
J. Homotopy Relat. Struct. (2016) 11:715–734
DOI 10.1007/s40062-016-0146-y

Computing Bredon homology of groups

A. T. Bui1 · Graham Ellis2

Received: 21 October 2015 / Accepted: 24 January 2016 / Published online: 4 November 2016
© Tbilisi Centre for Mathematical Sciences 2016

Abstract We describe the basic ingredients of a general computational framework
for performing machine calculations in the cohomology of groups. This has been
implemented in the GAP system for computational algebra and the paper is intended
to aid those wishing to extend that implementation to their own needs.

Keywords Bredon homology and cohomology · Bredon module · Classifying space
for proper actions · Cohomology of groups

Mathematics Subject Classification 20J06

1 Introduction

Explicit calculations play a role in the theoretical development of the cohomology
of groups and it is becoming more common for such calculations to be derived with
the aid of a computer. In this paper we describe a basic framework for performing
machine computations in the cohomology of groups. This has been implemented in

Dedicated to Ronnie Brown on his 80th birthday.

Communicated by Tim Porter and George Janelidze.

The first author was supported by an Irish Research Council postgraduate fellowship.

B Graham Ellis
graham.ellis@nuigalway.ie

1 Faculty of Mathematics and Computer Science, University of Science, VNU,
Ho Chi Minh City, Vietnam

2 School of Mathematics, National University of Ireland, Galway, Ireland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-016-0146-y&domain=pdf

716 A. T. Bui, G. Ellis

the HAP package [16] for the GAP system for computational algebra [21] and the
paper is intended to aid thosewishing to extend that implementation to their own needs.
The framework is extremely simple, involving just two ingredients: (i) a data type for
a computer representation of Bredon modules that permits the easy implementation
and easy combination of a range of homological algorithms; (ii) an emphasis on
explicit homotopies as a means of translating non-constructive homological proofs
into constructive homological algorithms. The paper is thus nomore than a description
of a single data type reflecting a particular choice of approach—the explicit homotopy
approach—to implementing homological algorithms.

Given an implementation of our Bredon module data type it is a triviality to extract
the corresponding Bredon homology. We view the standard Eilenberg–MacLane
homology of a group as a special instance of Bredon homology. The data type has
been used in [3,11,12,19,25] to calculate the low dimensional integral group homol-
ogy Hn(G, Z) of groups such as P SL4(Z), M24, SL2(Z[1/6]), various Artin groups
and variousBieberbach groups. In [17] the data type is used to provide examples of infi-
nite families of finite p-groups G for which a single finite computation determines the
mod-p homology Hn(G, Zp) for all n ≥ 0 and all G in a family. These papers describe
the mathematics underlying the calculations and omit details of the data type. Other
calculations in the literature can also be recovered using the data type. We are grateful
to Alexander Rahm and Rubén Sánchez-García for contributing to the HAP package
implementations of the data type that allowpackage users to recover calculations on the
Bredon homology of a group G with coefficients in the complex representation ring,
for G equal to SL3(Z) [32] and G equal to various Bianchi groups [26] and Coxeter
groups [28,31]. We are grateful to Sebastian Schönnenbeck for contributing further
implementations forBianchi groups [33].Weare grateful toMathieuDutour-Sikirić for
contributing implementations for groups such as P SL(3, Z[i]), P SL(3,OEis) with
OEis the Eisenstein integers, P SL(4, Z), Sp(4, Z). The first author has contributed an
implementation of the data type for calculating Bredon homology of crystallographic
groups.

The paper is structured as follows. In Sect. 2 we indicate more clearly the kind of
homological computations covered by our computational framework. These include
standard Eilenberg-MacLane homology of a group G with coefficients in a finitely
generatedZG-module, as well as Bredon homology of the classifying space for proper
actions EG with coefficients in a Bredon module such as the complex representation
ring or the Burnside ring. In Sect. 3 we recall some basic definitions from the cohomol-
ogy of groups. In Sect. 4 we describe our data type for representing Bredon modules;
this incorporates a data type for representing rigid G-CW spaces. In Sect. 5 we review
some implementations of this Bredon module data type that are currently available in
HAP. In Sect. 6 we summarize the role of explicit homotopies in constructive homo-
logical algebra. Section 7 details methods for rigidifying G-CW spaces so that they
can be used in implementations of the Bredon module data type.

2 Some typical homological computations

We use the term G-CW space to mean a CW space X on which a discrete group G
acts in such a way that the action induces a permutation of the cells of X . We say

123

Computing Bredon homology of groups 717

the space is rigid if each element in the stabilizer of any cell fixes the cell pointwise.
(Our terminology differs slightly from standard usage where rigidity is required of
all G-CW spaces.) A family of subgroups of G is any collection F of subgroups of
G that is closed under conjugation and taking subgroups. Thus H ∈ F implies that
gHg−1 ∈ F for all g ∈ G and that all subgroups of H are in F . We say that a
G-CW space X is anF-space if it is rigid and for each cell e ⊂ X the stabilizer group
StabG(e) = {g ∈ G | ge = e} belongs to F . By a morphism φ : X → Y between two
G-CW spaces we mean a cellular map satisfying φ(gx) = gφ(x) for g ∈ G, x ∈ X .
For any subgroup H ⊆ G the set of left cosets G/H can be viewed as a discrete G-CW
space. For a family F of subgroups of G let OF denote the category with one object
G/H for each subgroup H ∈ F and with maps φ : G/H → G/H ′ the morphisms
of G-CW spaces. A map φ is determined by its image φ(H) = gH ′ and we have
g−1Hg ⊆ H ′. The map φ is completely determined by g, and any g ∈ G determines
such a map. A functor M : OF → AB to the category of abelian groups is called a
left Bredon module. Given any F-space X and left Bredon module M : OF → AB
one can define the Bredon homology groups HF

n (X,M) for n ≥ 0. The definition is
recalled in Sect. 3 along with that of Bredon cohomology.

Our aim is to present a data type for representing Bredon modules in a way that
facilitates the computation of Bredon homology and cohomology of a range of G-CW
spaces. The data type is implemented in the HAP package for GAP and the following
GAP commands illustrate how it can be used in the computation of HF

1 (K ,B) = 0
for K the Quillen simplicial complex at the prime p = 3 for the symmetric group of
degree 9 and B the Burnside module; the definitions of this K and B are recalled in
Sect. 3. The cellular chain complex R∗ = C∗(K) is used in the computation.

gap> G:=SymmetricGroup(9);;
gap> K:=QuillenComplex(G,3);
Simplicial complex of dimension 2.
gap> R:=GChainComplex(K,G);
G-chain complex in characteristic 0 for Sym([1 .. 9]) .
gap> C:=TensorWithBurnsideRing(R);
Chain complex of length 2 in characteristic 0 .
gap> Homology(C,1);
[]

This computation is essentially just a routine transcription of classical mathematical
definitions into computational data types, but may be of interest since the computation
of Bredon cohomology of finite simplicial complexes K constructed from families of
subgroups of G has recently been shown in [23] to be relevant to the gluing problem
in certain fusion systems.

