′(i))g′

σ ′(i), ∀i. We can reinterpret these two conditions. Since τ ∈ C�n (σ, σ ′), τ

maps a k-cycle i = (i1, . . . ik) of σ ′ to a k-cycle j = ( j1, . . . jk) of σ . τ will still used to
denote its map on the cycles, such as τ(r) = s. For each l ∈ Z/kZ, let τ(il) = jl+mi

where mi depends only on τ and the cycle i. Then, the second conditions can be
expressed as

∀l ∈ Z/kZ, g jl h jl−1 = h jl g
′
il−mi

. (4.7)

From this equivalence, we can induce that the element

h jk g
′−1
i1−mi

. . . g′−1
ik−1

g′−1
ik

= g−1
j1

. . . g−1
jmi

h jmi
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maps g jk . . . g j1 to g′
ik

. . . g′
i1
by conjugation. In other words,

β
h,τ

j,i := h jk g
′−1
i1−mi

. . . g′−1
ik−1

g′−1
ik

(4.8)

is an element in CG(g jk . . . g j1, g
′
ik

. . . g′
i1
). Thus, CG(g jk . . . g j1, g

′
ik

. . . g′
i1
) is

nonempty.
First we show each component (X×n)(g,σ )//�G��n (g, σ ) is isomorphic to the

groupoid d(g,σ )(X). We construct a functor

f(g,σ ) : (X×n)(g,σ )//�G��n (g, σ ) −→ d(g,σ )(X).

It sends a point

x = (x1, . . . xn) ∈ (X×n)(g,σ )

to

∏

k

∏

(i1,...ik )

xik .

Note that xik = xi1gi1 = · · · = xik−1gik−1 . . . gi1 .
Let [(h, τ ), t] ∈ �G��n (g, σ ). Let τ send the k-cycle i = (i1, . . . ik) of σ to a

k-cycle j = ( j1, . . . jk) of σ and τ(i1) = j1+mi . We have

f(g,σ )(γ · [(h, τ ), t0]) =
∏

k

∏

(i1,...ik )

x jmi
h jmi

=
∏

k

∏

(i1,...ik )

x jk · β
h,τ

j,i ,

where β
h,τ

j,i is the symbol defined in (4.8). So f(g,σ ) maps the morphism [(h, τ ), t] to

×k ×i∈θk ([βh,τ

τ (1),1,m1 + t], . . . [βh,τ

τ (Mσ
i ),Mσ

i
,mMσ

i
+ t], τ |W σ

i
)

where τ |W σ
i
denotes the permutation induced by τ on the setW σ

i = {αi
1, α

i
2, . . . α

i
Mσ

i
},

τ−1( j) is short for τ−1(αi
j ) and τ( jl) = τ( j)l+m j .

It sends the identity map [(1, . . . , 1, Id), 0] to the identity

×k ×i∈θk ([1, 0], . . . [1, 0], Id),

and preserves composition of morphisms. So it is well-defined.

Theorem 4.9 The two groupoids (X×n)(g,σ )//�G��n (g, σ ) and d(g,σ )(X) are isomor-
phic. Thus, this isomorphism induces a �G��n (g, σ )-action on the space

∏

k

∏

(i1,...ik )

Xgik ...gi1 .
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742 Z. Huan

Proof We construct the inverse functor

J(g,σ ) : d(g,σ )(X) −→ (X×n)(g,σ )//�G��n (g, σ )

of f(g,σ ). For an object ×k ×i∈θk νi,k in d(g,σ )(X), J(g,σ )(×k ×i∈θk νi,k) = {νm}n1 with
νik = νi,k |[0,1] and νis (t) := νi,k(s + t)g−1

i1
. . . g−1

is
.

Let

∏

k

∏

i∈θk

((ui1,m
′i
1 ), (ui2,m

′i
2 ), . . . (uiMσ

i
,m′i

Mσ
i
), �k

i )

be a morphism in d(g,σ )(X). Let t be a representative of the image of m′i
1 in R/Z.

Then, each mi
k := m′i

k − t is an integer.
When we know how τ ∈ C�n (σ ) permutes the cycles of σ , whose information is

contained in those �k
i ∈ �Mσ

i
, and the numbers mi

1, . . .m
i
Mσ

i
, we can get a unique τ .

Explicitly, for any number jr = 1, 2 . . . n, if jr is in a k-cycle ( j1, . . . jk) of σ and it
is in the set W σ

i , then τ maps jr to �k
i ( j)r+mi

j
, i.e. the r +mi

j -th element in the cycle

�k
i ( j) of σ .

For any a ∈ W σ
i , ∀k and i , we want uia = β

h,τ

τ (a),a for some h. Thus,

hτ(a)k = uiagak . . . ga
1−mi

a
. (4.9)

By (4.7) we can get all the other hτ(a) j .
It can be checked straightforward that J(g,σ ) is a well-defined functor. It does not

depend on the choice of the representative t .
J(g,σ ) ◦ f(g,σ ) = Id; f(g,σ ) ◦ J(g,σ ) = Id. So the conclusion is proved. ��
Then by Proposition 4.6, we get the main conclusion in Sect. 4.1.

Theorem 4.10 The twogroupoids�((X//G)��n) and d((X//G)��n) are isomorphic.

The last conclusion in this section is some properties of the functor f(g,σ ).

Proposition 4.11 (i) If σ = (1) ∈ �1, the morphism f(g,(1)) is the identity map on
Xg//�G(g).

(ii) Let (g, σ ) ∈ G � �n and (h, τ ) ∈ G � �m. The groupoids

(X×n)(g,σ )//�G��n (g, σ ) ×T (X×m)(h,τ )//�G��m (h, τ )

and

(X×(n+m))(g,hστ)//�G��n+m (g, h, σ τ)

are isomorphic.
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(iii) f(g,σ ) preserves Cartesian product of loops. The following diagram of groupoids
commutes.

(X×n)(g,σ )//�G��n(g, σ )×T(X×m)(h,τ )//�G��m(h, τ )
∼=

f(g,σ )× f(h,τ )

(X×(n+m))(g,h,στ)//�G��n+m(g,h,στ)

f(g,h,σ τ)

d(g,σ )(X) ×T d(h,τ )(X)
∼=

d(g,h,στ)(X)

Proof (i) is indicated in the proof of Theorem 4.9.
(ii) We can define a functor � from

(X×n)(g,σ )//�G��n (g, σ ) ×T (X×m)(h,τ )//�G��m (h, τ )

to (X×(n+m))(g,hστ)//�G��n+m (g, h, σ τ) sending an object (x1, x2) to (x1, x2) and a
morphism ([α, t], [β, t]) to [α, β, t]. It is straightforward to check� is an isomorphism
between the groupoids.

(iii) The proof is left to the readers. ��

4.2 Total power operation of QEll∗G

In this section we construct the total power operations for quasi-elliptic cohomology
and give its explicit formula in (4.17). We show in Theorem 4.12 that they satisfy the
axioms that Ganter concluded in Definition 4.3, [9] for equivariant power operation.

