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Abstract We show that if G is a compact Lie group and g is its Lie algebra, then
there is a map from the Hopf-cyclic cohomology of the quantum enveloping algebra
Uq(g) to the twisted cyclic cohomology of quantum group algebra O(Gq). We also
show that the Schmüdgen-Wagner index cocycle associated with the volume form of
the differential calculus on the standard Podleś sphere O(S2q ) is in the image of this
map.
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1 Introduction

Given a compact Lie group G and its Lie algebra g, there is a characteristic map
of the form HP∗(U (g), kδ) → HP∗(O(G)) coming from the Connes-Moscovici
theory [6]. Here, the domain of the map depends on the Lie algebra homology of g,
and the range is the ordinary periodic algebra cyclic cohomology of the algebra of
regular functions on G, which depends on the de Rham homology of G. We refer the
reader to Sect. 2.10 for details. In this paper we develop a q-analogue of this map. To
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be precise, in Theorem 3.2 we show that for a compact quantum group algebraO(Gq)

and its quantum enveloping algebra Uq(g) there is a morphism in cohomology of the
form

HC∗(Uq(g),
σ k) → HC∗

σ−1(O(Gq)) (1.1)

whosedomain is theHopf-cyclic cohomologyofUq (g)with coefficients in themodular
pair in involution (MPI) determined by [25, Proposition 6.1.6], and whose range is the
twisted cyclic cohomology of O(Gq) viewed as an algebra. Recall that the Connes-
Moscovici characteristic map can be viewed as a cup product [18,19,24,32]. Our key
observation is that when we write the analogous cup product using the Haar functional
of a compact quantum group, the modularity property of the Haar functional [25,
Proposition 11.34] gives us the twisted algebra cyclic cohomology in the range in (1.1)
in contrast to the Connes-Moscovici case where the range is the ordinary algebra
cyclic cohomology. We further observe that one can untwist the cohomology with an
appropriate additional cup product, but this procedure brings in a degree shift. The shift
coming from the untwisting cup product explains the dimension drop phenomenon
observed in [12], and the degree shift phenomenon observed in [13]. We refer the
reader to Sect. 2.9 and Corollary 3.4.

We show the non-triviality of the characteristic homomorphism (1.1) in Sect. 4.
We first recall that in [30] Masuda, Nakagami and Watanabe calculated the classi-
cal Hochschild and cyclic cohomology of O(SLq(2)) using an explicit resolution.
Then, in Proposition 4.6 and Corollary 4.7 we recover one specific generator of the
cyclic cohomology of O(SLq(2)) in the image of the characteristic homomorphism
(1.1).

In analogy with the fact that Connes-Moscovici characteristic map allows the index
computation of codimension-n foliations to take place in the Hopf-cyclic cohomology
of the Hopf algebra Hn of codimension-n foliations, we introduce (1.1) to pull the
index computation on the twisted cyclic cohomology of O(Gq) to the Hopf-cyclic
cohomology HC∗(Uq(g),

σ k) of the Hopf algebra of Uq(g), which was computed in
[22]. This fact, along with the quantum homogeneous space version of our character-
istic map we develop in Sect. 5, turns the Hopf-cyclic cohomology of quantum groups
into a useful tool detecting the index cocycles of such spaces. We use the equivariant
characteristic map of [33] to show that in the case of the standard Podleś sphere, the
characteristic homomorphism (1.1) descends to

HC∗
k[σ,σ−1]

(
Uq(su2),

σ−1
k, σ k

)
→ HC∗

σ−1

(
O(S2q )

)
, (1.2)

where the domain is now the equivariant Hopf-cyclic cohomology of the quantum
enveloping algebra Uq(su2). Moreover, we show that a σ−1-twisted version of the
Schmüdgen-Wagner quantum index cocycle of [34], see also [14], that computes the
index of the Dirac operator on O(SUq(2)) is in the image of (1.2). In the particular
case of the (standard) Podleś sphere O(S2q ) ⊆ O(SUq(2)), we further realize the
Schmüdgen-Wagner index cocycle in the equivariant Hopf-cyclic cohomology [33]
of Uq(su2).
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A characteristic map for compact quantum groups 551

1.1 Notation and conventions

We use a base field k of characteristic 0. WLOG one can assume k = R. We are
going to use CB and CH to denote respectively the bar and the Hochschild complexes
associated with a (co)cyclic module. In the same vein, we use HH , HC and HP to
denote respectively the Hochschild, the cyclic and the periodic cyclic (co)homology of
a (co)cyclic module. We are going to use Cotor∗C to denote the right derived functor of
the (left exact)monoidal product�C in the category ofC-comodules of a coassociative
counital coalgebra C . A coextension π : C → D is an epimorphism of (counital)
coalgebras.

2 Preliminaries

In this section we recall the basic material that will be needed in the sequel.

2.1 Cobar and Hochschild complexes

In this subsection we recall the definition of the cobar complex of a coalgebra C, as
well as the Cotor-groups associated to a coalgebra C and a pair (V,W ) of C-comodules
of opposite parity.

Let C be a coassociative coalgebra. Following [2,9,21], the cobar complex of C is
defined to be the differential graded space

CB∗(C) :=
⊕
n�0

C⊗n+2

with the differentials d : CBn(C) −→ CBn+1(C)

d(c0 ⊗ · · · ⊗ cn+1) =
n∑
j=0

(−1) j c0 ⊗ · · · ⊗ �(c j ) ⊗ · · · ⊗ cn+1.

Let Ce := C ⊗ Ccop be the enveloping coalgebra of C. In case C is counital, the
cobar complex CB∗(C) yields a Ce-injective resolution of the (left) Ce-comodule C,
see for instance [9].

Following the terminologyof [20], for a pair (V,W )of twoC-comodules of opposite
parity (say, V is a right C-comodule andW is a left C-comodule,) we call the complex

(
CB∗(V, C, W ), d

)
, CB∗(V, C, W ) := V�CCB∗(C)�CW

where we define d : CBn(V, C, W ) → CBn+1(V, C, W )
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552 A. Kaygun, S. Sütlü

d(v ⊗ c1 ⊗ · · · ⊗ cn ⊗ w) = v<0> ⊗ v<1> ⊗ c1 ⊗ · · · ⊗ cn ⊗ w

+
n∑
j=1

(−1) j c1 ⊗ · · · ⊗ �(c j ) ⊗ · · · ⊗ cn ⊗ w

+ (−1)n+1 v ⊗ c1 ⊗ · · · ⊗ cn ⊗ w
<−1> ⊗ w

<0> (2.1)

the two-sided (cohomological) cobar complex of the coalgebraC. In caseC is a counital
coalgebra, the Cotor-groups of a pair (V,W ) of C-comodules of opposite parity can
be computed from

Cotor∗C(V,W ) = H∗(CB∗(V, C, W ), d). (2.2)

We next recall the Hochschild cohomology of a coalgebra C with coefficients in
the C-bicomodule (equivalently Ce-comodule) V , from [9], as the cohomology of the
complex

CH∗(C, V ) =
⊕
n�0

CHn(C, V ), CHn(C, V ) := V ⊗ C⊗ n

with the differential b : CHn(C, V ) → CHn+1(C, V ) defined as

b(v ⊗ c1 ⊗ · · · ⊗ cn) = v<0> ⊗ v<1> ⊗ c1 ⊗ · · · ⊗ cn

+
n∑

k=1

(−1)kc1 ⊗ · · · ⊗ �(ck) ⊗ · · · ⊗ cn

+ (−1)n+1v
<0> ⊗ c1 ⊗ · · · ⊗ cn ⊗ v

<−1>. (2.3)

We identify CBn(C) with Ce ⊗ C⊗ n as left Ce-comodules for n > 0 via

c0 ⊗ · · · ⊗ cn+1 �→ (c0 ⊗ cn+1) ⊗ c1 ⊗ · · · ⊗ cn .