In Sect. 5 we review a selection of practical algorithms for constructing models of
two particularF-spaces EG and EG. For the definition of EG and EG we say that an
F-space X is a model for EF if the G-CW space X H = {x ∈ X | h x = x for all h ∈
H} is contractible for each H ∈ F and empty for each subgroup H /∈ F . In the special
case when the family F = {1} consists of just the identity subgroup we say that such
a model is a total space for G and denote it by EG. Thus a total space EG is any
contractible CW space on which G acts freely by permuting cells; the quotient space

123

718 A. T. Bui, G. Ellis

BG = EG/G obtained from an EG by identifying x with gx for x ∈ EG, g ∈ G
is said to be a classifying space for G. In the special case when the family F = Fin
consists of all finite subgroups of G we say that a model for EF is a proper total space
for G and denote it by EG. Some authors refer to EG as a classifying space for proper
actions [24]. If G is torsion free then a proper total space EG is the same thing as a
total space EG.

If F = {1} then a left Bredon module M is just a ZG-module and the classical
homology (also known as the Eilenberg-MacLane homology) of the group G with
coefficients inM can be defined as Hn(G,M) = HF

n (EG,M). For F = Fin there
is a well-defined analogue Hn(G,M) = HF

n (EG,M) which we refer to as the
Bredon homology of G. In order to implement these two homology definitions on a
computer we need a practical method for constructing finitely many dimensions of the
spaces EG and EG on a computer. One approach is to take some theoretical descrip-
tions of the spaces and simply transcribe them into a suitable data type. The following
GAP commands illustrate this approach to computing the Eilenberg-MacLane homol-
ogy with integer coefficients H2(SL3(Z), Z) = Z2 ⊕ Z2 and the Bredon homology
H0(SL3(Z),R) = Z

8 with coefficients in the complex representation ring R. The
definition of the Bredon module R is recalled in Sect. 3.

gap> S:=ContractibleGcomplex("SL(3,Zs");
Non-free resolution in characteristic 0 for

<matrix group> .
gap> F:=FreeGResolution(R,3);
Resolution of length 3 in characteristic 0 for

<matrix group> .
gap> C:=TensorWithIntegers(F);
Chain complex of length 3 in characteristic 0 .
gap> Homology(C,2);
[2, 2]

gap> D:=TensorWithComplexRepresentationRing(R);
Chain complex of length 3 in characteristic 0 .
gap> Homology(D,0);
[0, 0, 0, 0, 0, 0, 0, 0]

The computation involves the cellular chain complex R∗ = C∗(X) of the model
X for E SL3(Z) constructed by Soulé [34] and used in [32]. The algebraic structure
of C∗(X) has been transcribed into a suitable data type and stored in GAP. For the
Eilenberg–MacLane homology the computation uses an algorithmic procedure to con-
struct a free ZSL3(Z)-resolution F∗ from C∗(X). A spectral sequence argument [32]
shows that in examples such as this, with Bredon homology Hn(G,R) trivial for
n ≥ 2, there is an isomorphism K G

n (EG) ∼= Hn(G,R), n = 0, 1, where K G
n (EG)

denotes equivariant K -theory. Interest in Bredon homology in this context stems from
the Baum–Connes conjecture [5] asserting that K G

n (EG) should be isomorphic to the
K -theory of the reduced C∗-algebra of G.

A second approach to computing with EG and EG is to design and implement
algorithms that input generators (and possibly other group-theoretic information) for

123

Computing Bredon homology of groups 719

G and return the low-dimensional algebraic structure of C∗(EG) and C∗(EG). The
followingGAP commands illustrate this approach to computing H2(G, Z) = Z2⊕Z2
and H2(G,B) = Z

4 ⊕ Z2 for G the Euclidean crystallographic group arising as
the 32nd group of dimension 3 in the Cryst [14] library of crystallographic groups
available as part of the GAP system.

gap> G:=SpaceGroupIT(3,32);;
gap> gens:=GeneratorsOfGroup(G);;
gap> B:=CrystGFullBasis(G);;
gap> R:=CrystGcomplex(gens,B,0);;
gap> F:=FreeGResolution(R,3);;
gap> C:=TensorWithIntegers(F);;
gap> Homology(C,2);
[2, 2]
gap> D:=TensorWithBurnsideRing(R);;
gap> Homology(D,1);
[2, 0, 0, 0]

The algorithm for constructing EG in this example is new and is detailed in Sect. 7.2.

3 Review of Bredon homology

Fix a group G, a familyF of subgroups of G, anF-space X , and a left Bredon module
M : OF → AB. Let {en

α} denote a minimal set of representatives of the G-orbits of
n-cells in X . Write Sn

α = StabG(en
α) ∈ F . The terms in the cellular chain complex

C∗(X) have the form

Cn(X) ∼=
⊕

{en
α}

ZG ⊗Sn
α

Z ∼=
⊕

{en
α}

Z[G/Sn
α] .

We set

Mn =
⊕

{en
α}
M(G/Sn

α)

and note that the boundary homomorphism ∂n : Cn(X) → Cn−1(X) induces a homo-
morphism of abelian groups dn : Mn → Mn−1 for which M∗ = (Mn, dn)n≥0 is a chain
complex. If ∂n(en

α) = ∑
{en−1

β } mβgβen−1
β , with mβ ∈ Z, gβ ∈ G, then the inclusions

g−1
β Sn

αgβ ↪→ Sn−1
β induce homomorphisms ιnα,β : M(G/Sn

α) → M(G/Sn−1
β). The

homomorphism dn : Mn → Mn−1 is dn = ∑
{en−1

β } mβιnα,β .

Definition 1 The Bredon homology of X with coefficients in the Bredon module M
is defined as

HF
n (X,M) = Hn(M∗).

123

720 A. T. Bui, G. Ellis

The family F doesn’t play much of a role in this definition but it is useful to retain F
in the notation.

The following example of an F-space is among those implemented in [16].

Example 1 The order complex of a partially ordered set A is the simplicial complex
�(A) with vertex set A and with k-simplices the chains A0 < A1 < · · · < Ak of
k + 1 distinct elements Ai ∈ A. When A is a collection of subgroups of some group
G which is closed under conjugation, g Ai g−1 ∈ A for all Ai ∈ A and g ∈ G, then
conjugation induces an action of G on �(A). The simplicial complex �(A) is a rigid
G-CW space with respect to this action. When A = Ap is the poset of all non-trivial
elementary abelian p-subgroups of G the G-CW space �(Ap) is called the Quillen
complex of G at the prime p. This is an example of an F-space for F the family of
all subgroups of G.

The following three examples of left Bredon modules are implemented in [16].