We explain eachmap in the formula (4.1) and (4.2). The functorU : �1
(g,σ )(X) −→

�(X//G) is defined in (4.10). The pullback ( )�k is defined in (4.12). The external
product � is explained in (4.16). The fourth is the pullback by f(g,σ ).

The Functor U
For each (g, σ ) ∈ G � �n , r ∈ Z, let �r

(g,σ )(X) denote the groupoid with objects

∐

k

∐

(i1,...ik )

Xgik ...gi1

where (i1, . . . ik) goes over all the k-cycles of σ , and with morphisms

∐

k

∐

(i1,...ik ),( j1,... jk )

�r
G(gik . . . gi1, g jk . . . g j1) × Xgik ...gi1 ,

where (i1, . . . ik) and ( j1, . . . jk) go over all the k-cycles of σ respectively. It may not
be a subgroupoid of�r (X//G) because there may be cycles (i1, . . . ik) and ( j1, . . . jm)

such that
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gik . . . gi1 = g jm . . . g j1 .

Let
U : �1

(g,σ )(X) −→ �(X//G) (4.10)

denote the functor sending x in the component Xgik ...gi1 to the x in the component
Xgik ...gi1 of �(X//G), and send each morphism

([h, t], x) in �G(gik . . . gi1, g jk . . . g j1) × Xgik ...gi1

to

([h, t], x) in �G(gik . . . gi1, g jk . . . g j1) × Xgik ...gi1 .

In the case that gik . . . gi1 and g jk . . . g j1 are equal, ([h, t], x) is an arrow inside a single
connected component.

The Functor ( )k
For each integer k, there is a functor of groupoids ( )k : �k(X//G) −→ �(X//G)

sending an object x to x and a morphism ([h, t0], x) to ([h, t0
k ], x). The composition

(( )k)r = ( )kr .

The functor ( )k gives a well-defined map

Korb(�(X//G)) −→ Korb(�
k(X//G))

by pullback of bundles. We still use the symbol ( )k to denote it when there is no
confusion. For any �(X//G)-vector bundle V , S1 acts on (V)k via

q
1
k : R/kZ −→ U (1)

a �→ e
2π ia
k .

If V has the decomposition V = ⊕
j∈Z Vjq j , then

(V)k =
⊕

j∈Z
Vjq

j
k . (4.11)

The Functor ( )�k
Let �var

(g,σ )(X) be the groupoid with the same objects as �1
(g,σ )(X) and morphisms

∐

k

∐

(i1,...ik ),( j1,... jk )

�k
G(gik . . . gi1, g jk . . . g j1) × Xgik ...gi1 ,

where (i1, . . . ik) and ( j1, . . . jk) go over all the k-cycles of σ respectively.
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We can define a similar functor

( )�k : �var
(g,σ )(X) −→ �1

(g,σ )(X) (4.12)

that is identity on objects and sends each [g, t] ∈ �k
G(gik . . . gi1, g jk . . . g j1) to [g, t

k ] ∈
�1

G(gik . . . gi1, g jk . . . g j1). We use the same symbol ( )�k to denote the pull back

Korb(�
1
(g,σ )(X)) −→ Korb(�

var
(g,σ )(X)). (4.13)

The external product �
Let Y an H -space, (g, σ ) ∈ G � �n and (h, τ ) ∈ G � �m .
Each K ∗

orb(d(g,σ )(X)) is a Z[q±]-algebra, as shown in Sect. 4.1.1. The exter-
nal product in the theory K ∗

orb(d(g,σ )(−)) is defined to be the tensor product of
Z[q±]-algebras. The fibred product d(g,σ )(X) ×T d(h,τ )(X) has the same objects as
d(g,h,στ)(X) and is a subgroupoid of it.

So we have the Künneth map

K ∗
orb(d(g,σ )(X)) ⊗Z[q±] K ∗

orb(d(h,τ )(X)) −→ K ∗
orb(d(g,σ )(X) ×T d(h,τ )(X)) (4.14)

It is compatible with the Künneth map (3.15) of the quasi-elliptic cohomology in the
sense that the diagram below commutes.

K ∗
orb(d(g,σ )(X)) ⊗

Z[q±]
K ∗
orb(d(h,σ )(X)) −→ K ∗

orb(d(g,σ )(X)×Td(h,σ)(X))

f ∗
(g,σ )

⊗
Z[q±] f ∗

(h,σ )

⏐⏐� f ∗
((g,h),σ )

⏐⏐�

K ∗
�G��n(g,σ )

((Xn)
(g,σ )

) ⊗
Z[q±]

K ∗
�H ��n(h,σ )

((Ym)(h,σ )) −→K ∗
�(G×H)��n((g,h),σ )

((X×Y )n)
((g,h),σ )

(4.15)
where the horizontal maps are Künneth maps.

If we have a vector bundle E = ∐
k

∐
(i1,...ik )

Egik ...gi1
over �1

(g,σ )(X), the external

product

�k �(i1,...ik ) Egik ...gi1

is a vector bundler over d(g,σ )(X). This defines a map

Korb(�
1
(g,σ )(X)) −→ Korb(d(g,σ )(X)) (4.16)

Composing all the functors as in (4.1) and (4.2), we get the explicit formula of
P(g,σ )

P(g,σ )(V) = f ∗
(g,σ )(�k �(i1,...ik ) (Vgik ...gi1

)k). (4.17)

P(g,σ ) is natural. If (g, σ ) and (h, τ ) are conjugate in G � �n , P(g,σ )(V) and P(h,τ )(V)

are isomorphic.
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Theorem 4.12 The family of maps

Pn =
∏

(g,σ )∈(G��n)conj

P(g,σ ) : QEll∗G(X) −→ QEll∗G��n
(X×n),

satisfy

(i) P1 =Id, P0(x) = 1.
(ii) Let x ∈ QEll∗G(X), (g, σ ) ∈ G � �n and (h, τ ) ∈ G � �m. The external product

of two power operations

P(g,σ )(x) � P(h,τ )(x) = res|�G��m+n (g,h;στ)

�G��n (g,σ )×T�G��m (h,τ )P(g,h;στ)(x).

(iii) The composition of two power operations is

P((h,τ );σ)(Pm(x)) = res|�G��mn (h,(τ ,σ ))

�(G��m )��n ((h,τ );σ)
P(h,(τ ,σ ))(x)

where (h, τ ) ∈ (G ��m)×n, and σ ∈ �n. (τ , σ ) is in �m ��n, thus, can be viewed
as an element in �mn.

(iv) P preserves external product. For (g, h) = ((g1, h1), . . . (gn, hn)) ∈ (G × H)×n,
σ ∈ �n,

P((g,h),σ )(x � y) = res|�G��n (g,σ )×T�H ��n (h,σ )

�(G×H)��n ((g,h),σ ) P(g,σ )(x) � P(h,σ )(y).