The left Ce-comodule structure on CBn(C) = C⊗ n+2 is given by

∇(c0 ⊗ · · · ⊗ cn+1) = (c0(1) ⊗ cn+1
(2) ) ⊗ (c0(2) ⊗ c1 ⊗ · · · ⊗ cn ⊗ cn+1

(1) ),

and on Ce ⊗ C⊗ n by

∇((c ⊗ c′) ⊗ (c1 ⊗ · · · ⊗ cn)) = (c(1) ⊗ c′
(2) ) ⊗ (c(2) ⊗ c′

(1) ) ⊗ (c1 ⊗ · · · ⊗ cn).

This yields an isomorphism of the form

(
CH∗(C, V ), b

) ∼= (
V�CeCB∗(C), d

)

on the chain level. In case C is counital one can interpret the Hochschild cohomology
of C with coefficients in V in terms of Cotor-groups as

H∗(C, V ) = H∗(CH∗(C, V ), b) = Cotor∗Ce (V, C),
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or more generally,
H∗(C, V ) = H∗(V�CeY ∗)

for any coflat resolution Y ∗ of C via left Ce-comodules.

2.2 Cohomology of coextensions

In this subsection we recall the main computational tool introduced in [22] which
can be summarized as follows: Given a coflat coalgebra coextension C → D, the
coalgebra Hochschild cohomology of C can be computed relatively easily by means
of the Hochschild cohomology ofD, and the relative cohomology of the coextension.

Let π : C → D be a coextension. We first introduce the auxiliary coalgebra
Z := C ⊕ D with the comultiplication

�(y) = y(1) ⊗ y(2) and �(x) = x(1) ⊗ x(2) + π(x(1)) ⊗ x(2) + x(1) ⊗ π(x(2)),

and the counit
ε(x + y) = ε(y),

for any x ∈ C and y ∈ D.
Next, let V be a C-bicomodule and let C be coflat both as a left and a right D-

comodule. Then via the short exact sequence

0 → D i−→ Z p−→ C → 0 where i : y �→ (0, y) p : (x, y) �→ x

of coalgebras and [11, Lemma 4.10], we have

HHn(Z, V ) ∼= HHn(C, V ), n � 0. (2.4)

We next consider CH∗(Z, V ) with the decreasing filtration

Fn+p
p =

{⊕
n0+···+n p=n V ⊗ Z⊗n0 ⊗ C ⊗ · · · ⊗ Zn p−1 ⊗ C ⊗ Z⊗n p , p � 0

0, p < 0.

The associated spectral sequence is

Ei, j
0 = Fi+ j

i /Fi+ j
i+1 =

⊕
n0+···+ni= j

V ⊗ D⊗n0 ⊗ C ⊗ · · · ⊗ Dni−1 ⊗ C ⊗ D⊗ni ,

and by the coflatness assumption, on the vertical direction it computes

HH j (D, C�D i �D V ).

Hence we have the following.
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Theorem 2.1 Let π : C → D be a coalgebra coextension and V = V ′ ⊗ V ′′ a
C-bicomodule such that the left C-comodule structure is given by V ′ and the right
C-comodule structure is given by V ′′. Let also C be coflat both as a left and a right
D-comodule. Then there is a spectral sequence whose E1-term is of the form

Ei, j
1 = Cotor jD(V ′′, C�D i �D V ′),

converging to HHi+ j (C, V ).

A convenient set-up as a test case for our machinery is a principal coextension
[1,35]. We assume H is a Hopf algebra with a bijective antipode, and C is a left H-
module coalgebra. Since H+ = ker ε is the augmentation ideal of H, if we define a
quotient coalgebra by D := C/H+C then by [35, Theorem II],

1. C is a projective leftH-module,
2. can : H ⊗ C → C�DC, h ⊗ c �→ h · c(1) ⊗ c(2) is injective,

if and only if

3. C is faithfully flat left (and right) D-comodule,
4. can : H ⊗ C → C�DC is an isomorphism.

2.3 Cyclic cohomology of algebras

We recall the cyclic cohomology of algebras [3–5,29]. LetA be an algebra and M an
A-bimodule. Then the Hochschild cohomology HH(A, M) ofA with coefficients in
M is the homology of the complex

C(A, M) =
⊕
n�0

Cn(A, M), (2.5)

where Cn(A, M) is the space of all linear maps A⊗ n → M with the differential

bϕ(a1, . . . , an+1) = a1 · ϕ(a2, . . . , an+1)

+
n∑

k=1

(−1)kϕ(a1, . . . , akak+1 . . . , an+1)

+ (−1)n+1ϕ(a1, . . . , an) · an+1. (2.6)

The spaceA∗ of all linearmaps of the formA → k is anA-bimodule viaa·ϕ·b(c) =
ϕ(bca) defined for every ϕ ∈ A∗, and a, b, c ∈ A. Hence, the complex C(A,A∗) can
be defined. If we identify ϕ ∈ Cn(A,A∗) with

φ : A⊗ n+1 → k, φ(a0, α1, . . . , an) := ϕ(a1, . . . , an)(a0), (2.7)

the coboundary map corresponds to
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bφ(a0, . . . , an+1) = φ(a0a1, . . . , an+1)

+
n∑

k=1

(−1)kϕ(a0, . . . , akak+1 . . . , an+1)

+ (−1)n+1ϕ(an+1a0, . . . , an). (2.8)

With these definitions at hand, we define the cyclic cohomology Hλ(A) of the algebra
A as the homology of the subcomplex

C∗
λ(A) =

⊕
n�0

Cn
λ(A,A∗), (2.9)

where

Cn
λ(A,A∗) := {φ ∈ Cn(A,A∗) | φ(a0, . . . , an) = (−1)nφ(an, a0, . . . , an−1)}.

(2.10)
Equivalently, the cyclic cohomology HC(A) of an algebra A can also be defined

as the cyclic cohomology of the cocyclic module associated to

C∗(A) =
⊕
n�0

Cn(A), Cn(A) := Hom(A⊗ n+1, k), (2.11)

by its own cofaces, codegeneracies and cyclic group actions. The coface maps dk :
Cn(A) → Cn+1(A) are defined for 0 � k � n + 1 as

dkϕ(a0, . . . , an+1) =
{

ϕ(a0, . . . , akak+1, . . . , an+1) if 0 � k � n,

ϕ(an+1a0, a1, . . . , an) if k = n + 1.

The codegenerecy maps s j : Cn(A) → Cn−1(A) are defined for 0 � j � n − 1 as

s jϕ(a0, . . . , an−1) = ϕ(a0, . . . , a j , 1, a j+1, . . . , an+1),

and finally the cyclic operators tn : Cn(A) → Cn(A) as

tnϕ(a0, . . . , an) = ϕ(an, a0, . . . , an−1).

The cyclic cohomology of A is defined to be the total cohomology of the associated
first quadrant bicomplex (CC(A), b, B) where

CC p,q(A) :=
{
Cq−p(A) if q � p � 0,

0 if p > q,
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with the algebra Hochschild coboundary operator b : CC p,q(A) → CC p,q+1(A)

which is given by

b :=
q+1∑
i=0

(−1)i di ,

and the Connes boundary operator B : CC p,q(A) → CC p−1,q(A) which is defined
as

B :=
( p∑

i=0

(−1)pi t ip

)
(1 + (−1)ptp)sp.

We recall that H∗
λ (A) ∼= HC∗(A), since we assume throughout that the ground field

k is of characteristic 0.