Example 2 For any family F of subgroups of G, and any abelian group A, we have
the constant Bredon module A : OF → AB which sends each object G/H to the
abelian group A and eachmorphismφ : G/H → G/H ′ to the identity homomorphism
1 : A → A. Of particular interest is the abelian group A = Z and the corresponding
homology theories Hn(G, Z) and Hn(G, Z).

Example 3 For a group G and F = Fin we define the complex representation
ring to be the left Bredon module R : OF → AB that sends an object G/H to
the vector space RC(H) of complex representations of the finite group H . For a
G-map φ : G/H → G/H ′ we have g−1Hg ⊂ H ′ for some g ∈ G and define
R(φ) : RC(H) = RC(g−1Hg) → RC(H ′) to be induction.
Example 4 For a group G and F = Fin we define the Burnside ring to be the left
Bredon module B : OF → AB that sends an object G/H to the free abelian group
BS(H)with isomorphism types of transitive H -sets as basis. For aG-mapφ : G/H →
G/H ′ with g−1Hg ⊂ H ′, g ∈ G, we again define B(φ) : BS(H) = BS(g−1Hg) →
BS(H ′) to be induction.

Another readily implemented example for F = Fin is the left Bredon module that
sends G/H to the integral homology group Hn(H, Z).

Definition 2 For a family F of subgroups of G and for a left Bredon module M we
define the F-Bredon homology of G to be

HF
n (G,M) = HF

n (X,M)

where X is any model for EFG. It is readily shown [5] that this definition does not
depend on the choice of model X and so we can write HF

n (EFG,M) instead of
HF

n (X,M).

For F = {1} we write Hn(G,M) = Hn(EFG,M) and refer to this as the clas-
sical homology, or Eilenberg–MacLane homology, of G. For F = Fin we write
Hn(G,M) = Hn(EFG,M) and refer to this as the Bredon homology of G.

A right Bredon module is a contravariant functor M : OF → AB. Such modules
give rise to the definition of Bredon cohomology in the obvious way.

123

Computing Bredon homology of groups 721

4 A data type for Bredon modules

We now specify data types for: (i) chain complexes and maps, (ii) cellular chain
complexes and maps of F-spaces, and (iii) Bredon modules. These are used in [16]
to implement the examples of the preceding section.

TheGAP language supports a form of object oriented programming which we use
in our specification. We say that an object X is a component object if it is a collection
of components X.component_1, X.component_2,….

Data Type 41 Let C∗ : · · · → C j → C j−1 → · · · → C0 → 0 be a chain complex of
free modules over a ring K. Suppose that all modules in negative degrees are zero, and
suppose that ordered bases for modules in non-negative degrees have been specified.
We represent this data as a component object C with the following components:

– C!.dimension(k) is a function which enters an integer k ≥ 0 and returns the rank
of the free module Ck . (This rank could be infinite.)

– C!.boundary(k,j) is a function which enters integers k ≥ 0, 1 ≤ j ≤ rankK(Ck)

and returns the image in Ck−1 of the j th free generator of Ck . Elements in Ck−1
are represented as vectors (i.e. lists) over K of length equal to the rank of Ck−1.

– C!.properties is a list of properties of the complex, each property stored as a pair
such as [“characteristic′′, 0].

The associated function IsHAPChainComplex(C) returns the boolean true when C
is of this data type. A morphism f∗ : C∗ → C ′∗ of such chain complexes over K is
represented as a component object f with the following components:

– f.source is a representation of the chain complex C∗.
– f.target is a representation of the chain complex C ′∗.
– f.fun(k,j) is a function which inputs integers k, 1 ≤ j ≤ rankK(Ck) and returns
the image in C ′

k of the j th free generator of Ck under the homomorphism fk .

The boundary homomorphisms in a chain complex are represented by functions,
rather than by matrix arrays, to allow for lazy evaluation: an implementation can opt
to compute boundaries of generators only at the point when they are required. To
illustrate why one might wish to compute in this way, consider some classifying space
BG = EG/G of a group G which has been constructed with only finitely many
cells in each degree. Then standard Smith Normal Form algorithms can be used to
compute the homology group Hn(G, Z) = Hn(C∗(BG)). Given a homomorphism
φ : G → G ′ of such groups we may wish to compute the induced homomorphism
Hn(φ) : Hn(C∗(BG)) → Hn(C∗(BG ′)). For this we would first need to compute an
induced chain map φ∗ : C∗(BG) → C∗(BG ′). One approach is to consider the bar
chain complex C∗(BbarG) where BbarG = Nerve(G) is the simplicial nerve of the
category G. There is a readily implemented functorial chain map φbar∗ : C∗(BbarG) →
C∗(BbarG ′). One could try to compute φ∗ as a composite

C∗(BG)
α→ C∗(BbarG)

φbar∗→ C∗(BbarG ′) β→ C∗(BG ′)

in which α and β are chain equivalences. The chain complexes C∗(BbarG) and
C∗(BbarG ′)will have an extremely large number of free generators in each degree, and

123

722 A. T. Bui, G. Ellis

for infinite groupswill have infinitelymany free generators in each degree. For this rea-
son these chain complexes would need to be implemented using lazy evaluation. This
approach to induced homology homomorphisms is one of the methods implemented
in [16] and relies on the availability of explicitly defined contracting homotopies on

the universal covers B̃(G) = EG and ˜Nerve(G) as explained in Sect. 6.

Data Type 42 Let R∗ = C∗(X) be the cellular chain complex of a G-CW space X . The
space X need not be rigid. Each chain group Rk = Ck(X) is free abelian with Z-basis
corresponding to the k-cells of X . We suppose that some ordering of the k-cells has
been chosen and fixed, and that for each k-cell some orientation has also been chosen
and fixed. Each Rk is also a ZG-module. The action of G permutes the free abelian
generators, and the boundary homomorphisms are G-equivariant. We suppose that
some minimal set {ek

j } of representatives of G-orbits of the k-cells has been chosen.
We represent R∗ as a component object R with the following components.

– R!.dimension(k) is a function which inputs an integer k ≥ 0 and returns the
cardinality rk of the set {ek

j }.
– R!.elts is a list of some elements of G. Not all elements of G need to be in this
list, and a given element of G may appear several times in the list. Furthermore,
elements of G can be appended to the list during the course of a computation. If
G is a small finite group then typically the list would be a full listing of all the
elements of G.
(This approach to referring to elements allows for: (i) certain computations with
groups, such as finitely presented groups, where no algorithm for solving the word
problem is available; (ii) easy implementation of topological constructions that
combine G-equivariant chain complexes involving groups G represented in dif-
ferent ways, such as matrix groups, finitely presented groups, permutation groups,
….)

– R!.boundary(k,j) is a function which inputs integers k ≥ 0, 1 ≤ j ≤ rk and
returns the image in Rk−1 of the j th ZG-generator ek

j of the ZG-module Rk . An
element w ∈ Rk−1 can be expressed, in a non-unique way, as a sum

w = ε1g1ek−1
i1

+ ε2g2ek−1
i2

+ · · · + εngnek−1
in

∈ Rk−1, (gi ∈ G, εi = ±1).