Proof We check each one respectively.

(i) When n = 1, all the cycles of a permutation is 1-cycle. ( )1 and the homeomor-
phism f(g,(1)) are both identitymaps. Directly from the formula (4.17),P1(x) = x .

(ii)

P(g,σ )(x) � P(h,τ )(x)

= f ∗
(g,σ )(�k �(i1,...ik ) (xgik ...gi1

)k) � f ∗
(h,τ )(� j �(r1,...r j ) (xhr j ...hr1 ) j )

= res|�G��m+n (g,h;στ)

�G��n (g,σ )×T�G��m (h,τ ) f
∗
(g,h;στ)((�k �(i1,...ik ) (xgik ...gi1

)k)

� (� j �(r1,...r j ) (xhr j ...hr1 ) j )).

where (i1, . . . ik) goes over all the k-cycles of σ and (r1, . . . r j ) goes over all
the j-cycles of τ and ( )k is the map cited in (4.11). The second step is from
Proposition 4.11 (iii).

f ∗
(g,h;στ)((�k �(i1,...ik ) (xgik ...gi1

)k) � (� j �(r1,...r j ) (xhr j ...hr1 ) j ))
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is exactly

P(g,h;στ)(x).

(iii) Recall that for an element (τ , σ ) = (τ1, . . . τn, σ ) ∈ �mn , it acts on the set with
mn elements

{(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m}

in this way:

(τ , σ ) · (i, j) = (σ (i), τσ(i)( j)).

That also shows how to view it as an element in �mn .

Then for any integer q,

(τ , σ )q · (i, j) = (σ q(i), τσ q (i)τσ q−1(i) . . . τσ(i)( j)). (4.18)

To find all the cycles of (τ , σ ) is exactly to find all the orbits of the action by (τ , σ ).
If i belongs to an s-cycle of σ and j belongs to a r -cycle of τσ s (i)τσ s−1(i) . . . τσ(i), then
the orbit containing (i, j) has sr elements by (4.18). In other words, (i1, . . . is) is an
s-cycle of σ and ( j1, . . . jr ) is a r -cycle of τ := τis . . . τi1 if and only if

(
(i1, τi1( jr−1))(i2, τi2τi1( jr−1)) . . . (is, jr )

(i1, τi1( jr−2))(i2, τi2τi1( jr−2)) . . . (is, jr−1)

. . .

(i1, τi1( j1))(i2, τi2τi1( j1)) . . . (is, j2)

(i1, τi1( jr ))(i2, τi2τi1( jr )) . . . (is, j1)

)

is an sr -cycle of (τ , σ ).

P((h,τ );σ)(Pm(x))

= f ∗
((h,τ );σ)[�k �(i1,...ik ) (P((hik ,τik )...(hi1 ,τi1 ))(x))k]

= f ∗
((h,τ );σ)[�k �(i1,...ik ) [ f ∗

((hik ,τik )...(hi1 ,τi1 ))(�r �( j1,... jr ) (xHi j )r )]k]

=
⎛

⎝ f ∗
((h,τ );σ) ◦

∏

k,(i1,...ik )

f ∗
((hik ,τik )...(hi1 ,τi1 ))

⎞

⎠ [�k,(i1,...ik ) �r,( j1,... jr ) (xHi, j )kr ]

= f ∗
(h,(τ ,σ ))[�k,(i1,...ik ) �r,( j1,... jr ) (xHi, j )kr ]
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where

Hi j := hik , j1hik−1,τ
−1
ik

( j1)
. . . hi1,(τik ...τi2 )−1( j1)

hik , j2hik−1,τ
−1
ik

( j2)
. . . hi1,(τik ...τi2 )−1( j2)

. . .

hik , jr hik−1,τ
−1
ik

( jr )
. . . hi1,(τik ...τi2 )−1( jr )

= hik , j1hik−1,τik−1 ...τi2 τi1 ( j1) . . . hi1,τi1 ( jr )

hik , j2hik−1,τik−1 ...τi2 τi1 ( j2) . . . hi1,τi1 ( j1)

. . .

hik , jr hik−1,τik−1 ...τi2 τi1 ( jr−1) . . . hi1,τi1 ( jr−1)

where (i1, . . . ik) goes over all the k-cycles of σ ∈ �m and ( j1, . . . jr ) goes over all
the r -cycles of τik . . . τi1 ∈ �n . The last step is by Proposition 4.11 in [10].

f ∗
(h,(τ ,σ ))[�k,(i1,...ik ) �r,( j1,... jr ) (xHi, j )kr ]

is the same space as P(h,(τ ,σ ))(x), but the action is restricted by

res|�G��mn (h,(τ ,σ ))

�(G��m )��n ((h,τ );σ)
.

(iv)We have

P((g,h),σ )(x � y) = f ∗
((g,h),σ )(�k �(i1,...ik ) ((x � y)(gik ...gi1 ,hik ...hi1 ))k)

= f ∗
((g,h),σ )(�k �(i1,...ik ) (xgik ...gi1

)k � (yhik ...hi1
)k)

= f ∗
((g,h),σ )(�k �(i1,...ik ) (xgik ...gi1

)k) � (� j �(r1,...r j ) (yhr j ...hr1 ) j )

= res|�G��n (g,σ )×T�H ��n (h,σ )

�(G×H)��n ((g,h),σ ) ( f ∗
(g,σ ) × f ∗

(h,σ ))(�k �(i1,...ik ) (xgik ...gi1
)k)

� (� j �(r1,...r j ) (yhr j ...hr1 ) j )

= res|�G��n (g,σ )×T�H ��n (h,σ )

�(G×H)��n ((g,h),σ ) f ∗
(g,σ )[�k �(i1,...ik ) (xgik ...gi1

)k]
� f ∗

(h,σ )[� j �(r1,...r j ) (yhr j ...hr1 ) j ],
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where (i1, . . . ik) goes over all the k-cycles of σ and (r1, . . . r j ) goes over all the
j-cycles of σ . It equals to

res|�G��n (g,σ )×T�H ��n (h,σ )

�(G×H)��n (g,σ ) P(g,σ )(x) � P(h,σ )(y).

��
Example 4.13 Let G be the trivial group and X a space. Let σ ∈ �n . Then
QEll∗G(X) = K ∗

T
(X). The functor f(1,σ ) gives the homeomorphism

(X×n)(1,σ ) ∼=
∏

k

∏

(i1,...ik )

X,

where the second direct product goes over all the k-cycles of σ . By (4.17), the power
operation is

P(1,σ )(x) = �k �(i1,...ik ) (x)k .