2.4 Twisted cyclic cohomology

We next briefly recall from [26] the twisted cyclic cohomology of an algebra A by
an automorphism σ : A → A. Let Cn(A) be the set of all linear maps A⊗ n+1 → k.
Then, the complex

C∗
σ (A) =

⊕
n�0

Cn
σ (A), (2.12)

where

Cn
σ (A) = {φ ∈ Cn(A) | φ(a0, . . . , an) = (−1)nφ(σ(an), a0, . . . , an−1)}, (2.13)

is closed under the twisted Hochschild differential,

bφ(a0, . . . , an+1) = φ(a0a1, . . . , an+1)

+
n∑

k=1

(−1)kϕ(a0, . . . , akak+1 . . . , an+1)

+ (−1)n+1ϕ(σ(an+1)a0, . . . , an). (2.14)

Then the homology of the complex (2.12) with the differential map (2.14) is called
the σ -twisted cyclic cohomology of the algebra A.

Equivalently, the σ -twisted cyclic cohomology HC∗
σ (A) of the algebra A is com-

puted by the cocyclic object

Cn
σ (A) = {φ ∈ Cn(A) | φ(σ(a0), . . . , σ (an)) = φ(a0, . . . , an)} (2.15)

given by the coface maps dk : Cn
σ (A) → Cn+1

σ (A) for 0 � k � n + 1,

dkϕ(a0, . . . , an+1) =
{

ϕ(a0, . . . , akak+1, . . . , an+1) if 0 � k � n,

ϕ(σ (an+1)a0, a1, . . . , an) if k = n + 1,
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the codegeneracy maps s j : Cn
σ (A) → Cn−1

σ (A) for 0 � j � n − 1 as

s jϕ(a0, . . . , an−1) = ϕ(a0, . . . , a j , 1, a j+1, . . . , an+1),

and finally the cyclic operators tn : Cn
σ (A) → Cn

σ (A)

tnϕ(a0, . . . , an) = ϕ(σ(an), a0, . . . , an−1).

2.5 Hopf-cyclic cohomology

In this subsection we recall the Hopf-cyclic cohomology for Hopf algebras from [7,
Sects. 3, 4], see also [8, Sect. 2].

Let H be a Hopf algebra with a modular pair (δ, σ ) in involution (MPI). In other
words, δ : H → k is a character, and σ ∈ H a group-like satisfying the modularity
condition

δ(σ ) = 1 and S2δ = Adσ , where Sδ(h) := δ(h(1) )S(h(2) ), (2.16)

for all h ∈ H . Then the Hopf-cyclic cohomology HC∗(H, δ, σ ) of H, relative to the
pair (δ, σ ) is defined to be the cyclic cohomology of the cocyclic module [6]

C∗(H, δ, σ ) =
⊕
n�0

Cn(H, δ, σ ), Cn(H, δ, σ ) := H⊗ n .

The coface operators di : Cn(H, δ, σ ) → Cn+1(H, δ, σ ) are defined for 0 ≤ i ≤ n+1
as

di (h
1 ⊗ · · · ⊗ hn) =

⎧⎪⎨
⎪⎩

1 ⊗ h1 ⊗ · · · ⊗ hn, if i = 0,

h1 ⊗ · · · ⊗ hi(1) ⊗ hi(2) ⊗ · · · ⊗ hn, if 0 � i � n,

h1 ⊗ · · · ⊗ hn ⊗ σ, if i = n + 1.

(2.17)

We define the codegeneracy operators s j : Cn(H, δ, σ ) → Cn−1(H, δ, σ ) for 0 ≤
j ≤ n − 1 as

s j (h
1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ ε(h j+1) ⊗ · · · ⊗ hn, (2.18)

and the cyclic operators tn : Cn(H, δ, σ ) → Cn(H, δ, σ ) as

tn(h
1 ⊗ · · · ⊗ hn) = Sδ(h

1) · (h2 ⊗ · · · ⊗ hn ⊗ σ). (2.19)
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2.6 Connes-Moscovici characteristic map

Let us next recall the Connes-Moscovici characteristic homomorphism, [6,7]. Let A
be aH-module algebra, that is, for all h ∈ H and for all a, b ∈ A,

h(ab) = h(1) (a)h(2) (b), h(1) = ε(h)1. (2.20)

Then a linear form τ : A → k is called a σ -trace if

τ(ab) = τ(bσ(a)), (2.21)

and the σ -trace τ : A → k is called δ-invariant if

τ(h(a)) = δ(h)τ (a), (2.22)

for all h ∈ H and a, b ∈ A.
Now let H be a Hopf algebra with a MPI (δ, σ ), and A an H-module alge-

bra equipped with a δ-invariant σ -trace. It follows then that the morphisms
χτ : Cn(H, δ, σ ) → Cn(A),

χτ (h
1 ⊗ · · · ⊗ hn)(a0, . . . , an) := τ(a0h1(a1) . . . hn(an)), (2.23)

induce a characteristic homomorphism on the cohomology χτ : HC(H, δ, σ ) →
HC(A).

2.7 Hopf-cyclic cohomology of module algebras

We now recall from [15] the Hopf-cyclic cohomology theory for the module algebra
symmetry. In order to define the coefficient spaces, we first note that a modular pair
in involution is an example of a one dimensional stable anti-Yetter Drinfeld (SAYD)
module [16]. In general, a right module–left comodule V over a Hopf algebra H is
called a right–left SAYD module over H if

∇(h · v) = S(h(3) )v<−1>h(1) ⊗ v<0>, v<0> · v<−1> = v

for any v ∈ V and any h ∈ H. Here ∇ : V → H ⊗ V given by v �→ v<−1> ⊗ v<0>

refers to the leftH-coaction on V .
Let A be an H-module algebra and V a SAYD module over H. We recall from

[15,32] that the graded space

C∗
H(A, V ) =

⊕
n�

Cn
H(A, V ), Cn

H(A, V ) := HomH(V ⊗ A⊗ n+1, k)
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becomes a cocyclic module via the coface maps ∂i : Cn
H(A, V ) → Cn+1

H (A, V ),
defined for 0 � i � n + 1

∂iϕ(v, a0, . . . , an+1) =
{

ϕ(v, a0, . . . , ai ai+1, . . . , an+1), if 0 � i � n,

ϕ(v<0>, S−1(v<−1>)(an+1)a0, a1, . . . , an), if i = n + 1,

the codegenerecy maps s j : Cn
H(A, V ) → Cn−1

H (A, V ), defined for 0 � j � n − 1
by

s jϕ(v, a0, . . . , an−1) = ϕ(v, a0, . . . , a j , 1, a j+1, . . . , an−1),

and the cyclic operators tn : Cn
H(A, V ) → Cn

H(A, V ),

tnϕ(v, a0, . . . , an) = ϕ
(
v<0>, S−1(v<−1>)(an), a0, . . . , an−1

)
.

The cyclic homology of this cocyclic module is called the Hopf-cyclic cohomology of
the H-module algebra A with coefficients, and is denoted by HC∗

H(A, V ). We note
from [15] that if σ ∈ Aut(A), then with the Hopf algebra H = k[σ, σ−1] of Laurent
polynomials and V = σ−1

k we recover the twisted cyclic cohomology.