We represent this sum as a list of integer pairs

w = [[ε1i1, i ′1], [ε2i2, i ′2], . . . , [εnin, i ′n]]

with R!.elts[i ′m] = gm for m = 1, 2, . . . , n.
– R!.stabilizer(k,j) is a function which inputs integers k ≥ 0, 1 ≤ j ≤ rk and
returns the subgroup of G consisting of those elements that fix, up to sign, the j th
ZG-generator ek

j ∈ Rk .
– R!.action(k,j,i) is a function which inputs integers k ≥ 0, 1 ≤ j ≤ rk , 1 ≤ i ≤

where
 is the current length of the listR!.elts and returns±1 according to how the
group element R!.elts[i] acts on the orientation of the j th ZG-generator ek

j ∈ Rk .

123

Computing Bredon homology of groups 723

– R!.group is theGAP representation of the group G. This representation could be,
for instance, as a finitely presented group, or as a polycyclically presented group,
or as a permutation group, or as a matrix group and so forth.

– R!.homotopy is, in many cases, the boolean variable fail. In cases where the space
X is contractible, andwhere an explicit contracting chain homotopy hk : Ck(X) →
Ck+1(X) (k ≥ 0) is available, R!.homotopy(k,[j,i]) is a function which inputs
integers k ≥ 0, 1 ≤ j ≤ rk , 1 ≤ i ≤
. This function returns the image h(gek

j) ∈
Rk+1 for g =R!.elts[i]∈ G. The elements of the form gek

j freely generate Rk as an
abelian group and so the value of hk(w) can be evaluated for arbitrary elements
w ∈ Rk .
(The role of contracting homotopies in computational homological algebra is
explained in Sect. 6.)

– R!.properties is a list of properties of the complex, each property stored as a pair
such as [“characteristic”, 0].

The associated function IsHAPGChainComplex(R) returns the boolean true
when R is of this data type.

Let f : X → X ′ be a cellular map from a G-CW space X to a G ′-CW space Y ,
and let f# : G → G ′ be a group homomorphism such that f (gx) = (f#g) f (x). The
induced f#-equivariant chain map f∗ : R∗ = C∗ X → R′∗ = C∗ X ′ is represent as a
component object f with the following components:

– f.source is a representation of the G-chain complex R∗.
– f.target is a representation of the G ′-chain complex R′∗.
– f.fun(k,w) is a function which inputs an integer k ≥ 0 and list w representing a
word w ∈ Rk , and returns a list representing the image fk(w) ∈ R′

k .

Data Type 42 has evolved over several years of development of the HAP package.
A realization of the importance of storing homotopies dates back to conversations with
Ronnie Brown and Larry Lambe some twenty years ago regarding the Homological
Perturbation Lemma [7]. The choice of method for storing group actions is based on
discussions with Mathieu Dutour-Sikirić and was first used in [12].

It is useful to record certain mathematical properties that may be known to hold for
a given instance R of Data Type 42. In particular, the function IsHAPNonFreeRes-
olution(R) returns the boolean true when R is known to correspond to an acyclic
ZG-chain complex R∗ with H0(R∗) ∼= Z; we refer to such an R∗ as a non-free
resolution or non-free ZG-resolution. The function IsHAPResolution(R) returns the
boolean truewhenR is known to correspond to an acyclic andZG-free chain complex
R∗ with H0(R∗) ∼= Z; we refer to such an R∗ as a free resolution or free ZG-resolution.
In this latter case the componentsR!.stabilizer(k,j) andR!.action(k,j,g)may be omit-
ted. Note that our terminology allows for a non-free resolution to be a free resolution.

It is possible to algorithmically test whether certain properties hold for a given
instance R of data type 42. In particular, let us say that the ZG-chain complex R∗ =
C∗(X) described in 42 is rigid if the following property holds for each ZG-generator
ek
α ∈ Rk , k ≥ 1.

123

724 A. T. Bui, G. Ellis

Chain rigidity property Suppose ∂k(ek
α) = ∑

β∈I mβgβek−1
β , where the indices β

are distinct and the integers mβ are non-zero for β ∈ I . Then StabG(ek
α) ≤

StabG(gβek−1
β) for β ∈ I and, at the chain level, gek

α = −ek
α for g ∈ StabG(ek

α).
The function IsRigid(R) returns the boolean true if the chain rigidity property holds
for all ek

α , k ≥ 1, and false otherwise.
The following is the main data type of the paper.

Data Type 43A left BredonmoduleM : OF → AB is represented as a functionM that
inputs a rigid G-chain complex R with stabilizer groups in the family F (represented
using Data Type 42) and returns a chain complexM(R) overZ (represented using Data
Type 41).

By an implementation of Data Type 43 we actually mean an implementation M of
43 together with an implementation R of Data Type 42, since the former is redundant
without the latter. Given implementations of M and R it is straightforward to compute
the homology of the chain complex M(R) using the Smith Normal Form algorithm.

The HAP package currently contains implementations of the following Bredon
functors M: tensor with the integers − ⊗ZG Z; tensor with the integers modulo a
prime − ⊗ZG Z/pZ ; tensor with a finitely generated ZG-module − ⊗ZG A; the
complex representation ringR; and the Burnside ring B.

The main implementations of rigid G-chain complexesR inHAP are of complexes
that are (not necessarily free) ZG-resolutions of the ring Z.

5 Review of algorithms for resolutions

The HAP package includes implementations of a range of algorithms which input an
integer n ≥ 0 and information about a group G in some given class and, at least in
principle, use the information to output in finite time the first n + 1 terms of a free
ZG-resolution R∗ of Z with Rk a finitely generated free ZG-module in each degree
0 ≤ k ≤ n. For the purposes of this section, let us say that a class of groups is HAP-
resolvable if HAP contains an implementation of such an algorithm that applies to all
groups in the class.

The following classes of groups are HAP-resolvable (where references give details
of the implemented resolutions/algorithms): finite groups [15]; finitely generated
nilpotent groups and, more generally, any group G admitting a subnormal chain of
subgroups N1 ≤ N2 ≤ · · · ≤ Nk = G where each quotient Ni+1/Ni is HAP-
resolvable [18]); Bieberbach groups [29]; crystallographic groups [1,2,29]; Coxeter
groups [10,18]; Artin groups for which the K (π, 1) conjecture is known to hold
[19,30,35]; a few finite simple groups such as the Mathieu groups [11]; P SL4(Z)

and a few related arithmetic groups [12]; SL2(O) and GL2(O) for a few rings O of
integers in an imaginary quadratic field [27,33]; SL2(Z[1/m]) for any integer m ≥ 1
[3]; finite p-groups (yielding a minimal resolution over the field of p elements) [8];
graphs of HAP-resolvable groups; finite index subgroups of HAP-resolvable groups;
direct products of HAP-resolvable groups.