When n = 2, P(1,(1)(1))(x) = x � x and P(1,(12))(x) = (x)2.
When n = 3, P(1,(1)(1)(1))(x) = x � x � x , P(1,(12)(1))(x) = (x)2 � x , and

P(1,(123))(x) = (x)3.
When n = 4, P(1,(1)(1)(1)(1))(x) = x � x � x � x , P(1,(12))(x) = (x)2 � x � x ,

P(1,(123))(x) = (x)3 � x , P(1,(1234))(x) = (x)4, and P(1,(12)(34))(x) = (x)2 � (x)2.
Note that there is a �2-action permuting the two (x)2 in P(1,(12)(34))(x).

Remark 4.14 We have the relation between equivariant Tate K-theory and quasi-
elliptic cohomology

QEllG(X) ⊗Z[q±] Z((q)) ∼= (KTate)G(X). (4.19)

It extends uniquely to a power operation for Tate K-theory

QEllG(X) ⊗Z[q±] Z((q)) −→ QEllG��n (X
×n) ⊗Z[q±] Z((q))

which is the stringy power operation Pstring
n constructed in Definition 5.10, [10]. It is

elliptic in the sense of [2].

5 Orbifold quasi-elliptic cohomology and its power operation

The elliptic cohomology of orbifolds involves a rich interaction between the orbifold
structure and the elliptic curve. Ganter explores this interaction in the case of the Tate
curve in [11], describing KTate for an orbifold X in terms of the equivariant K-theory
and the groupoid structure of X .

In Sect. 5.1 we give a description of orbifold quasi-elliptic cohomology. In Sect. 5.2
we discuss the inertia groupoid of symmetric power and the groupoids needed for the
construction of the power operation in Sect. 5.3.
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5.1 Definition

We have two ways to define orbifold quasi-elliptic cohomology. The first one is moti-
vated by Ganter’s definition of orbifold Tate K-theory in Section 2, [11]. The other
one is a generalization of the definition of quasi-elliptic cohomology in Sect. 3.2.

We consider the category of groupoids G pd as a 2-category with small topological
groupoids as the objects and with

1Hom(X,Y ) = Fun(X,Y ).

This 2-category is different from that in Section 3 [18]. Let G pdcen denote the 2-
category of centers of groupoids defined in Section 2, [11]. Ganter constructed in
Example 2.3 [11] a 2-functor for any k ∈ Z

G pd −→ G pdcen

X �→ (I (X), ξ k)

where ξ k is the center element of the inertia groupoid I (X) sending (x, g) to (x, gk).
We use ξ to denote ξ1.

Let pt//R ×1∼ξ I (X) denote the groupoid

(pt//R) × I (X)/ ∼

with ∼ generated by 1 ∼ ξ .

Definition 5.1 For any topological groupoid X , the quasi-elliptic cohomology
QEll∗(X) is the orbifold K-theory

K ∗
orb(pt//R ×1∼ξ I (X)). (5.1)

In other words, for a topological groupoid X , QEll(X) is defined to be a subring

of Korb(X)�q± 1
|ξ | � that is the Grothendieck group of finite sums

∑

a∈Q
Vaq

a

satisfying:

for each a ∈ Q, the coefficient Va is an e2π ia − eigenbundle of ξ.

In the global quotient case,

QEll∗(X//G) = QEll∗G(X).
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Quasi-elliptic cohomology and its power operations 751

In addition, for any topological groupoid X , we can also consider the category

Loop1(X) := Bibun(S1//∗, X)

and formulate Loopext1 (X) by adding the rotation action by circle, as the construction
in Sect. 2.1.2. Afterwards we can construct the subgroupoid �(X) of Loopext1 (X)

consisting of the constant loops, which is isomorphic to pt//R ×1∼ξ I (X). So in this
way we give an equivalent definition of orbifold quasi-elliptic cohomology.

5.2 Symmetric powers of orbifolds and its inertia groupoid

In this section we introduce the groupoids necessary for the construction of the power
operation. In Lemmas 5.3, 5.4 and 5.5 we show the relation between them.

For groupoids like pt//R ×k∼ξ X , instead of the total symmetric power (Definition
3.1, [11]) S(pt//R ×k∼ξ X), we consider a subgroupoid

SR(pt//R ×k∼ξ X)

of it.

Definition 5.2 (The groupoid SR(pt//R ×k∼ξ X)) Let

ρk : pt//R ×k∼ξ X −→ pt//(R/Z)

be the functor sending all the objects to the single point, and an arrow

[g, t]

to

t mod Z.

Let ×R(pt//R ×k∼ξ X) denote the limit of the diagram of groupoids

pt//R ×k∼ξ X
ρk

pt//(R/Z) pt//R ×k∼ξ X
ρk

.

Let

×n
R
(pt//R ×k∼ξ X)

denote the limit of n morphisms ρks. It inherits a �n-action on it by permutation from
that on the product (pt//R ×k∼ξ X)×n .

Let SR
n (pt//R ×k∼ξ X) denote the groupoid with the same objects as

×n
R
(pt//R ×k∼ξ X)
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and morphisms of the form ([g1, t1], . . . [gn, tn]; σ) with ([g1, t1], . . . [gn, tn]) a mor-
phism in ×n

R
(pt//R ×k∼ξ X) and σ ∈ �n . This new groupoid SR

n (pt//R ×k∼ξ X) is a
subgroupoid of

(pt//R ×k∼ξ X) � �n .

Define
SR(pt//R ×k∼ξ X) :=

∐

n≥0

SR
n (pt//R ×k∼ξ X). (5.2)

The triple

(SR(pt//R ×k∼ξ X), ∗, ( ))

is a symmetricmonoidwhere ∗ is the concatenation and the unit ( ) is the unique object
in X � �0. SR(pt//R ×k∼ξ X) is the symmetric product that we will use to formulate
the power operation.

Lemma 5.3 Let �k(X) denote the groupoid in Definition 3.3, [11], and φk ∈
Center(�k) denote the restriction of Sk(ξ) to �k . For each integer k ≥ 1, there is an
equivalence between

pt//R ×1∼φk �k(X)

and the groupoid pt//R ×
1∼ξ

1
k
I (X)[ξ 1

k ] which identifies φk with ξ
1
k . Here ξ

1
k is an

added element such that the composition of k ξ
1
k s is ξ .

Proof We can define a functor

Ak : pt//R ×1∼φk �k(X) −→ pt//R ×
1∼ξ

1
k
I (X)[ξ 1

k ]

by sending an object (x, g, (12 . . . k)) to (x1, gk . . . g1) and sending a morphism
[h, (12 . . . k)m, t] to

[hkg−1
1−m . . . g−1

k−1g
−1
k ,m + t].

Recall hkg
−1
1−m . . . g−1

k−1g
−1
k conjugates gk . . . g1 to itself. It is the element

β
h,Id
(12...k),(12...k)

defined in (4.8). The functor Ak is an isomorphism, as implied in the proof of Theo-
rem 4.9. ��

Let �(X) := ∐
k≥1

�k(X). Let φ := ∐
k≥1

φk ∈ Center(�) denote the restriction of

S(ξ) to �.
Theorem 4.9 can be reinterpreted as Lemma 5.4.
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Lemma 5.4 The groupoid SR(
∐
k
pt//R ×

1∼ξ
1
k
I (X)[ξ 1

k ]) is equivalent to

pt//R ×1∼S(ξ) I (S(X)).