2.8 Hopf-cyclic cohomology of module coalgebras

Let us next recall the Hopf-cyclic cohomology of module coalgebras with SAYD
coefficients. Let C be a leftH-module coalgebra. That is,H acts on C such that

�(h · c) = h(1) · c(1) ⊗ h(2) · c(2) , ε(h · c) = ε(h)ε(c), (2.24)

for any h ∈ H, and any c ∈ C. Let also V be a right-left SAYD module over H.
Then the Hopf-cyclic cohomology of C under the symmetry of H is given by the
cocyclic module of the coface operators ∂i : Cn

H(C, V ) → Cn+1
H (C, V ) defined for

0 ≤ i ≤ n + 1 by

∂i (v ⊗H c0 ⊗ · · · ⊗ cn)

=
{

v ⊗H c0 ⊗ · · · ⊗ ci(1) ⊗ ci(2) ⊗ · · · ⊗ cn, if 0 � i � n,

v<0> ⊗H c0(2) ⊗ c1 ⊗ · · · ⊗ cn ⊗ v<−1> · c0(1) , if i = n + 1,
(2.25)

the codegeneracy operators σ j : Cn
H(C, V ) → Cn−1

H (C, V ) for 0 ≤ j ≤ n − 1

σ j (v ⊗H c0 ⊗ · · · ⊗ cn) = v ⊗H c0 ⊗ · · · ⊗ ε(c j+1) ⊗ · · · ⊗ cn, (2.26)

and the cocyclic operators τn : Cn
H(C, V ) → Cn

H(C, V )

τn(v ⊗H c0 ⊗ · · · ⊗ cn) = v<0> ⊗H c1 ⊗ · · · ⊗ v<−1> · c0. (2.27)
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The cyclic homology of this cocyclic module is denoted by HC∗
H(C, V ). In particular,

if C = H which is considered as a left H-module coalgebra by the left regular action
ofH on itself, the Hopf-cyclic cohomology with coefficients of the Hopf algebraH is
denoted by HC∗(H, V ). If, furthermore, V = σ kδ the one dimensional SAYDmodule
by a MPI (δ, σ ) ofH, the cocyclic structure given by (2.25), (2.26) and (2.27) reduces
to the one given by (2.17), (2.18) and (2.19), [15].

2.9 The characteristic map and untwisting

Let us recall from [18, Theorem 2.8] and [32, Proposition 2.3] that if A is a left H-
module algebra and V a right-left SAYD module over H, then there is a cup product

∪ : HC p
H(A, V ) ⊗ HCq(H, V ) → HC p+q(A). (2.28)

On the level of Hochschild cohomology, it is given by the formula

(ϕ ∪ (v ⊗ h1 ⊗ · · · ⊗ h p))(a0, . . . , a p+q ) = ϕ(v, a0h1(a1) . . . h p(a p), a p+1, . . . , a p+q ),

and, following [24,32], in the level of cyclic cohomology by

(ϕ ∪ h̃)(a0, . . . , a p+q)

=
∑

μ∈Sh(q,p)

(−1)μ∂μ(q) . . . ∂μ(1)ϕ(∂μ(q+p) . . . ∂μ(q+1)h̃(a0, . . . , a p+q)),

where h̃ = v ⊗H h0 ⊗ · · · ⊗ h p, μ(�) = μ(�) − 1, and Sh(q, p) denotes the set
of all (p, q)-shuffles. We note also that, for a Hopf algebra H with a MPI (δ, σ ),
the cup product by a 0-cocycle τ ∈ HC0(H, σ kδ) induces the Connes-Moscovici
characteristic homomorphism (2.23).

We will use the cup product (2.28) to untwist the twisted cyclic cohomology. To
this end, we first note that the Hopf-cyclic cohomology of the Hopf algebra of Laurent
polynomials k[σ, σ−1] with coefficients in the SAYD module corresponding to the
MPI (ε, σ−1), is concentrated in degree 1. More precisely,

HC1(k[σ, σ−1], σ−1
k) =

〈
1 ⊗ (1 − σ−1)

〉
,

Then specializing (2.28) to

∪: HC p
σ (A) ⊗ HC1(k[σ, σ−1], σ−1

k) → HC p+1(A),

we get a characteristic map

χ : HCn
σ (A) → HCn+1(A), (2.29)
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which is given in the level of Hochschild cohomology by

χ(ϕ)(a0, . . . , an+1) = ϕ(a0(1 − σ−1)(a1), a2, . . . , an+1), (2.30)

and in the level of cyclic cohomology by

χ(ϕ)(a0, . . . , an+1) =
∑

μ∈Sh(1,n)

(−1)μdμ(1)ϕ(∂μ(n+1) . . . ∂μ(2)(1 − σ−1)(a0, . . . , a p+q )).

We would like to note here that the untwisting phenomenon via a cup product
explains in part the dimension drop phenomenon observed in [12], and also Goodman
andKrähmer’s result [13, Theorem 1.1] that the smash product of a twisted Calabi-Yau
algebra of dimension d with the Laurent polynomial ring is an untwisted Calabi-Yau
algebra of dimension d + 1.

2.10 The characteristic map for compact groups

We conclude this section by investigating the characteristic homomorphism (2.23)
following [6] (see also [17]) in the case of H = U (g) and A = O(G) where G
is one of the (unimodular) groups SL(N ), SO(N ) or Sp(N ) where we have a non-
trivial invariant Haar functional, and g the Lie algebra of G. In these cases, (ε, 1)
is a MPI for the Hopf algebra U (g), and O(G) is a left U (g)-module algebra via
u( f )(x) := f (x � u) induced from the action of g on G for any u ∈ U (g), any
f ∈ O(G), and any x ∈ G.
Let μ be the Haar measure on G. Then the functional h : O(G) → k defined by

h( f ) := ∫
G f (x)dμ(x) form an invariant trace for the (commutative) Hopf algebra

O(G). Indeed, for any X ∈ g, and any f ∈ O(G),

h(X � f ) =
∫

G
(X � f )(x)dμ(x)

=
∫

G

d

dt

∣∣∣∣
t=0

f (exp(t X) x exp(t X))dμ(x)

=
∫

G

d

dt

∣∣∣∣
t=0

f (y)dμ(exp(t X) y exp(t X))

=
∫

G

d

dt

∣∣∣∣
t=0

f (y)dμ(y)

= 0 = δ(X)h( f ), (2.31)

where on the third equality we use the invariance of the Haar measure. We also note
that by the unimodularity of the group G, the trace of the adjoint representation of g
on itself vanishes. As a result, we have χ : HC∗(U (g), kδ) → HC∗(O(G)) defined
as
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562 A. Kaygun, S. Sütlü

χ(u1, . . . , un)( f 0, . . . , f n) :=
∫

G
f 0(x)(u1( f 1))(x) . . . (un( f n))(x)dμ(x),

(2.32)

where u( f ) ∈ O(G), for an arbitrary u ∈ U (g) and f ∈ O(G), denotes the left
coregular action. We also recall from [7, Theorem 15] that

HP∗(U (g), kδ) ∼=
⊕

n=∗mod 2

Hn(g, kδ)

via the anti-symmetrization ant : kδ ⊗ ∧∗ g → C∗(U (g), kδ), and from [4, Theo-
rem 46] that

HP∗(O(G)) ∼=
⊕

n=∗mod 2

HdR
n (G)

via a map ϕ �→ C given by

〈C, f 0d f 1 ∧ · · · ∧ d f n〉 =
∑
σ∈Sn

(−1)σ ϕ( f 0, f σ(1), . . . , f σ(n)).

Here HdR∗ (G) refers to the de Rham homology of G. In the reverse direction, from [5,
Theorem 3.2.14] we have � : HdR∗ (G) → HC∗(O(G)) given by

�(C)( f 0, f 1, . . . , f n) = 〈C, f 0d f 1 ∧ · · · ∧ d f n〉.

Hence, following [6, Lemma 8, 9], we arrive at the commutative diagram

HP∗(U (g), kδ)
χ

HP∗(O(G))

⊕
n=∗mod 2

Hn(g, kδ)

ant
⊕

n=∗mod 2

HdR
n (G)

�

(2.33)

which is the periodic version of (2.32) up to Poincaré duality.