Let us say that a class of groups is HAP-properly resolvable if HAP contains an
implementation of an algorithm that inputs any integer n ≥ 0 and group G in the

123

Computing Bredon homology of groups 725

class and, at least in principle, returns in finite time the first n + 1 terms of a ZG-
resolution of the form R∗ = C∗(EG) with Rk finitely generated as a ZG-module for
each 0 ≤ k ≤ n.

For a finite group G one can take EG to be a single point, and for torsion free
infinite groups G one can take EG = EG and R∗ to be any free ZG-resolution of Z.
Thus explicit constructions of EG are of particular interest for infinite groups G with
torsion. For any discrete group G one can take EG to be the simplicial complex with
k-simplices all k + 1-element subsets of G [24], though Rk = Ck(EG) will then not
be finitely generated if G is infinite.

As a first approximation to EG we denote by E ′G any G-CW space X such that
X H = {x ∈ X | h x = x for all h ∈ H} is contractible for each finite subgroup H in
G. The important distinction between E ′G and EG is that the latter is required to be
rigid.

At present HAP contains implementations of algorithms for returning a ZG-
resolution C∗(E ′G) for just two classes of groups: Coxeter groups [31]; crystal-
lographic groups [1,2,29]. It also includes a resolution C∗(E ′G) for a number of
specific groups including: G = SL3(Z) (obtained by transcribing data from [32]);
PGL3(Z[i]), P SL4(Z), Sp4(Z) (obtainedby transcribingdata from[13]);GL2(O−m)

and SL2(O−m) for m = 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43
with O−m the ring of integers in the field Q(

√−m) [33].
By subdividing cells it is often practical to convert a resolution C∗(E ′G) into a

rigid resolution C∗(EG). We discuss this in Sect. 7.

6 Homotopies and discrete vector fields

Various constructions in the cohomology of groups require the following element of
choice.

Given a ZG-resolutionR∗ and an element x ∈ ker(∂k : Rk → Rk−1)

choose an element x̃ ∈ Rk+1 such that ∂k+1(x̃) = x . (1)

In order to translate such constructions into procedures that can be implemented on a
computer one needs a method of performing (1) algorithmically. In particular, these
comments apply to the construction of (co)homology homomorphisms induced by
group homomorphisms, the construction of cup products and other cohomology oper-
ations, the construction of explicit cocycles, and various constructions that express a
resolution for a group in terms of simpler resolutions for its subgroups and quotient
groups.

It is sometimes possible to choose x̃ by solving a system of equations using ele-
mentary linear algebra or by using more sophisticated techniques from Gröbner basis
theory. If the resolution R∗ is endowed with a contracting homotopy, i.e. a family of
Z-linear homomorphisms hk : Rk → Rk+1 satisfying

hk−1∂k + ∂k+1hk = 1

123

726 A. T. Bui, G. Ellis

for k ≥ 0 with h−1 = 0, then one can very quickly solve (1) as follows.

Given a ZG-resolutionR∗ and an element x ∈ ker(∂k : Rk → Rk−1) then

the equation ∂k+1(x̃) = x is satisfied by setting x̃ := hk(x) ∈ Rk+1. (2)

The following notion can be useful in designing explicit contracting homotopies on
cellular chain complexes of contractible CW spaces. Recall that a CW space X is said
to be regular if the attaching map of each cell is a homeomorphism on its boundary.

Definition 3 A discrete vector field on a regular CW-space X is a collection of formal
arrows s → t where

1. s, t are cells of X with dim(t) = dim(s) + 1 and with s lying in the boundary of
t . We say that s and t are involved in the arrow, that s is the source of the arrow,
and that t is the target of the arrow.

2. any cell is involved in at most one arrow.

The term discrete vector field is due to Forman [20]. In an earlier work [22] Jones
calls this concept a marking.

By a chain in a discrete vector field we mean a sequence of arrows

. . . , s1 → t1, s2 → t2, s3 → t3, . . .

where si+1 lies in the boundary of ti for each i . A chain is a circuit if it is of finite
length with source s1 of the initial arrow s1 → t1 lying in the boundary of the target tn
of the final arrow sn → tn . A discrete vector field is said to be admissible if it contains
no circuits and no chains that extend infinitely to the right. A cell in X is said to be
critical if it is not involved in any arrow.

We say that a discrete vector field on a regular CW space X is a contracting vector
field if it is admissible and if it has only one critical cell, the critical cell being of
dimension 0. Figure 1 illustrates a contracting vector field on a CW structure on the
plane X = R

2 arising from a tessellation of the plane by unit squares.
We identify the cells of X with freeZ-linear generators of the cellular chain complex

C∗(X), the k-cells corresponding to a basis ofCk(X).We denote this basis by Bk(X) ⊂
Ck(X). A discrete vector field on X then induces a partial pairing between the sets
Bk(X) and Bk+1(X) for k ≥ 0. A pairing involving s ∈ Bk(X) and t ∈ Bk+1(X)

is again denoted by an arrow s → t . For an element w ∈ Ck(X) and basis element
e ∈ Bk(X) we write |w : e| for the coefficient of e in the unique expression of w as a
linear combination of basis elements. The following proposition is routine to verify.

Proposition 1 A contracting vector field on a regular CW space X induces a contract-
ing homotopy on the cellular chain complex C∗(X). The Z-linear homomorphisms
hk : Ck(X) → Ck+1(X) of the contracting homotopy are given on generators
e ∈ Bk(X) by the following recursive formulae.

123

Computing Bredon homology of groups 727

Fig. 1 A contracting vector field on a tessellation of X = R
2

hk(e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if e is critical or if e is the target of an
arrow.

f + hk(∂k+1 f − e) if e is the source of an arrow e → f and
|∂ f : e| = 1.

− f − hk(∂k+1 f + e) if e is the source of an arrow e → f and
|∂ f : e| = −1.

The recursion stops due to the admissibility of the discrete vector field.

Suppose now that the regular CW space X is a G-CW space for some group G. If
X admits a contracting vector field then the chain complex C∗(X) is a ZG-resolution
of Z and Proposition 1 provides formulae for a contracting homotopy on C∗(X).

As an example, consider the finitely presented group G = 〈a, b | aba = b〉. An
action of G on the plane X = R

2 is defined by a : R
2 → R

2, (x, y) �→ (x + 1,−y)

and b : R
2 → R

2, (x, y) �→ (x, y + 1). It is readily checked that this is a free action
admitting the unit square [0, 1] × [0, 1] as a fundamental domain. The quotient X/G
is the Klein bottle. The regular CW structure and contracting vector field illustrated
in Fig. 1 provide a free ZG-resolution C∗(X) with explicit contracting homotopy.
This resolution is implemented in HAP and can be used to recover the calculations
H1(G, Z) = Z, H2(G, Z) = Z2, Hn(G, Z) = 0 for n ≥ 3. Moreover, the contracting
homotopy on C∗(X) and the standard contracting homotopy on the bar resolution

C∗(˜Nerve(G)) are implemented and can be used to construct chain equivalences

123

728 A. T. Bui, G. Ellis

φ∗ : C∗(X) ⊗ZG Z � C∗(Nerve(G)) : ψ∗

between a finitely generated chain complex and a chain complex that is infinitely
generated in each degree. The larger chain complex is of interest because it is functorial
and thus good for theoretical descriptions of certain constructions; the smaller chain
complex is of interest because its homology is quickly calculated using the Smith
Normal Form algorithm. Section 7.2 contains an explanation of how this example
extends to certain other crystallographic groups.