The proof is similar to that of Theorem 4.9.

Lemma 5.5 We have an equivalence of groupoids

QR : SR(pt//R ×1∼φ �(X)) −→ pt//R ×1∼S(ξ) I (S(X)),

which is natural in X and satisfies

QRSR(φ) = S(ξ)QR .

Proof Let I be the inclusion

pt//R ×1∼φ �(X) −→ pt//R ×1∼S(ξ) I (S(X)).

Let ε be the counit of the adjunction (S, ∗, ( )) � forget. Let Q denote the composition

S(pt//R ×1∼φ �(X))
S(I )−→ S(pt//R ×1∼S(ξ) I (S(X)))

ε−→ pt//R ×1∼S(ξ) I (S(X)).

Let QR be the restriction of Q to the subgroupoid SR(pt//R ×1∼φ �(X)), i.e. the
composition

QR : SR(pt//R ×1∼φ �(X))
SR(I )−→ SR(pt//R ×1∼S(ξ) I (S(X)))

restriction of ε−→ pt//R ×1∼S(ξ) I (S(X)).

The essential image of I consists exactly of the indecomposable objects of
pt//R ×1∼S(ξ) I (S(X)), thus, both Q and QR are essentially surjective.

Q is not fully faithful but QR is. This is why we need the product SR instead of
S. ��

5.3 Power operation for orbifold quasi-elliptic cohomology

In this section we construct the total power operation for the orbifold quasi-elliptic
cohomology

PEll : QEll(X) −→ QEll(SX)

in (5.6), which satisfy the axioms that Ganter formulated in Definition 3.9, [11] for
power operations for orbifold theories. The power operationwe constructed in Sect. 4.2
is a special case of it for G-spaces.
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Example 5.6 We can construct Atiyah’s power operation for orbifold quasi-elliptic
cohomology.

Let V be an orbifold vector bundle over the orbifold

pt//R ×1∼ξ I (X),

thus, V represents an element in QEll(X). Then

Pn(V ) := V⊗
Z[q±]n

is an orbifold vector bundle over

SR(pt//R ×1∼ξ I (X)) ∼= pt//R ×1∼ξ SI (X).

So Pn(V ) is in QEll∗(S(X)).
P = (Pn)n≥0 satisfies the axioms of a total power operation.

Before the construction of the power operation of QEll, we introduce several maps
necessary for the construction of the power operation.

Let X be an orbifold groupoid and k ≥ 1 an integer. We define the map

sk : Korb(pt//R ×1∼ξ I (X)) −→ Korb(pt//R ×k∼ξ I (X)) (5.3)
[∑

Vaq
a
]

�→
[∑

Vaq
a
k

]
(5.4)

and

∐

k

sk : Korb(pt//R ×1∼ξ I (X)) −→ Korb(
∐

k

(pt//R ×k∼ξ I (X))). (5.5)

The functor

( )k : �(g,σ )(X) −→ �1
(g,σ )(X)

defined in (4.11) is a special local case of sk when X is a G-space and (g, σ ) is fixed.
Let θ : QEll(X) −→ Korb(pt//R ×1∼φ �(X)) be the additive operation whose

k-th component is A∗
k ◦ sk , where Ak is the equivalence defined in Lemma 5.3.

Now we are ready to define the total power operation PEll of QEll∗ as the com-
position below:

QEll(X)
θ

Korb(pt//R ×1∼φ �(X))
P

Korb(SR(pt//R ×1∼φ �(X)))

(QR∗)−1

QEll(SX).

(5.6)
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Theorem 5.7 PEll satisfies the axioms of a total power operation in Definition 3.9
[11].

Proof From the definition of PEll , we can see it is a well-defined natural transforma-
tion QEll ⇒ QEll ◦ S and is a comodule over the comonad (−) ◦ S.

In addition, the functor θ has the property of additivity

θ : QEll(X � Y ) −→ QEll(�(X) � �(Y ))

(a, b) �→ (θ(a), θ(b)).

Thepower operation P defined inExample 5.6 has the exponential property. Therefore,
PEll has the exponential property. So PEll is a total power operation. ��
Remark 5.8 Let X//G be a quotient orbifold. The power operation we construct in
Sect. 4.1 for quotient orbifolds is in fact the one below.

P : QEll∗(X//G)

∐
k
sk

−→ K ∗
orb(

∐

k

pt//R ×
1∼ξ

1
k
I (X//G)[ξ 1

k ]) P−→

K ∗
orb(S

R(
∐
k
pt//R ×

1∼ξ
1
k
I (X//G)[ξ 1

k ])) J∗−→ QEll∗(S(X//G)) where J is con-

structed from the functors J(g,σ ) in the proof of Theorem 4.9.

For global quotient orbifolds, PEll and P are the same up to isomorphism. The
diagram

QEll∗(X//G)

θ

QEll∗(S(X//G))

Korb(pt//R ×
1∼φ

I (�(X//G)))
P

Korb(SR(pt//R ×
1∼φ

�(X//G)))

(QR∗)−1

Korb(
∐
k
pt//R ×

1∼ξ
1
k

I (X//G)[ξ 1
k ]) P

∐
k
A∗
k

Korb(SR(
∐
k
pt//R ×

1∼ξ
1
k

I (X//G)[ξ 1
k ]))

SR(
∐
k
A∗
k )

commutes. The vertical maps
∐

k A
∗
k and SR(

∐
k A

∗
k) are both equivalences of

groupoids. The horizontal maps are the power operation defined in Example 5.6.

6 Finite subgroups of the Tate curve

Strickland showed in [28] that the quotient of the Morava E-theory of the symmetric
group by a certain transfer ideal can be identified with the product of rings

∏
k≥0 Rk
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where each Rk classifies subgroup-schemes of degree pk in the formal group associated
to E0

CP∞. In this section we prove similar conclusions for Tate K-theory and quasi-
elliptic cohomology. The main conclusion for Sect. 6 is Theorem 6.4.

6.1 Background

In this sectionwe introduce the Tate curve and its finite subgroups. Themain references
are Section 2.6, [1] and Sections 8.7, 8.8, [16].

An elliptic curve over the complex numbers C is a connected Riemann surface, i.e.
a connected compact 1-dimensional complexmanifold, of genus 1. By the uniformiza-
tion theorem every elliptic curve over C is analytically isomorphic to a 1-dimensional
complex torus, and can be expressed as

C
∗/qZ

with q ∈ C and 0 < |q| < 1, where C
∗ is the multiplicative group C\{0}.