3 Quantum characteristic map

In this section we will define a quantum analogue of the characteristic homomorphism
for compact quantum group algebras. To this end we will first recall the quantum
enveloping algebras, and their Hopf-cyclic cohomology, as well as the compact quan-
tum group algebras from [25]. Then using the modular property of the Haar functional
we construct a characteristic homomorphism similar to that of Connes and Moscovici
[6].
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3.1 Quantum enveloping algebras (QUE algebras)

Following [25, Sect. 6.1.2], let g be a finite dimensional complex semi-simple Lie
algebra, A = [ai j ] the Cartan matrix of g, and di ∈ {1, 2, 3} for 1 � i � � so that
DA = [diai j ] is the symmetrizedCartanmatrix. Let also q be a fixed nonzero complex
number such that q2i �= 1, where qi := qdi .

Then the quantum enveloping algebraUq(g) is the Hopf algebra with 4� generators
Ei , Fi , Ki , K

−1
i , 1 � i � �, and the relations

Ki K j = K j Ki , Ki K
−1
i = K−1

i Ki = 1,

Ki E j K
−1
i = q

ai j
i E j , Ki Fj K

−1
i = q

−ai j
i Fj ,

Ei Fj − Fj Ei = δi j
Ki − K−1

i

qi − q−1
i

,

1−ai j∑
r=0

(−1)r
[
1 − ai j

r

]

qi

E
1−ai j−r
i E j E

r
i = 0, i �= j,

1−ai j∑
r=0

(−1)r
[
1 − ai j

r

]

qi

F
1−ai j−r
i Fj F

r
i = 0, i �= j,

where [
n
r

]

q
= (n)q !

(r)q ! (n − r)q ! , (n)q := qn − q−n

q − q−1 .

The rest of the Hopf algebra structure of Uq(g) is given by

�(Ki ) = Ki ⊗ Ki , �(K−1
i ) = K−1

i ⊗ K−1
i

�(Ei ) = Ei ⊗ Ki + 1 ⊗ Ei , �(Fj ) = Fj ⊗ 1 + K−1
j ⊗ Fj

ε(Ki ) = 1, ε(Ei ) = ε(Fi ) = 0

S(Ki ) = K−1
i , S(Ei ) = −Ei K

−1
i , S(Fi ) = −Ki Fi . (3.1)

3.2 Cohomology of QUE algebras

Let us recall the Hochschild cohomology of the quantized enveloping algebrasUq(g)
from [22]. However, we develop here a different strategy than op.cit.

A modular pair in involution (MPI) for the Hopf algebra Uq(g) is given by [25,
Proposition 6.1.6]. Let Kλ := Kn1

1 . . . Kn�

� for any λ = ∑
i niαi , where ni ∈ Z. Then,

ρ ∈ h∗ being the half-sum of the positive roots of g, by [25, Proposition 6.1.6] we
have

S2(a) = K2ρaK
−1
2ρ (3.2)
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for all a ∈ Uq(g). Thus, (ε, K2ρ) is a MPI for the Hopf algebra Uq(g). We shall use
the notation σ := K2ρ . In view of the arguments in Sect. 2.2, and following [22], for

Uq(b+) = Span
{
Er1
1 . . . Er�

� Kq1
1 . . . Kq�

� | r1, . . . , r� � 0, q1, . . . , q� ∈ Z
}
,

we consider the coextension π : Uq(g) → Uq(b+) which is defined as

π(Er1
1 · · · Er�

� Kq1
1 · · · Kq�

� Fs1
1 · · · Fs�

� )

=
{
Er1
1 · · · Er�

� Kq1
1 · · · Kq�

� if r1 + · · · + r� = 0,

0 otherwise.

Because we have a Poincaré-Birkhoff-Witt basis for Uq(g), it is coflat over the coal-
gebra Uq(b+). Thus, by [22, Proposition 4.8] and [8, Lemma 5.1],

HHn(Uq(g),
σ k) =

{
k⊕ 2�

if n = �

0 if n �= �.
(3.3)

In particular, for g = s�2, we calculate the same classes as [8, Proposition 5.9].
Namely,

HHn(Uq(s�2),
σ k) =

{
〈E, K F〉 if n = 1

0 if n �= 1.
(3.4)

We finally note that along the way to compute the Hochschild (co)homology of

Uq(g), regarded as an algebra, the Tor-groups Tor
Uq (g)
∗ (k, k) and the Ext-groups

Ext∗Uq (g)(k, k) are obtained in [10].

3.3 Compact quantum group algebras (CQG algebras)

In this subsection we will construct a characteristic map HC p(Uq(g),
σ k) →

HC p+1(O(Gq)). In order to do this, we will use the existence of a unique Haar
state on the coordinate algebras, as well as their pairing with the QUE algebras.

We begin with the definition of the coordinate algebras of the quantum groups from
[25, Sect. 11.3].

Definition 3.1 AHopf ∗-algebraH is called a compact quantumgroup (CQG) algebra
ifH is the linear span of all matrix elements of finite dimensional unitary corepresen-
tations of H. A compact matrix quantum group (CMQG) algebra is a CQG algebra
which is generated, as an algebra, by finitely many elements.

Amongexamples ofCMQGalgebras are theHopf∗-algebrasO(Uq (N )),O(SUq(N )),
O(Oq(N ;R)), O(SOq(N ;R)) and O(Spq(N )), see [25, Example 11.7]. For any
compact groupG, theHopf algebra R(G) of representative functions is aCQGalgebra.
Also, if μ is the Haar measure on such a group G then h : R(G) → k given by
h( f ) := ∫

G f (x)dμ(x) is the corresponding Haar functional.
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A characteristic map for compact quantum groups 565

Theorem 3.2 IfA = O(Gq) is a CQG algebra, then there is a characteristic map of
the form

χq : HC∗(Uq(g),
σ k) → HC∗

σ−1(O(Gq)),

χq(y
1, . . . , yn)( f 0, . . . , f n) := h( f 0y1( f 1) . . . yn( f n)).

(3.5)

Proof Every CQG algebra possesses a unique (left and right invariant) Haar functional
due to their cosemisimplicity [25, Theorem 11.13]. In view of [25, Eq. 11(36)], it
follows from [25, Proposition 11.34] that the Haar functional h : A → k on a CQG
algebra of the form A = O(Gq) has the crucial property that

h(ab) = h(b(σ � a � σ)) (3.6)

for σ = K2ρ ∈ Uq(g) with the left ad the right coregular actions. We will observe the
compatibility of the map (3.5) with the Hopf-cyclic coface operators (2.17), codegen-
eracies (2.18), and the cyclic operator (2.19). Accordingly, we first show that

χq(d0(y
1, . . . , yn))( f 0, . . . , f n+1) = χq(1, y

1, . . . , yn)( f 0, . . . , f n+1)

= h( f 0 f 1y1( f 2) . . . yn( f n+1))

= d0χq(y
1, . . . , yn)( f 0, . . . , f n+1).

Next we observe for 1 � i � n that

χq(di (y
1, . . . , yn))( f 0, . . . , f n+1) = χq(y

1, . . . ,�(yi ), . . . , yn)( f 0, . . . , f n+1)

= h( f 0y1( f 1) . . . yi ( f i f i+1) . . . yn( f n+1))

= diχq(y
1, . . . , yn)( f 0, . . . , f n+1).

As for the last coface map we have

χq(dn+1(y
1, . . . , yn))( f 0, . . . , f n+1) = χq(y

1, . . . , yn, σ )( f 0, . . . , f n+1)

= h( f 0y1( f 1) . . . yn( f n)σ ( f n+1))

= h(( f n+1 � σ−1) f 0y1( f 1) . . . yn( f n))

= χq(y
1, . . . , yn)(( f n+1 � σ−1) f 0, . . . , f n)

= dn+1χq(y
1, . . . , yn)( f 0, . . . , f n+1).