7 Rigidification of G-CW spaces

The cellular structure of a regular CW space is captured, up to homotopy of attaching
maps, by the cellular chain complex C∗ X .

For any regular CW space X one defines sd(X) to be the simplicial complex with
one vertex for each cell in X , and with one k-simplex for each sequence e0, e1, . . . , ek

of cells of X with ei of dimension i for 0 ≤ i ≤ k and with ei−1 in the boundary of ei

for 1 ≤ i ≤ k. The geometric realization |sd(X)| is called the barycentric subdivision
of X .

Any regular CW space X is homeomorphic to the geometric realization |sd(X)| of
its barycentric subdivision. If X is a G-CW space then the action of G on X induces
an action of G on |sd(X)|, and the latter action is clearly rigid. We thus have the
following computationally useful result.

Lemma 1 Let X be a G-CW space with regular cell structure. Then the homeomorphic
space |sd(X)| is a rigid G-CW space.

The following GAP commands apply barycentric subdivision to a non-rigid con-
tractible G-CW space X for the group G = SL2(O−3). The 2-dimensional space X is
obtained from [27,33] and the subdivided space sd(X) is used to compute the Bredon
homology

H0(SL2(O−3),R) = Z2 ⊕ Z
9,

H1(SL2(O−3),R) = Z

with coefficients in the complex representation ringR. The analogous Bredon homol-
ogy for P SL2(O−3) has been calculated in [26] using the same space X .

gap> R:=ContractibleGcomplex("SL(2,O-3)");;
gap> IsRigid(R);
false
gap> S:=BaryCentricSubdivision(R);;
gap> C:=TensorWithComplexRepresentationRing(S);;
gap> Homology(C,0);
[2, 0, 0, 0, 0, 0, 0, 0, 0, 0]
gap> Homology(C,1);
[0]

123

Computing Bredon homology of groups 729

7.1 Coxeter groups

A Coxeter matrix is a symmetric n ×n matrix whose entries m(i, j) are either positive
integers or the symbol ∞, with m(i, j) = 1 if and only if i = j . Such a matrix
is represented by an n-vertex labelled graph D (called a Coxeter graph) with edge
joining vertices i and j if and only if m(i, j) ≥ 3; the edge is labelled by m(i, j).
The Coxeter group WD is defined to be the group generated by the set of symbols
S = {x1, . . . , xn} subject to relations x2i = 1 and (xi x j)m(i, j) = (x j xi)m(i, j) for all
i = j , where (xy)m denotes the word xyxyx . . . of length m. There is a faithful matrix
representation ρ : WD → GLn(R) obtained by constructing a vector space V over R

with basis {αi }xi ∈S and inner product

〈αi , α j 〉 = − cos(π/mi j)

where we interpret cos(π/∞) = 1. The representation ρ is defined on generators
xi ∈ S by letting ρ(xi) be the matrix of the linear map

V → V, v �→ v − 2〈αi , v〉αi .

Assume for the moment that the Coxeter group WD is finite. The representation
ρ realizes WD as a group of orthogonal transformations of R

n with generators ρ(xi)

equal to reflections [9]. For convenience we identify WD = ρ(WD) and xi = ρ(xi).
Let A be the set of hyperplanes corresponding to all the reflections in WD . For any
point v in R

n\A we denote by PD the convex hull of the orbit of v under the action of
WD . The face lattice of the n-dimensional convex polytope PD depends only on the
graph D. (To see this, first note that the vertices of PD are the points g · v for g ∈ WD

and that there is an edge between g · v and g′ · v if and only if g−1g′ ∈ S. Thus the
combinatorial type of the 1-skeleton of PD does not depend on the choice of point v.
Furthermore, each vertex of the n-dimensional polytope PD is incident with precisely
n edges; hence PD is simple and the face lattice of the polytope is determined by
the combinatorial type of the 1-skeleton [6].) The polytope PD is a G-CW space for
G = WD . The contractible simplicial space |sd(PD)| is called the Davis complex for
the finite group G = WD .

To define the Davis complex for an arbitrary Coxeter group WD we first consider
the Cayley graph �D consisting of one vertex for each g ∈ WD and one undirected
edge connecting the pair of vertices {g, gx} for each g ∈ WD and x ∈ S. We can
consider any subset of generators T ⊂ S that generates a finite subgroup 〈T 〉 ≤ WD .
This subgroup can be shown to be a Coxeter group WDT = 〈T 〉 where DT is the full
subgraph of D on those vertices corresponding to generators in T . The 1-skeleton
of the convex polytope PDT can be identified with the Cayley graph �DT . We view
�DT as a full subgraph of �D . For each coset gWDT in WD there is a corresponding
subgraph g�DT ⊂ �D . We take X D to be the union of the graph�D with the polytopes
g PDT where T ranges over all maximal subsets T ⊂ S that generate a finite subgroup,
and g ranges over a set of coset representative for WDT , and where any two polytope
faces with identical 1-skeleta in �D are identified. The space X D is a G-CW space for

123

730 A. T. Bui, G. Ellis

D:
6

Fig. 2 Coxeter graph of an infinite Coxeter group WD

G = WD and is known to be a model for E ′G [9]. The contractible simplicial space
|sd(X D)| is called the Davis complex for G and is a model for EG.

The following GAP commands use the data types of Sect. 3 to compute the non-
rigid G-CW space X D for the infinite Coxeter group G = WD corresponding to the
diagram D of Fig. 2. The figure follows convention in omitting to print the number 3
on those edges of D labelled bym(i, j) = 3. TheZG-chain complex R∗ = C∗(X D) is
converted to a freeZG-resolution F∗ and used to compute H2(WD, Z) = Z2⊕Z2⊕Z2.
Barycentric subdivision could be applied to R∗ to obtain the rigid chain complex
C∗ = C∗(|sd(X D)|) from which the Bredon homology group H0(WD,R) = Z

21

with coefficients in the complex representation ring is computed. The GAP session
instead uses the implementation [28] to compute C∗ directly from D.

gap> D:=[[1,[2,3]], [2,[3,3]], [3,[4,3]], [4,[5,6]]];;
gap> R:=CoxeterComplex(D);;
gap> F:=FreeGResolution(R,3);;
gap> Homology(TensorWithIntegers(F),2);
[2, 2, 2]

gap> C:=DavisComplex(D);;
gap> D:=TensorWithComplexRepresentationRing(C);;
gap> Homology(D,0);
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0]