The Tate curve Tate(q) is the elliptic curve

Eq : y2 + xy = x3 + a4x + a6

whose coefficients are given by the formal power series in Z((q))

a4 = −5
∑

n�1

n3qn/(1 − qn) a6 = − 1

12

∑

n�1

(7n5 + 5n3)qn/(1 − qn).

Before we talk about the torsion part of Tate(q), we recall a smooth one-
dimensional commutative group scheme T overZ[q±]. It sits in a short exact sequence
of group-schemes over Z[q±]

0 −→ Gm −→ T −→ Q/Z −→ 0.

The N -torsion points T [N ] of it is the disjoint union of N schemes T0[N ], . . .

TN−1[N ], where

Ti [N ] = Spec(Z[q±][x]/(xN − qi )).

It fits into a short exact sequence

0 −→ μN
aN−→ T [N ] bN−→ Z/NZ −→ 0,

The canonical extension structure on T (N ) is compatible with an alternating paring
of Z[q±]-group schemes eN : T (N ) × T (N ) −→ μN in the sense that

eN (aN (x), y) = xbN (y), for any Z[q±] − algebra R and any x ∈ μN (R).
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We have the conclusion below, which is Theorem 8.7.5, [16].

Theorem 6.1 There exists a faithfully flat Z[q±]-algebra R, an elliptic curve E/R,
and an isomorphism of ind-group-schemes over R

Ttorsion ⊗Z[q±] R
∼−→ Etors,

such that for every N ≥ 1, the isomorphism on N-division points T [N ]⊗R
∼−→ E[N ]

is compatible with eN -pairings.

Thus, we have the unique isomorphism of ind-group-schemes on Z((q))

Ttorsion ⊗Z[q±] Z((q))
∼−→ Tate(q)tors .

The isomorphism is compatible with the canonical extension structure: for each
N ≥ 1,

0 μN

=

T [N ]
∼=

Z/NZ

=

0

0 μN Tate(q)[N ] Z/NZ 0

Therefore, Tate(q)[N ] is isomorphic to the disjoint union

N−1∐

k=0

Spec(Z((q))[x]/(xN − qk)).

In addition, we have the question how to classify all the finite subgroups of T ate(q).
As shown inProposition6.5.1, [16], the ringOSubn that classifies subgroupsofTate(q)

of order n exists. To give a description of it, first we describe the isogenies for the
analytic Tate curve over C.

Let (d, e) be a pair of positive integers such that N = de and q ′ a nonzero complex
number such that qd = q ′e. The map

ψd : C
∗/qZ −→ C

∗/q ′Z

x �→ xd

is well-defined since ψd(qZ) ⊆ q ′Z. The kernel of ψd is

{μn
dq

m
e qZ|n,m ∈ Z}

where μd is a d-th primitive root of 1 and q
1
e is a e-th primitive root of q. Its order is

N . In fact

{Kerψd | d divides N and d ≥ 1}
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gives all the subgroups of C
∗/qZ of order N .

Proposition 6.2 For each pair of number (d, e), there exists an isogeny

�d,e : Tate((q)) −→ Tate((q ′))

of the elliptic curves over OSubn such that its kernel is the universal subgroup.

We have

OSubn ⊗ C =
∏

N=de

C((q))[q ′]/〈qd − q ′e〉.

Moreover, we have the conclusion below.

Proposition 6.3 The finite subgroups of the Tate curve are the kernels of isogenies.

6.2 Formulas for induction

Before the main conclusion, we introduce the induction formula for quasi-elliptic
cohomology. The induction formula for Tate K-theory is constructed in Section 2.3.3,
[11].

Let H ⊆ G be an inclusion of finite groups and X be a G-space. Then we have the
inclusion of the groupoids

j : X//H −→ X//G.

Let a′ = ∏
σ∈Hconj

a′
σ be an element in QEllH (X) = ∏

σ∈Hconj
K�H (σ )(Xσ )

where σ goes over all the conjugacy classes in H . The finite covering map

f ′ : �(G ×H X//G) −→ �(X//G)

is definedby sending anobject (σ, [g, x]) to (σ, gx) and amorphism ([g′, t], (σ, [g, x]))
to ([g′, t], (gx, σ )). The transfer of quasi-elliptic cohomology

IG
H : QEllH (X) −→ QEllG(X)

is defined to be the composition

QEllH (X)
∼=−→ QEllG(G ×H X) −→ QEllG(X) (6.1)

where the first map is the change-of-group isomorphism and the second is the finite
covering.

Thus

IG
H (a′)g =

∑

r

r · a′
r−1gr
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where r goes over a set of representatives of (G/H)g , in other words, r−1gr goes over
a set of representatives of conjugacy classes in H conjugate to g in G.

IG
H (a′)g =

{
I nd�G

�H
(a′

g) if g is conjuate to some element h in H ;
0 if there is no element conjugate to g in H.

(6.2)

There is another way to describe the transfer, which is shown in Rezk’s unpub-
lished work [25] for quasi-elliptic cohomology. The transfer of Tate K-theory can be
described similarly.

6.3 The main theorem

Theorem 6.4 gives a classification of finite subgroups of the Tate curve and a similar
conclusion for the quasi-elliptic cohomology.We prove it in this section by representa-
tion theory.We assume the readers are familiar with the transfer ideal Itr of equivariant
K-theory. References for that include Chapter II, [19] and Section 1.8, [24].

Let N be an integer. Analogous to the transfer ideal Itr of equivariant K-theory, we
can define the transfer ideal for Tate K-theory

I Tatetr :=
∑

i+ j=N ,
N> j>0

Image[I�N
�i×� j

: KTate(pt//�i × � j ) −→ KTate(pt//�N )] (6.3)

where I GH is the transfer map of KTate along H ↪→ G defined in Proposition 2.23,
[11], and the transfer ideal for quasi-elliptic cohomology

IQEll
tr :=

∑

i+ j=N ,
N> j>0

Image[I�N
�i×� j

: QEll(pt//�i × � j ) −→ QEll(pt//�N )] (6.4)

with IG
H the transfer map of QEll along H ↪→ G defined in (6.1).

Theorem 6.4 The Tate K-theory of symmetric groups modulo the transfer ideal I Tatetr
classifies the finite subgroups of the Tate curve. Explicitly,

(KTate)�N (pt)/I Tatetr
∼=

∏

N=de

Z((q))[q ′]/〈qd − q ′e〉, (6.5)

where q ′ is the image of q under the power operation PTate constructed in Definition
3.15, [11]. The product goes over all the ordered pairs of positive integers (d, e) such
that N = de.

We have the analogous conclusion for quasi-elliptic cohomology.

QEll�N (pt)/IQEll
tr

∼=
∏

N=de

Z[q±][q ′]/〈qd − q ′e〉, (6.6)
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where q ′ is the image of q under the power operation PN constructed in Sect. 4.2. The
product goes over all the ordered pairs of positive integers (d, e) such that N = de.

We show the proof of (6.6). The proof of (6.5) is similar.

Proof of (6.6) We divide the elements in �N into two cases.

