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Abstract We give a classification of the 2-groupoid of singular extensions of cate-
gorical groups by means of a second cohomology categorical group, whose definition
uses the notion of nerve of a categorical group. This second cohomology is, then,
shown to be involved in a five term 2-exact sequence à la Hochschild–Serre which is
associated with any essentially surjective homomorphism of categorical groups.
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1 Introduction

For any groupG and anyG-module A, it is well-known that the abelian group of singu-
lar extensions of G by A is classified by the second Eilenberg–Mac Lane cohomology
group H2(G, A) [19]. Such a cohomological classification, for singular extensions of
categorical groups with symmetric kernel and a functorial section, has been recently
showed in [13]. This classification uses a second categorical cohomology groupwhose
definition generalizes the cohomology groups defined byUlbrich in [23]. It is obtained
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448 A. R. Garzón

from a cochain complex of symmetric categorical groups that is built through the
pseudo-simplicial category thatG defines by the familiar bar construction (see [4,8]),
but taking into account the G-action on A.

The aim in this paper is to give the same answer to the more general problem of
considering all singular extensions of categorical groups with symmetric kernel. In
other words, to give a cohomological classification of the symmetric categorical group
of singular extensions of a categorical group G by a given symmetric G-categorical
groupA. This is carried out in Sect. 3 and, for this classification, we introduce a second
cohomology categorical groupH2(G,A)which is obtained from a cochain complex of
symmetric categorical groups that is built through the simplicial set, Ner(G), nerve of
a categorical groupG introduced in [5]. We, then, prove in Theorem 3.5 the existence
of a biequivalence of bigroupoids giving the desired classification and, moreover,
determining in Corollary 3.6 a Baer sum in the groupoid of singular extensions.

With the objective of suggesting a proof for a categorical-group version of the
classical Hochschild–Serre 5-term exact sequence, we developed in Section 2 of [13]
a new proof, suitable to our 2-dimensional interest, of this group exact sequence. With
this precedent, and using the second categorical cohomology group there defined, we
showed, in Section 6 of [13], Hoschild–Serre’s sequences for categorical groups. Now,
in Sect. 4, as a main application of this paper, and in a parallel way to that developed
in [13], we show new categorical group versions of the classical Hochschild–Serre
5-term exact group sequences [14] involving the H2 here studied. These sequences
are associated to any essentially surjective homomorphism of categorical groups and,
in them, new categorical groups of ‘non-functorial derivations’, which are introduced
at the beginning of the section, appear.

Firstly, before these two sections, we collect in Sect. 2 some basic facts on (symmet-
ric) categorical groups (see [1,3,16,21] for the background) and on the corresponding
notions of action [9,10,12], kernel, cokernel, and exactness [10,18,24]. Later, we also
recall some results about categorical crossed modules (see [10]).

2 Preliminaries

A categorical group (sometimes called gr-category or 2-group in the literature) is a
monoidal groupoid G = (G,⊗, I, a, l, r) such that every object X is invertible, that
is, the functor

X ⊗ (−) : G → G, Y �→ X ⊗ Y

is an equivalence. It is then possible to choose, for each X ∈ G, an object X∗ ∈ G

(called an inverse of X and denoted in this way following [16] or [3]) and arrows
ηX : I → X ⊗ X∗ and εX : X∗ ⊗ X → I such that the usual triangular identities
are satisfied. The choice of a system of inverses (X∗, ηX , εX ), X ∈ G, induces a
categorical equivalence

(−)∗ : G → G f : X → Y �→ f ∗ : X∗ → Y ∗

where f ∗ is defined as follows

123



Singular extensions and the second cohomology categorical group 449

X∗ � X∗⊗ I
1⊗ηY

X∗⊗Y⊗Y ∗ 1⊗ f −1⊗1
X∗⊗X⊗Y ∗ εX⊗1

I ⊗ Y ∗ � Y ∗ .

Note that, if in the definition of f ∗ we use f instead of f −1, then the equivalence
(−)∗ : G −→ G is contravariant and (X, X∗, ηX , εX ) is a duality in G.

A categorical group G is said to be symmetric if it is symmetric as a monoidal
category, the symmetry being usually denoted by cX,Y : X ⊗ Y → Y ⊗ X. We will
denote by CG (respectively SCG) the 2-category whose objects are categorical groups
(respectively, symmetric categorical groups). Following the terminology in [16], the 1-
arrows, which are monoidal functors T = (T, T2) : G → H (respectively, symmetric
monoidal functors), are called homomorphisms, and the 2-arrows, which aremonoidal
natural transformations, are called morphisms. Note that a canonical arrow T0 : I →
T I can be constructed from the natural and coherent family of arrows T X,Y

2 : T X ⊗
TY → T (X ⊗ Y ). Note also that in CG and SCG, the 2-arrows are invertible.