7.2 Cubical crystallographic groups

In [1,2] a procedure is given which inputs an n-dimensional crystallographic group G
and attempts to return a G-CW structure on R

n with just one orbit of n-dimensional
cells for which a representative n-cell has the CW structure of an n-cube I n . To be
precise, here I = [0, 1] is understood to have the CW structure involving two 0-cells
and one 1-cell, and the n-cube I n has the product CW structure. We refer to such a
G-CW structure on R

n as a cubical G-CW space. The procedure succeeds on 12 of
the 17 two-dimensional crystallographic groups; it succeeds on 114 of the 219 three-
dimensional crystallographic groups; it succeeds on 1996of the 4783 four-dimensional
crystallographic groups. When the procedure succeeds the n-dimensional analogue of
the contracting vector field of Fig. 1 can be used to implement a contracting homotopy
on C∗(Rn). In many cases where the procedure fails one can prove that no cubical
G-CW structure exists on R

n .
The procedure begins by constructing a cubical T -CW structure on R

n for the
translation subgroup T ≤ G. This can always be done. The procedure then considers
the order |G/T | of the (finite) point group and tries to decompose a representative

123

Computing Bredon homology of groups 731

cubical n-cell for T into |G/T | or fewer smaller cubical n-cells such that the smaller
n-cells form a G-CW structure on R

n .
In some cases where the procedure succeeds the resulting cubical G-CW space

is rigid and can be used as a model for EG. In other cases where the procedure
succeeds the resulting space is non-rigid and thus a model only for E ′G. A prob-
lem with using barycentric subdivision EG = |sd(E ′G)| is the prohibitively large
number of cells involved for very modest dimensions n. A compromise is to use
a cubical subdivision based on the CW space J = [0, 1] involving three 0-cells
0, 1/2, 1 and two 1-cells (0, 1/2), (1/2, 1). The product J n has just 5n cells, com-
pared to the 3n cells in I n . We denote by bcsd(E ′G) the resulting binary cubical
subdivision of E ′G. This subdivision will not always be rigid, but in many cases
it is.

The followingGAP code constructs R∗ = C∗(E ′G) for the second group of dimen-
sion 4 in theCryst [14] library of crystallographic groups and determines that R∗ is not
rigid. The commands then use binary cubical subdivision to construct a rigid resolution
S∗ = C∗(bcsd(E ′G)).

gap> G:=SpaceGroupIT(4,2);;
gap> gens:=GeneratorsOfGroup(G);;
gap> B:=CrystGFullBasis(G);;
gap> R:=CrystGcomplex(gens,B,1);;
gap> IsRigid(R);
false
gap> S:=CrystGcomplex(gens,B,0);;
gap> IsRigid(S);
true

There aremanyways to subdivide an n-cube into equally sized sub cubes. In general
we can let Ji = [0, 1] be the CW space involving mi + 1 equally spaced 0-cells and
mi equally long 1-cells. Then the product J1 × · · · × Jn is a CW structure on the
n-cube involving m1×· · ·×mn equally sized sub cubes. To apply this general cubical
subdivision to a cubical space E ′G for an n-dimensional crystallographic group G
one can proceed as follows. First, represent G so that its translation subgroup T ≤ G
is generated by n orthogonal unit translations x �→ x + t1, . . . , x �→ x + tn ∈
T . This can be done using a change of basis for R

n if necessary. Then consider
the crystallographic group H generated by the generators of G together with the
translations

x �→ x + 1

m1
t1, . . . , x �→ x + 1

mn
tn .

The group G is a finite index subgroup of H of index m1 × · · · × mn . We can attempt
to use the function CrystGcomplex to construct R∗ = C∗(E ′H). If the attempt
is successful then R∗ can be viewed as a ZG-resolution corresponding to a general
cubical subdivision of a cubical G-CW structure on R

n .

123

732 A. T. Bui, G. Ellis

7.3 Simplification of barycentric subdivision

Two disadvantages to cubical subdivison are: it applies only to G-CW spaces whose
cells are cubes; it is not guaranteed to yield a rigid space. A naive algorithm for
converting an arbitrary G-CW space X with regular CW structure into a homotopy
equivalent rigid G-CW space is to first construct the barycentric subdivision |sd(X)|
and then to simplify the cell structure on |sd(X)|while preserving rigidity.We describe
one method for simplifying the cell structure below. The method has not yet been fully
implemented.

Let Y denote any rigid G-CW space X with regular CW structure. For instance,
Y could be the barycentric subdivision |sd(X)|. Rigidity ensures that the quotient
space W = Y/G is a regular CW space. Let ρ : Y � W denote the quotient map.
On any given cell e ⊂ Y this quotient map restricts to a homeomorpism e → ρ(e).
For any cell f = ρ(e) ⊂ W the preimage ρ−1(f) is e × G/StabG(e). By writing
G f = StabG(e) we associate to each cell f = ρ(e) ⊂ W a finite group G f ≤ G.

We are interested in cases where W has only finitely many cells. Such a regular
CW space is stored in [16] using the following data type.

Data Type 71 A finite regular CW space is represented as a component object W with
the following components:

– W!.boundaries[n+1][k] is a list of integers [t, a1, . . . , at] recording that the ai th
cell of dimension n − 1 lies in the boundary of the kth cell of dimension n.

– W!.coboundaries[n+1][k] is a list of integers [t, a1, . . . , at] recording that the
kth cell of dimension n lies in the coboundary of the ai th cell of dimension n − 1.

– W!.nrCells(n) is a function returning the number of cells in dimension n.
– W!.properties is a list of properties of the complex, each property stored as a pair
such as [“dimension”, 4].

The associated booleanvalued function IsHAPRegularCWComplex(W) returns true
when W is of this data type.

Our proposed simplification procedure for a regular CW space W is based on the
observation that if W contains a k-cell ek lying in the boundary of precisely two
(k + 1)-cells ek+1

1 , ek+1
2 with identical coboundaries then these three cells can be

removed and replaced by a single cell of dimension k + 1. The topological space W
is unchanged; only its CW-structure changes. The resulting CW-structure will not in
general be regular. However, it will be regular if the sets of cells V0, V1, V2 lying in the
boundaries of ek, ek+1

1 , ek+1
2 respectively are such that V1 ∩ V2 = V0 ∪ {ek}. Thus by

repeatedly replacing three cells by a single cell we will arrive at a potentially smaller
CW space V ; as topological spaces W and V will be identical.