Case I
The decomposition of σ has cycles of different length. For example, the element

(1 2)(3 4)(5 6)(7 8 9 10)(11 12 13 14)(15 16 17) ∈ �17

is in this case and (1 2)(3 4)(5 6), (1 2 3 4 5)(6 7 8 9 10) are not.
Most elements in �N belong to Case I. σ is not in this case if and only if it consists

of cycles of the same length, such as (1 2)(3 4), (1 2 3), 1, (1 2 3)(4 5 6).

For those σ that belong to Case I, ��N (σ ) = ��r×�N−r (σ ), so I nd
��N (σ )

��r×�N−r (σ ) is

the identity map, so K��N (σ )(pt) is equal to I nd
��N (σ )

��r×�N−r (σ )K��r×�N−r (σ )(pt). Thus,

the summand corresponding to σ in QEll(pt//�N ) is completely cancelled.

Case II
σ consists of cycles of the same length. In other words, it consists of d e-cycles

with N = de.
The centralizer C�N (σ ) ∼= Ce � �d , where Ce = Z/eZ is the cyclic group with

order e. We have

��N (σ ) ∼= ��e (12 . . . e) �T �d

is the subgroup of ��e (12 . . . e) � �d with elements of the form

([a1, t], [a2, t], . . . [ad , t]; τ), with a1, . . . ad ∈ Ce, τ ∈ �d , t ∈ R.

K��N (σ )(pt) is the representation ring R��N (σ ). According to Theorem 4.8, as a
Z[q±]-module, it has the basis

{I nd��e (12...e)�T�d
��e (12...e)�T�(d)

(q
a1
e )

⊗
Z[q±]d1 ⊗Z[q±] · · · ⊗Z[q±] (q

ar
e )

⊗
Z[q±]dr ⊗ Dτ |

(d) = (d1, d2, . . . dr ) is a partition of d.

a1, a2, . . . ar are in {0, 1, . . . e − 1}. τ ∈ R�(d) is irreducible.}

where for each a ∈ Z, q
a
e : �Ce ((12 . . . e)) −→ U (1) is the map

q
a
e ([(12 . . . e) j , t]) = e2π ia

j+t
e . (6.7)

Namely, it is the map xa1 in the sense of Example 3.3.
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For each partition (d) of d, if it has more than one cycle, �(d) is a subgroup of
some �d1 × �d−d1 for some positive integer 0 < d1 < d. So for each

I nd
��e (12...e)�T�d
��e (12···e)�T�(d)

(q
a1
e )

⊗
Z[q±]d1 ⊗Z[q±] · · · ⊗Z[q±] (q

ar
e )

⊗
Z[q±]dr ⊗ Dτ

with r ≥ 2, it is equal to

I nd
��e (12...e)�T�d
��e (12...e)�T(�d1×�d−d1 )(I nd

��e (12...e)�T(�d1×�d−d1 )

��e (12...e)�T�(d)
(q

a1
e )

⊗
Z[q±]d1⊗Z[q±]

· · · ⊗Z[q±] (q
ar
e )

⊗
Z[q±]dr ⊗ Dτ )

by the property of induced representation. Note that

��e (12 . . . e) �T (�d1 × �d−d1)
∼= ��d1e×�N−d1e

(σ ).

So

I nd
��e (12...e)�T(�d1×�d−d1 )

��e (12...e)�T�(d)
(q

a1
e )

⊗
Z[q±]d1 ⊗Z[q±] · · · ⊗Z[q±] (q

ar
e )

⊗
Z[q±]dr ⊗ Dτ

is in K��d1e
×�N−d1e

(σ )(pt), Thus, each base element with r ≥ 2 is contained in the
transfer ideal.

When r = 1, consider

(q
a1
e )

⊗
Z[q±]d ⊗ Dτ

with τ ∈ R�d . As indicated in Proposition 1.1 and Corollary 1.5 in [4], each τ ,
except the trivial representation of �d , can be induced from a representation τ ′ in
some R(�i × �d−i ) with d > i > 0.

Claim The representation

I nd
��e (12...e)�T�d
��e (12...e)�T(�i×�d−i )

(q
a1
e )

⊗
Z[q±]i ⊗Z[q±] (q

a1
e )

⊗
Z[q±](d−i) ⊗ Dτ ′

is isomorphic to

(q
a1
e )

⊗
Z[q±]d ⊗ D

Ind
�d
�i×�d−i

τ ′ ,

which is

(q
a1
e )

⊗
Z[q±]d ⊗ Dτ .

To prove this, we consider a set {τα}α∈�d/�i×�d−i of coset representatives. Then

{ηα := (1, . . . 1; τα)}α∈�d/�i×�d−i
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is a set of coset representatives of

(
��e (12 . . . e) �T �d

)
/
(
��e (12 . . . e) �T (�i × �d−i )

)
.

Let W be a representation space of ��e (12 . . . e) �T (�i × �d−i ), Then

I nd
��e (12...e)�T�d
��e (12...e)�T(�i×�d−i )

W

is the direct product of [�d : �i × �d−i ] copies of W . For any element

H = (g1, . . . gd;β) ∈ ��e (12 . . . e) �T �d ,

and each α ∈ �d/�i × �d−i , there is a unique α′ ∈ �d/�i × �d−i and a unique

Jα = (g′
1, . . . g

′
d; γα) ∈ ��e (12 . . . e) �T (�i × �d−i )

such that Hηα = ηα′ Jα . Note that

g′
1, . . . g

′
d

is a permutation of

g1, . . . gd .

So (q
a1
e )

⊗
Z[q±]d(g′

1, . . . g
′
d) = (q

a1
e )

⊗
Z[q±]d(g1, . . . gd). In addition, βτα = τα′γα .

Let

∏

α

wα

be an element in

I nd
��e (12...e)�T�d
��e (12...e)�T(�i×�d−i )

W.

We have

(
I nd

��e (12...e)�T�d
��e (12...e)�T(�i×�d−i )

(q
a1
e )

⊗
Z[q±]i ⊗Z[q±] (q

a1
e )

⊗
Z[q±]d−i ⊗ Dτ ′

)
(H)

(
∏

α

wα

)

=
∏

α

Jαwβ(α) =
∏

α

(q
a1
e )

⊗
Z[q±]d(g1, . . . gd)Dτ ′(1, . . . 1; γα)(wβα)

= (q
a1
e )

⊗
Z[q±]d(g1, . . . gd)

∏

α

τ ′(γα)(wβα)

= (q
a1
e )

⊗
Z[q±]d(g1, . . . gd)(I nd

�d
�i×�d−i

τ ′)(β)

(
∏

α

wα

)
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= (q
a1
e )

⊗
Z[q±]d(g1, . . . gd;β)D

Ind
�d
�i×�d−i

τ ′(g1, . . . gd;β)

(
∏

α

wα

)

= (
(q

a1
e )

⊗
Z[q±]d ⊗ D

Ind
�d
�i×�d−i

τ ′
)
(g1, . . . gd;β)

(
∏

α

wα

)

So the claim is proved.
Since

{I nd�d
�i×�d−i

τ ′ | τ ′ ∈ R(�i × �d−i ) and i = 1, 2, . . . d − 1.}

contains all the irreducible representation of�d except the trivial representation,which
is corresponding to the partition (d), thus, by the claim, K��N (σ )(pt)modulo the image
of the transfer, is a Z[q±]-module generated by the equivalent classes represented by

{((q a
e )

⊗
Z[q±]d)∼ | a = 0, 1, . . . e − 1}. (6.8)

For any a, (q
a
e )

⊗
Z[q±]d is (q

1
e )

⊗
Z[q±]d to the a-th power. Note that, by (4.17),

(q
1
e )

⊗
Z[q±]d is

q ′ := Pσ (q).