When no confusion arises, in order to simplify notation we will

– omit the associativity isomorphism aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) and
the right and left unit isomorphisms rX : X → X ⊗ I and lX : X → I ⊗ X

– omit indexes, writing for example c : X ⊗ Y → Y ⊗ X instead of cX,Y

– denote canonical arrows as “can” or even as unlabelled arrows; for example, we
write can : X → Y ⊗ X ⊗ Y ∗ or just X � Y ⊗ X ⊗ Y ∗ instead of

X
rX

X ⊗ I
1⊗ηY

X ⊗ Y ⊗ Y ∗ cX,Y⊗1
Y ⊗ X ⊗ Y ∗ .

If G and A are categorical groups, an action of G on A is a homomorphism of
categorical groups ϕ : G → Eq(A),whereEq(A) is the categorical group ofmonoidal
autoequivalences of A. When such a G-action is given, we will say that A = (A, ϕ)

is a G-categorical group. To give a G-categorical group structure on A is equivalent
to giving a functor

ϕ : G × A → A, (X, A)
( f,u)

(Y, B) �→ ϕ(X)(A) = XA
ϕ( f )(u)= fu

ϕ(Y )(B) = YB

(when f = idX or u = idA, we write respectively Xu and f A instead of fu) together
with natural families of arrows

ϕ
X,A,B
2 : XA ⊗ XB → X(A ⊗ B), ϕ

X,Y,A
1 : X( YA) → X⊗YA, ϕA

0 : A → IA

satisfying suitable coherence conditions (see Remark 3.5 in [13] or Definition 2.1 in
[9]).1

We say that an action ϕ : G → Eq(A) is symmetric (or that A is a symmetric
G-categorical group) if A is symmetric and ϕ factorizes through ϕ : G → Eqs(A),

where Eqs(A) is the categorical group of symmetric monoidal autoequivalences ofA.

1 All along the paper, we will consider several coherence conditions. When they are already available in
the literature, we limit ourselves to give a precise reference. Otherwise, we express the condition as an
equation or in the more readable form of a commutative diagram.
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Actions form a 2-category, denoted ACT (or SACT if we restrict to symmetric
actions), where the 1-cells are the homomorphisms of actions, that is, triples

(R, F, λ) : (G,A, ϕ) → (G′,A′, ϕ′)

with R : G → G
′ and F : A → A

′ two homomorphisms in CG (with F in SCG if the
actions ϕ and ϕ′ are symmetric), and

λX,A : F( XA) → RXFA

a natural family of arrows satisfying suitable coherence conditions (see [13]).
Given two homomorphisms of actions

(R, F, λ), (R′, F ′, λ′) : (G,A, ϕ) → (G′,A′, ϕ′)

a morphism (2-cell) of actions is a pair of morphisms

β : R ⇒ R′, α : F ⇒ F ′

in CG compatibles with the actions (see [13]).
Given a homomorphism T : G → H in CG, its kernel is the following diagram in

CG

G

T
⇓k(T )

Ker(T )

K(T )

0
H

where

– an object of Ker(T ) is a pair (X ∈ G, x : T X → I );
– an arrow f : (X, x) → (Y, y) in Ker(T ) is an arrow f : X → Y in G such that

y · T ( f ) = x;
– the faithful (but in general not full) homomorphismK(T ) : Ker(T ) → G is defined
by K(T )( f : (X, x) → (Y, y)) = ( f : X → Y );

– the component at (X, x) of the morphism k(T ) is given by x : T (K(T )(X, x)) =
T X → I = 0(X, x).

The kernel of T is a bilimit in the sense of [2] and also a standard homotopy kernel
(see [18]).

Note that, because of the double universal property of the kernel, we do not pay
too much attention to the fact that a diagram in CG or in SCG involving kernels (or
cokernels) commutes strictly or just up to a 2-arrow.
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Singular extensions and the second cohomology categorical group 451

Let now T : G → H be a homomorphism in SCG. Its cokernel is the following
diagram in SCG

H

C(T )

⇓c(T )

G

T

0
Coker(T )

and it satisfies two universal properties dual to those of the kernel. It can be described
as follows:

– the objects of Coker(T ) are those of H;
– a prearrow from A to B is a pair (X ∈ G, f : A → T X ⊗ B);
– an arrow [X, f ] : A ◦ B is an equivalence class of prearrows, where two
prearrows (X, f ), (X ′, f ′) fromA to B are equivalent if there exists an arrow
x : X → X ′ in G such that (T (x) ⊗ 1) · f = f ′;

– the tensor product of two arrows [X, f ] : A ◦ B and [Y, g] : C ◦ D is
given by the class of the prearrow with object part X ⊗ Y and arrow part

A ⊗ C
f ⊗g

T X ⊗ B ⊗ TY ⊗ D
1⊗c⊗1

T X ⊗ TY ⊗ B ⊗ D � T (X ⊗ Y ) ⊗ B ⊗ D

– the essentially surjective on objects homomorphism C(T ) : H → Coker(T ) sends
an arrow f : A → B to the class of the prearrow

(I, A
f

B T I ⊗ B )

C(T ) in general is not a full functor;
– the component at X ∈ G of themorphism c(T ) is given by the class of the prearrow

(X, T X → I ⊗ T X).