As an illustration of this simplification procedure consider the 2-dimensional CW
space S consisting of a 9 × 9 array of unit squares with interior of the central square
removed. Thus S is of the homotopy type of a circle. Now consider W = S × S. The
following GAP commands construct this regular CW space W and then applies an
implementation of the simplification procedure to obtain a small regular CW space V .
The space W involves 129,600 cells and the space V involves 224 cells.

gap> A:=0*IdentityMat(9)+1;;A[4][4]:=0;;

123

Computing Bredon homology of groups 733

gap> S:=RegularCWComplex(PureCubicalComplex(A));;
gap> W:=DirectProduct(S,S);
Regular CW-complex of dimension 4
gap> Size(W);
129600
gap> V:=SimplifiedComplex(W);
Regular CW-complex of dimension 4
gap> Size(V);
224

Returning now to the rigid G-CW space Y and quotient map ρ : Y � W we note
that if G f is the trivial group for all cells f ⊂ W then ρ is a covering map. In this
case it is possible to lift the simplified CW-structure from W to Y and hence to C∗Y .
In order to lift the simplified structure in the general case the simplification procedure
needs one easily implemented refinement: only replace the three cells ek , ek+1

1 , ek+1
2

by a single cell if Gek = Gek+1
1

= Gek+1
2

.
Further algorithmic approaches to rigidification of G-CW spaces are developed

in [4].

References

1. Bui, A.T.: An algorithm for cohomology of certain crystallographic groups. National University of
Ireland, Galway (2015, preprint)

2. Bui, A.T.: Discrete vector fields and the cohomology of certain arithmetic and crystallographic groups.
PhD Thesis, National University of Ireland, Galway (2015)

3. Bui, A.T., Ellis, G.: The homology of SL2(Z[1/m]) for small m. J. Algebra 408, 102–108 (2014)
4. Bui, A.T., Rahm, A.D.: An algorithm for controlled subdivision yielding stabilizers which fix their

cells pointwise. (2015, in preparation)
5. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and K -theory of group C∗-

algebras. In: C∗-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, pp. 240–
291. Amer. Math. Soc., Providence (1994)

6. Blind, R., Mani-Levitska, P.: Puzzles and polytope isomorphisms. Aequationes Math. 34(2–3), 287–
297 (1987)

7. Brown, R.: The twisted Eilenberg-Zilber theorem. In: Simposio di Topologia (Messina, 1964), pp.
33–37. Edizioni Oderisi, Gubbio (1965)

8. Carlson, J.F.: Calculating group cohomology: tests for completion. J. Symbolic Comput. 31(1–2):229–
242 (2001, Computational algebra and number theory (Milwaukee, WI, 1996))

9. Davis, M.W.: The geometry and topology of Coxeter groups. London Mathematical Society Mono-
graphs Series, vol. 32. Princeton University Press, Princeton (2008)

10. DeConcini, C., Salvetti,M.: Cohomology of Coxeter groups andArtin groups.Math. Res. Lett. 7(2–3),
213–232 (2000)

11. Sikirić, M.D., Ellis, G.: Wythoff polytopes and low-dimensional homology of Mathieu groups. J.
Algebra 322(11), 4143–4150 (2009)

12. Sikirić, M.D., Ellis, G., Schürmann, A.: On the integral homology of PSL4(Z) and other arithmetic
groups. J. Number Theory 131(12), 2368–2375 (2011)

13. Dutour-Sikríc, M.: Data for complexes on which certain arithmetic groups act with nice stabilizer
subgroups (2011, private communication)

14. Eick,B.,Gahler, F.,Nickel,W.:CrystGap—the crystallographic groups package,Version 4.1.12 (2013).
http://www.gap-system.org/Packages/cryst.html

15. Ellis, G.: Computing group resolutions. J. Symbolic Comput. 38(3), 1077–1118 (2004)
16. Ellis, G.: HAP—homological algebra programming, Version 1.10.13 (2013). http://www.gap-system.

org/Packages/hap.html

123

http://www.gap-system.org/Packages/cryst.html
http://www.gap-system.org/Packages/hap.html
http://www.gap-system.org/Packages/hap.html

734 A. T. Bui, G. Ellis

17. Ellis, G.: Cohomological periodicities of crystallographic groups. J. Algebra. 445, 537–544 (2016)
18. Ellis, G., Harris, J., Sköldberg, E.: Polytopal resolutions for finite groups. J. Reine Angew. Math. 598,

131–137 (2006)
19. Ellis, G., Sköldberg, E.: The K (π, 1) conjecture for a class of Artin groups. Comment. Math. Helv.

85(2), 409–415 (2010)
20. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)
21. The GAP Group.: GAP—groups, algorithms, and programming, Version 4.5.6 (2013). http://www.

gap-system.org
22. Jones, D.W.: A general theory of polyhedral sets and the corresponding T -complexes. Dissertationes

Math. (Rozprawy Mat.), 266, 110 (1988)
23. Libman, A.: The gluing problem in the fusion systems of the symmetric, alternating and linear groups.

J. Algebra 341, 209–245 (2011)
24. Mislin, G.: On the classifying space for proper actions. In: Cohomologicalmethods in homotopy theory

(Bellaterra, 1998), Progr. Math., vol. 196, pp. 263–269. Birkhäuser, Basel (2001)
25. Petrosyan, N., Putrycz, B.: On cohomology of crystallographic groups with cyclic holonomy of split

type. J. Algebra 367, 237–246 (2012)
26. Rahm, A.D.: The homological torsion of PSL2 of the imaginary quadratic integers. Trans. Am. Math.

Soc. 365(3), 1603–1635 (2013)
27. Rahm,A.D., Fuchs,M.: The integral homology of PSL2 of imaginary quadratic integers with nontrivial

class group. J. Pure Appl. Algebra 215(6), 1443–1472 (2011)
28. Rahm, A.D., Sánchez-García, R.J.: GAP implementation of the Davis complex (2015). http://www.

gap-system.org/Packages/hap.html
29. Röder, M.: Geometric algorithms for resolutions for Bieberbach groups. In: Computational group the-

ory and the theory of groups, II, Contemp.Math., vol. 511, pp. 167–178. Amer. Math. Soc., Providence
(2010)

30. Salvetti, M.: The homotopy type of Artin groups. Math. Res. Lett. 1(5), 565–577 (1994)
31. Sánchez-García, R.J.: Equivariant K -homology for some Coxeter groups. J. Lond. Math. Soc. (2)

75(3), 773–790 (2007)
32. Sánchez-García, R.J.: Bredon homology and equivariant K -homology of SL(3,Z). J. Pure Appl.

Algebra 212(5), 1046–1059 (2008)
33. Schönnenbeck, S.: Data for complexes on which certain P SL2(O) act with nice stabilizer subgroups

(2013, private communication)
34. Soulé, C.: The cohomology of SL3(Z). Topology 17(1), 1–22 (1978)
35. Squier, C.C.: The homological algebra of Artin groups. Math. Scand. 75(1), 5–43 (1994)

123

http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org/Packages/hap.html
http://www.gap-system.org/Packages/hap.html

	Computing Bredon homology of groups
	Abstract
	1 Introduction
	2 Some typical homological computations
	3 Review of Bredon homology
	4 A data type for Bredon modules
	5 Review of algorithms for resolutions
	6 Homotopies and discrete vector fields
	7 Rigidification of G-CW spaces
	7.1 Coxeter groups
	7.2 Cubical crystallographic groups
	7.3 Simplification of barycentric subdivision

	References