We proceed to the codegeneracies. We have,

χq (s j (y
1, . . . , yn))( f 0, . . . , f n−1) = χq (y1, . . . , ε(y j ), . . . , yn)( f 0, . . . , f n−1)

= ε(y j )h( f 0y1( f 1) . . . y j−1( f j−1)y j+1( f j+1) . . . yn( f n−1))

= χq (y1, . . . , yn)( f 0, . . . , f j , 1, f j+1, . . . f n−1)

= s jχq (y1, . . . , yn)( f 0, . . . , f n−1).
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Finally, we consider the compatibility with the cyclic operator. We have

χq (t (y1, . . . , yn))( f 0, . . . , f n+1) = χq (S(y1)(y2, . . . , yn, σ ))( f 0, . . . , f n)

= h( f 0S(y1)(y2, . . . , yn, σ )( f 1, . . . , f n))

= h(y1(1) ( f
0S(y1(2) )(y

2, . . . , yn, σ )( f 1, . . . , f n)))

= h(y1( f 0)y2( f 1) . . . yn( f n−1)σ ( f n))

= h(( f n � σ−1)y1( f 0)y2( f 1) . . . yn( f n−1))

= χq (y1, . . . , yn)(( f n+1 � σ−1), f 0, . . . , f n)

= tχq (y1, . . . , yn)( f 0, . . . , f n+1).

As a result, for a compact group G with Lie algebra g, the morphism χq defined on
the chain level by (3.5) induces a morphism HC∗(Uq(g),

σ k) → HC∗
σ−1(O(Gq)) in

the level of cohomology. ��
Remark 3.3 We would like remark that the modularity (3.6) of the Haar functional
is not given by a module algebra action of Uq(g) on O(Gq). However, it is observed
in [28, Theorems 1, 2] that it can be viewed as the module algebra action of the
modular square of Uq(g), see [27, Example 3.14]. Then the same Haar functional
induces a Connes-Moscovici characteristic map whose target is now the ordinary
cyclic cohomology of O(Gq), [28, Theorem 2], which is observed to be zero for
G = SU (2), [28, Theorem 9]. On the other hand, the characteristic map (3.5) is also
given by [27, Theorem 8.2].

From Sect. 2.9 we conclude the following.

Corollary 3.4 If A = O(Gq) is a CQG algebra, then there is a characteristic map
of the form

χ̃q : HCn(Uq(g),
σ k) → HCn+1(O(Gq))

for every n � 0.

4 The characteristic map between Uq(s�2) and O(SLq(2))

In this section we show the non-triviality of the characteristic map between cohomolo-
gies of Uq(s�2) and O(SLq(2)). We compare the classes we obtain in its image by
the classes computed in [30].

4.1 The coordinate algebra O(SLq(2))

Let us begin with the definition of the coordinate algebra O(SLq(2)) of the quantum
group SLq(2). By [25, Sect. 4.1.2], it is the algebra generated by

t =
(
a b
c d

)
(4.1)
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A characteristic map for compact quantum groups 567

subject to the relations

ab = qba, ac = qca, ad = da + (q − q−1)bc,

bc = cb, bd = qdb, cd = qdc, ad − qbc = 1. (4.2)

The rest of the Hopf algebra structure is given by

�(t) = t ⊗ t, ε(t) = 1, S(t) =
(

d −q−1b
−qc a

)
. (4.3)

Moreover, it is proved in [25, Theorem 4.21] that

〈K , a〉 = q−1, 〈K , d〉 = q, 〈E, c〉 = 〈F, b〉 = 1 (4.4)

determines a non-degenerate pairing between the Hopf algebras Uq(s�2) and
O(SLq(2)).

4.2 The quantum characteristic map

It is shown in [25, Theorem 4.14] that there exists a unique invariant linear functional
h : O(SLq(2)) → k such that h(1) = 1. This is the Haar functional ofO(SLq(2)) as
defined in Sect. 3.3. This functional satisfies

((Id⊗h) ◦ �)(x) = h(x)1 = ((h ⊗ Id) ◦ �)(x) (4.5)

for all x ∈ O(SLq(2)). More explicitly, by [25, Theorem 4.14],

h(arbkc�) = h(bkc�dr ) =
{
0, r �= 0, or k �= �

(−1)k q−q−1

qk+1−q−(k+1) , r = 0, and k = �.
(4.6)

Furthermore, by [25, Proposition 4.15] the Haar functional h : O(SLq(2)) → k is
not central (a trace), instead

h(xy) = h(ϑ(y)x) (4.7)

for all x, y ∈ O(SLq(2)) where ϑ : O(SLq(2)) → O(SLq(2)) is the automorphism
given by [25, Proposition 4.5] as

ϑ(a) = q2a, ϑ(b) = b, ϑ(c) = c, ϑ(d) = q−2d. (4.8)

Lemma 4.1 The automorphism ϑ : O(SLq(2)) → O(SLq(2)) can be given by
the action of K−1 ∈ Uq(s�2) in the sense that ϑ(x) = K−1 � x � K−1 for any
x ∈ O(SLq(2)).
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Proof In view of the pairing (4.4) we have

K−1 � a � K−1 = 〈K , S(a(1) )〉a(2)〈K , S(a(3) )〉
= 〈K , S(a)〉a〈K , S(a)〉 + 〈K , S(b)〉c〈K , S(a)〉

+ 〈K , S(a)〉b〈K , S(c)〉 + 〈K , S(b)〉d〈K , S(c)〉
= 〈K , d〉2a = q2a = ϑ(a).

Similarly, we have

K−1 � b � K−1 = 〈K , S(b(1) )〉b(2)〈K , S(b(3) )〉
= 〈K , S(a)〉a〈K , S(b)〉 + 〈K , S(b)〉c〈K , S(b)〉

+ 〈K , S(a)〉b〈K , S(d)〉 + 〈K , S(b)〉d〈K , S(d)〉
= 〈K , d〉〈K , a〉b = b = ϑ(b),

and

K−1 � c � K−1 = 〈K , S(c(1) )〉c(2)〈K , S(c(3) )〉
= 〈K , S(c)〉a〈K , S(a)〉 + 〈K , S(d)〉c〈K , S(a)〉

+ 〈K , S(c)〉b〈K , S(c)〉 + 〈K , S(d)〉d〈K , S(c)〉
= 〈K , a〉〈K , d〉c = c = ϑ(c),

and finally

K−1 � d � K−1 = 〈K , S(d(1) )〉d(2)〈K , S(d(3) )〉
= 〈K , S(c)〉a〈K , S(b)〉 + 〈K , S(d)〉c〈K , S(b)〉

+ 〈K , S(c)〉b〈K , S(d)〉 + 〈K , S(d)〉d〈K , S(d)〉
= 〈K , a〉2d = q−2d = ϑ(d).

as we wanted to show. ��
Lemma 4.2 The right coregular action of σ−1 = K−1 ∈ Uq(s�2) on O(SLq(2)) is
an automorphism of O(SLq(2)).

Proof We have

( f g) � σ−1 = 〈( f g)(1) , σ
−1〉( f g)(2)

= 〈 f ∂.s1g(1) , σ
−1〉 f(2)g(2)

= 〈 f(1) , σ−1〉〈g(1) , σ
−1〉 f(2)g(2)

= ( f � σ−1)(g � σ−1).

��

123



A characteristic map for compact quantum groups 569

Lemma 4.3 The Haar functional h : O(SLq(2)) → k is ε-invariant with respect to
the left coregular action of Uq(s�2) on O(SLq(2)).

Proof Via the invariance of (4.5), for any y ∈ Uq(s�2) and f ∈ O(SLq(2)) we have

h(y( f )) = h( f(1) )〈y, f(2)〉 = h( f )〈y, 1〉 = ε(y)h( f ).

��
As a result, using Theorem 3.2 we get the following.