To get the isomorphism (6.6), consider a map

� : Z[q±][x] −→ K��N (σ )(pt)/IQEll
tr

by sending q to q and x to q ′, which is a well-defined Z[q±]-homomorphism.
Since q ′e = qd , K��N (σ )(pt)/IQEll

tr is a Z[q±]-module generated by

1, q ′, . . . q ′e−1.

So any element in it can be expressed as

e−1∑

j=0

f j (q)q ′ j

where each f j (q) is in the polynomial ring Z[q±]. It is the image of

e−1∑

j=0

f j (q)x j

in Z[q±][x]. So � is surjective.
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Then we study its kernel. If

F :=
e−1∑

j=0

f j (q)q ′ j

is in IQEll
tr , then it is in Z[q±]. So we can assume F = 0.

For each element [(a1, . . . ad;β), t] in ��N (σ ) with (a1, . . . ad;β) ∈ C�N (σ ),

q([(a1, . . . ad;β), t]) = e2π i t , (6.9)

q ′([(a1, . . . ad;β), t]) = e
2π i(a1+...ad+dt)

e . (6.10)

F([(a1, . . . ad;β), t]) =
e−1∑

j=0

f j (q)q ′ j ([(a1, . . . ad;β), t])

=
e−1∑

j=0

f j (e
2π i t )e

2π i j (a1+···+ad+dt)
e

=
e−1∑

j=0

f j (e
2π i t )e

2π i jdt
e e

2π i j (a1+···+ad )

e .

Let

Fj (t) := f j (e
2π i t )e

2π i jdt
e

be the complex-valued function in the variable t . Let α denote the number e
2π i
e . The

integers

(a1 + · · · + ad)

go over 0, 1, . . . e − 1. Consider the e equations

e−1∑

j=0

Fj (t)α
jk = 0, for k = 0, 1, . . . e − 1.

In other words,

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 α α2 · · · αe−1

1 α2 α4 · · · α2(e−1)

...
...

...
...

1 αe−1 α2(e−1) · · · α(e−1)2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

F0(t)
F1(t)
F2(t)

...

Fe−1(t)

⎞

⎟⎟⎟⎟⎟⎠
= 0
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The determinant of the Vandermonde matrix

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 α α2 · · · αe−1

1 α2 α4 · · · α2(e−1)

...
...

...
...

1 αe−1 α2(e−1) · · · α(e−1)2

⎞

⎟⎟⎟⎟⎟⎠

is
e−2∏

j=0

e−1∏

k= j+1

(αk − α j ). (6.11)

When α = e
2π i
e , each (αk − α j ) in the product (6.11) is nonzero, so for any e, the

determinant is nonzero and the matrix is non-singular. So we get Fj (t) = 0 for any
t ∈ R and j = 0, 1, 2, . . . e − 1.

So each f j (q) in F is the zero polynomial.
The kernel of � is the ideal generated by q ′e − qd . ��
From the power operation of quasi-elliptic cohomology, we can construct a new

operation for quasi-elliptic cohomology.

Proposition 6.5 The composition

PN :QEllG(X)
PN−→ QEllG��N (X×N )

res−→ QEllG×�N (X×N )

diag∗
−→ QEllG×�N (X) ∼= QEllG(X) ⊗Z[q±] QEll�N (pt)

−→ QEllG(X) ⊗Z[q±] QEll�N (pt)/IQEll
tr

∼= QEllG(X) ⊗Z[q±]
∏

N=de

Z[q±][q ′]/〈qd − q ′e〉

defines a ring homomorphism, where res is the restriction map by the inclusion

G × �N ↪→ G � �N , (g, σ ) �→ (g, . . . g; σ),

diag is the diagonal map

X −→ X×N , x �→ (x, . . . x)

and the last map is the isomorphism (6.6).

Proof Let V = ∏
g∈Gconj

Vg ∈ QEllG(X). Apply the explicit formula of the power

operation in (4.17), the composition diag∗ ◦ res ◦ PN sends V to

∏

g∈Gconj
σ∈�N conj

⊗k ⊗(i1,...ik ) Vgkq
1
k
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where (i1, . . . ik) goes over all the k-cycles of σ , and the tensor products are those of
the Z[q±]-algebras. Then, as shown in the proof of (6.6), after taking the quotient by
the transfer ideal IQEll

tr , all the factors in diag∗ ◦ res ◦ PN (V ) are cancelled except
those corresponding to the elements in �N conj with cycles of the same length. For
the factor corresponding to the element σ ∈ �N conj with d e-cycles and de = N , the

nontrivial part is Vge,d ⊗Z[q±] q ′
d,e where Vge,d is the fixed point space of V

⊗
Z[q,q−1]d

ge

by the permutations �d and q ′
d,e = Pσ (q) = (q

1
e )

⊗
Z[q,q−1]d .

Thus,
PN (V ) =

∏

g∈Gconj
N=de

Vge,d ⊗Z[q±] q ′
d,e. (6.12)

Let V,W be two elements in QEllG(X). We have

(V ⊕ W )ge,d = Vge,d ⊕ Wge,d and (V ⊗ W )ge,d = Vge,d ⊗ Wge,d .

PN (V ⊕ W ) =
∏

g∈Gconj
N=de

(V ⊕ W )ge,d ⊗Z[q±] q ′
d,e

=
( ∏

g∈Gconj
N=de

Vge,d ⊗Z[q±] q ′
d,e

)
⊕

( ∏

g∈Gconj
N=de

Wge,d ⊗Z[q±] q ′
d,e

)

= PN (V ) ⊕ PN (W ).

Similarly,

PN (V ⊗ W ) =
∏

g∈Gconj
N=de

(V ⊗ W )ge,d ⊗Z[q±] q ′
d,e

=
( ∏

g∈Gconj
N=de

Vge,d ⊗Z[q±] q ′
d,e

)
⊗

( ∏

g∈Gconj
N=de

Wge,d ⊗Z[q±] q ′
d,e

)

= PN (V ) ⊗ PN (W ).
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