Corollary 4.4 For the Hopf algebra Uq(s�2) with the modular pair (ε, σ ) in invo-
lution, the Haar functional h : O(SLq(2)) → k determines a characteristic
homomorphism

χq : HC∗(Uq(s�2),
σ k) → HC∗

σ−1(O(SLq(2))),

χq(y
1, . . . , yn)( f 0, . . . , f n) := h( f 0y1( f 1) . . . yn( f n)), (4.9)

where for any x, y ∈ Uq(s�2) and f ∈ O(SLq(2)), y( f )(x) := f (xy) is the left
coregular action.

Combining with Corollary 3.4, we obtain the following result.

Corollary 4.5 For the Hopf algebra Uq(s�2) with the modular pair (ε, σ ) in invo-
lution, the Haar functional h : O(SLq(2)) → k determines a characteristic
homomorphism

χ̃q : HC∗(Uq(s�2),
σ k) → HC∗+1(O(SLq(2))). (4.10)

4.3 The non-triviality of the quantum characteristic map

In order to discuss the non-triviality of the characteristic homomorphism (4.9) we
recall the results of [30]. First define

d(t) :=
{

dt if t � 0
a−t if t < 0,

and
(x; q)n := (1 − x)(1 − qx) · · · (1 − qn−1x).

In [30] it is calculated that

HCn(O(SLq (2))) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k[τeven] ⊕
⊕

i, j,k,�>0

k[τ ia] ⊕ k[τ j
b ] ⊕ k[τ kc ] ⊕ k[τ �

d ] if n = 0

kS�n/2�[τeven] if n > 0 is even

kS�n/2�[τodd] if n is odd

(4.11)
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where

τ la(d(t)bmcn) = δt,−lδm,0δn,0,

τ lb(d(t)bmcn) = δt,0δm−n,l
ql − 1

ql+2n − 1
(−q)n,

τ lc(d(t)bmcn) = δt,0δn−m,l
ql − 1

ql+2m − 1
(−q)m,

τ ld(d(t)bmcn) = δt,lδm,0δn,0,

τeven(d(t)bmcn) = δt,0δm,0δn,0, (4.12)

and finally

τodd(d(t)bmcn, d (̃t)bm̃cñ) = 0 if t + t̃ �= 0,

τodd(a
tbmcn, dt̃bm̃cñ) = τodd(d

tbmcn, at̃bm̃cñ)

= (n − m)(−q)n+ñqt (m̃+ñ) (q2; q2)t
(q2(n+ñ); q2)t+1

δt ,̃tδm+m̃,n+ñ .

(4.13)

We are now ready to compute the images, under the characteristic homomorphism
(4.10), of the Hopf-cyclic classes (3.4).

Proposition 4.6 The classes [χ̃q(E)], [χ̃q(K F)] ∈ HC2(O(SLq(2))) are nontrivial.

Proof By the definition (4.6) of the Haar functional h : O(SLq(2)) → k, we have

χ̃q(E)(x0, x1, x2) = −χq(E)(x0(1 − σ)(x1), x2) − χq(E)(x0x1, (1 − σ)(x2))

+χq(E)(x0, (1 − σ)(x1)x2)

= h(x0(1 − σ)(x1)E(x2)) − h(x0x1E(1 − σ)(x2))

+h(x0E((1 − σ)(x1)x2)).

We consider the element ω = b ⊗ c2 ⊗ a − a ⊗ b ⊗ c2 ∈ O(SLq(2))⊗ 3 on which
any coboundary vanishes, that is, for any cyclic 1-cocycle ϕ : O(SLq(2))⊗ 2 → k,

bϕ(ω) = ϕ(bc2 ⊗ a) − ϕ(b ⊗ c2a) + ϕ(ab ⊗ c2)

−ϕ(ab ⊗ c2) + ϕ(a ⊗ bc2) − ϕ(c2a ⊗ b) = 0.

Hence it follows from

χ̃q(E)(ω) = h(b(1 − σ)(c2)E(a)) − h(bc2E(1 − σ)(a)) + h(bE((1 − σ)(c2)a))

= (2q−2 + q−1 − 1)h(b2c2) = (2q−2 + q−1 − 1)
q − q−1

q3 − q−3 �= 0
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that [χ̃q(E)] �= 0. Using the element ω = c⊗ b2 ⊗ d − d ⊗ c⊗ b2 ∈ O(SLq(2))⊗ 3,
we similarly arrive at [χ̃q(K F)] �= 0. ��

In view of (4.11) we conclude the following.

Corollary 4.7 We have [χ̃q(K F)] = [χ̃q(E)] = [S(τeven)] ∈ HC2(O(SLq(2))).

5 The q-Index Cocycle for the Standard Podleś Sphere

In this section we discuss the equivariant generalization of (4.9), and we capture the
Schmüdgen-Wagner index cocycle of [34] in the image of the equivariant characteristic
map.

5.1 QUE algebra Uq(su2) and CQG algebra O(SUq(2))

LetO(SUq(2)) be the coordinateHopf algebra of the compact quantumgroup SUq (2),
see [25, Sect. 4.1.4]. Following the notation of [34], let also Uq(su2) be the Hopf
algebra generated by E, F, K , K−1 subject to the relations

KK−1 = K−1K = 1, K E = qEK , FK = qK F, EF − FE = K 2 − K−2

q − q−1 ,

whose Hopf algebra structure is given by

�(K ) = K ⊗ K , �(K−1) = K−1 ⊗ K−1,

�(E) = E ⊗ K + K−1 ⊗ E, �(F) = F ⊗ K + K−1 ⊗ F,

ε(K ) = ε(K−1) = 1, ε(E) = ε(F) = 0,

S(K ) = K−1, S(E) = −qE, S(F) = −q−1F.

We note that, in the terminology of [25], it is the Hopf algebra Ŭq(s�2).
We also note that the non-degenerate pairing between the Hopf algebras Uq(su2)

and O(SUq(2)) is given by

〈K±1, d〉 = 〈K∓1, a〉 = q±1/2, 〈E, c〉 = 〈F, b〉 = 1.

Then, O(SUq(2)) is a left (and a right) Uq(su2)-module algebra via the coregular
action.

5.2 The standard Podleś Sphere

The coordinate ∗-algebra O(S2q ) of the standard Podleś sphere [31] is the unital ∗-
algebra with three generators A = A∗, B, B∗ with the relations

BA = q2AB, AB∗ = q2B∗A, B∗B = A − A2, BB∗ = q2A − q4A2.
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It is also possible to view it as the K -invariant subalgebra

O(S2q ) = {x ∈ O(SUq(2)) | x � K = x}

of O(SUq(2)). We also recall from [34] that for the Haar state h on O(SUq(2)),
we have h(xy) = h((K−2(y) � K−2)x) for any x, y ∈ O(SUq(2)). Hence, for any
x, y ∈ O(S2q ) we have h(xy) = h(σ (y)x) with σ = K−2.

5.3 Equivariant Hopf-cyclic cohomology and its actions

Let us also recall from [34, Lemma 4.1] that

h(RF (x)RE (y)) = q2h(RE (x)RF (y)),

for all x, y ∈ O(S2q ). As a result, the functional τ : O(S2q )
⊗ 3 → k, defined for all

x, y, z ∈ O(S2q ) as

τ(x, y, z) := h(x RF (y)RE (z) − q2x RE (y)RF (z)),

is a nontrivial σ -twisted cyclic 2-cocycle, i.e. [τ ] ∈ HC2
σ (O(S2q )).

On the other hand, we recall the cup product construction defined in [33, Theo-
rem 3.3]. Let H be a Hopf algebra, K ⊆ H a cocommutative Hopf subalgebra, and
finally V and N are SAYD modules over K and H respectively. It is proved in [33,
Theorem 3.1] that

CK(H, V, N ) :=
⊕
p�0

C p
K(H, V, N ), C p

K(H, V, N ) := HomK(V, N ⊗H H⊗ p+1)

is a cocyclic module, computing the equivariant Hopf-cyclic cohomology HCK
(H, V, N ), via

di (φ)(v) =
{

∂i (φ(v)), if 0 ≤ i ≤ p,

∂p+1(φ(v<0>)) � S(v<−1>), if i = p + 1,

s j (φ)(v) = σ j (φ(v)), for 0 ≤ j ≤ p − 1,

tp(φ)(v) = τp(φ(v<0>)) � S(v<−1>),

where the morphisms ∂i , σ j , and τ are those given by (2.25), (2.26) and (2.27), and

(n ⊗H h0 ⊗ · · · ⊗ h p) � u = n ⊗H h0 ⊗ · · · ⊗ h pu.

We recall also that φ ∈ C p
K(H, V, N ) if

φ(v · u) = φ(v) · u, (5.1)
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for any u ∈ K where

(n ⊗H h0 ⊗ · · · ⊗ h p) · u := n ⊗H h0u(1) ⊗ · · · ⊗ h pu(p+1) .

Employing the notation φ(v) =: φ(v)
[−1] ⊗H φ(v)

[0] ⊗ · · · ⊗ φ(v)
[p]

for φ ∈
C p
K(H, V, N ), let us set � : C p

K(H, V, N ) ⊗ C p
H(A, N ) −→ C p

K(A, V ) as

�(φ ⊗ ψ)(v ⊗ x0 ⊗ · · · ⊗ xp)

= ψ
(
φ(v)

[−1] ⊗ φ(v)
[0]

(x0) ⊗ φ(v)
[1]

(x1) ⊗ · · · ⊗ φ(v)
[p]

(xp)
)

.

Then the equivariant characteristic map is given by the cup product

HC p
K(H, V, N ) ⊗ HCq

H(A, N ) → HC p+q
K (A, V ), [φ] ∪ [ϕ] := �(Sh(φ ⊗ ϕ)).

(5.2)
using the shuffle map Sh : Tot → Diag, from the total of the tensor product of the
complexes C∗

K(H, V, N ) and C∗
H(A, N ) to the diagonal. Adopting the notation of

[23], the shuffle map is given by

Sh : Totn → Diagn, Sh =
∑

p+q=n

∇p,q ,

where
∇p,q =

∑
μ∈Shq,p

(−1)μdμ(p+q) . . . dμ(p+1)∂μ(p) . . . ∂μ(1).

5.4 The q-index cocycle for the standard Podleś sphere

Let us take H = Uq(su2), K = k[σ, σ−1], N = σ−1
k, V = σ k and A = O(S2q ). On

the next proposition we compute the q-index cocycle in the equivariant Hopf-cyclic
cohomology.

Proposition 5.1 Let F ∈ C2
K(H, V, N ) be given by

F(1) := 1⊗H 1⊗ (K F⊗EK 3−EK ⊗K 3F)− (q3−q)−11⊗H 1⊗1⊗K 4. (5.3)

Then, [F] ∈ HC2
K(H, V, N ), i.e. F is an equivariant cyclic 2-cocycle.

Proof Let us first show that F is indeed K-equivariant. For any Km with m ∈ Z we
have

F(1) · Km = 1 ⊗H Km ⊗ (K FKm ⊗ EK 3+m − EKm+1 ⊗ K 3FKm)

− (q3 − q)−11 ⊗H Km ⊗ Km ⊗ K 4+m

= 1 · Km ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F)

− (q3 − q)−11 ⊗H 1 ⊗ 1 ⊗ K 4 = F(1 · Km).
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Let us next show that F is a Hochschild 2-cocycle. To this end we note that

b(1 ⊗H 1 ⊗ EK ⊗ K 3F) = 1 ⊗H 1 ⊗ 1 ⊗ EK ⊗ K 3FK 2

− 1 ⊗H 1 ⊗ (1 ⊗ EK + EK ⊗ K 2) ⊗ K 3FK 2

+ 1 ⊗H 1 ⊗ EK ⊗ (K 2 ⊗ K 3FK 2 + K 3F ⊗ K 2K 2)

− 1 ⊗H 1 ⊗ EK ⊗ K 3F ⊗ K 2K 2 = 0,

and similarly that b(1 ⊗H 1 ⊗ K F ⊗ EK 3) = 0. As a result, b(F) = 0. We next
observe that

t (1 ⊗H 1 ⊗ EK ⊗ K 3F) = 1 ⊗H EK ⊗ K 3F ⊗ K 2K 2

= 1 ⊗H E ⊗ K 3FK−1 ⊗ K 3

= −q−21 ⊗H 1 ⊗ EFK 2 ⊗ K 4 − 1 ⊗H 1 ⊗ K F ⊗ EK 3,

where we used (5.1) in the second equality, and that

t (1 ⊗H 1 ⊗ K F ⊗ EK 3) = 1 ⊗H K F ⊗ EK 3 ⊗ K 4

= −q−21 ⊗H 1 ⊗ FEK 2 ⊗ K 4 − 1 ⊗H 1 ⊗ EK ⊗ K 3F.

As a result,

t (1 ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F)) = 1 ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F)

+ q−21 ⊗H 1 ⊗ (EF − FE)K 2 ⊗ K 4

= 1 ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F)

+ (q3 − q)−11 ⊗H 1 ⊗ K 4 ⊗ K 4

− (q3 − q)−11 ⊗H 1 ⊗ 1 ⊗ K 4.

On the other hand, b(1 ⊗H 1⊗ 1⊗ K 4) = 0, and t (1 ⊗H 1⊗ 1⊗ K 4) = 1 ⊗H 1⊗
K 4 ⊗ K 4. Hence, we have

b(1 ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F) − (q3 − q)−11 ⊗H 1 ⊗ 1 ⊗ K 4) = 0

and

t (1 ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F) − (q3 − q)−11 ⊗H 1 ⊗ 1 ⊗ K 4)

= 1 ⊗H 1 ⊗ (K F ⊗ EK 3 − EK ⊗ K 3F) − (q3 − q)−11 ⊗H 1 ⊗ 1 ⊗ K 4.

We thus conclude that

F = 1⊗H1⊗(K F⊗EK 3−EK⊗K 3F)−(q3−q)−11⊗H1⊗1⊗K 4 ∈ C2
K(H, V, N )

is an equivariant cyclic 2-cocycle. ��
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Now, using the equivariant cup product (5.2) we obtain the following version of
the Schmüdgen-Wagner 2-cocycle [34], see also [14].

Corollary 5.2 There is a nontrivial σ−1-twisted cyclic 2-cocycle τ on O(S2q ) such
that

τ(x0, x1, x2) = h(x0K F(x1)EK 3(x2)) − h(x0EK (x1)K
3F(x2))

−(q3 − q)−1h(x0x1K
4(x2)). (5.4)

Proof We obtain the cocycle (5.4) by the cup product (5.2) of the Hopf-cyclic 0-
cocycle [h] ∈ HC0

Uq (su2)
(O(S2q ),

σ−1
k) with the equivariant 2-cocycle (5.3).

We next show that it is nontrivial. Following [34], we consider the element

η′ = q4B∗ ⊗ A ⊗ B + q2B ⊗ B∗ ⊗ A + q2A ⊗ B ⊗ B∗

− q2B∗ ⊗ B ⊗ A − q2A ⊗ B∗ ⊗ B − B ⊗ A ⊗ B∗ + (q6 − q2)A ⊗ A ⊗ A

on which any Hochschild coboundary of a σ−1-twisted cyclic 1-cocycle vanishes.
Indeed, for any σ−1-twisted cyclic 1-cocycle τ ′ ∈ HC1

σ−1(O(S2q )),

bτ ′(η′) = (q4 − q2)τ ′(A ⊗ A) = 0.

On the other hand, a quick computation yields τ(η′) �= 0. ��
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