Note that, althoughwehave described the cokernelCoker(T ) as a categorical group,
in fact it is obtained from a monoidal bicategory by taking 2-isomorphism classes of
1-arrows as arrows. This fact that Coker(T ) is a monoidal bicategory is mentioned in
the introduction of [24], and the whole proof has been done in [15].

A diagram

B

G
⇓ρ

A

F

0
C

in CG is 2-exact if the comparison homomorphism F ′ : A → Ker(G) is full and
essentially surjective on objects. When the above diagram is in SCG, its 2-exactness
is equivalent to asking that the comparison homomorphism G ′ : Coker(F) → C is
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full and faithful. Obvious examples of 2-exact sequences are provided by the above
kernel and cokernel constructions.

Categorical precrossed modules and categorical crossed modules have been intro-
duced in [10], and used in [7] as algebraic models for connected homotopy 3-types.
Next we recall the construction of the 2-category of categorical crossed modules and
some results on the quotient categorical group associated with a categorical crossed
module that we will use below (c.f. [10,13])

A categorical crossed module (see Definition 2.2 and 2.4 in [10]) is a 6-tuple

(G,A, ϕ : G → Eq(A), T : A → G, ν, χ)

with (G,A, ϕ) an action, T : A → G a homomorphism in CG, and

νX,A : T ( XA) ⊗ X → X ⊗ T A and χA,B : T AB ⊗ A → A ⊗ B

natural families of arrows satisfying suitable coherence conditions.
A homomorphism from (G,A, ϕ, T, ν, χ) to (G′,A′, ϕ′, T ′, ν′, χ ′) is a 4-tuple

(R, F, λ, τ ) with (R, F, λ) : (G,A, ϕ) → (G′,A′, ϕ′) a homomorphism in ACT ,

and τ : R · T ⇒ T ′ · F a morphism in CG satisfying suitable coherence conditions.
Finally, if (R, F, λ, τ ) and (R′, F ′, λ′, τ ′) are two such homomorphisms of categorical
crossed modules, a morphism of categorical crossed modules is a morphism

(β, α) : (R, F, λ) ⇒ (R′, F ′, λ′)

in ACT satisfying again a suitable coherence condition.
Categorical crossed modules with their homomorphisms and morphisms form a

2-category denoted CCM (or SCCM if we restrict to symmetric actions). Whenever
the homomorphism T : A → G is faithful, the categorical crossed module is said to
be a normal sub-categorical group of G.

Let us recall from [10] that, given a categorical crossed module (G,A, ϕ, T, ν, χ),

we can construct the quotient categorical group given by the following diagram

G

C(T )

⇓c(T )

A

T

0
G/T .

Its construction is the same as for the cokernel of a homomorphism in SCG, the only
difference is the tensor product of arrows: given two arrows [A, f ] : X ◦ Y and
[B, g] : H ◦ K , their tensor product is given by the class of the prearrow with
object part A ⊗ YB and arrow part

X ⊗ H
f ⊗g

T A ⊗ Y ⊗ T B ⊗ K
1⊗ν−1

Y,B⊗1

T A ⊗ T ( YB) ⊗ Y ⊗ K � T (A ⊗ YB) ⊗ Y ⊗ K
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Homomorphisms of categorical crossed modules extend to the respective quotient
categorical groups (see Lemma 7.6 in [13]) and the relation between kernels and
quotients (Propositions 3.6 and 3.8 in [10]) is summarized in the following Proposition
which states, on a categorical group level, the well known group theoretical facts that
the underlying maps of crossed modules are proper maps and quotients are surjective.

Proposition 2.1 1. Let (ϕ : G → Eq(A), T : A → G, ν, χ) be in CCM and con-
sider the factorization through the kernel as in the following diagram

A
T

T ′

G
C(T )

G/T

Ker(C(T ))

K(C(T ))

(a) T ′ is a full and essentially surjective homomorphism ofG-categorical crossed
modules;

(b) if T is faithful, then A and Ker(C(T )) are equivalent normal sub-categorical
groups of G.

2. Let F : G → H be in CG and consider the factorization through the quotient as
in the following diagram

Ker(F)
K(F)

G

C(K(F))

F
H

G/K (F)

F ′

(a) F ′ is full and faithful;
(b) in particular, F is a quotient (i.e., F ′ is an equivalence) if and only if F is

essentially surjective.

3 Classifying singular extensions of categorical groups

In this section we extend the results of [13] by giving a cohomological classification
of the symmetric categorical group of singular extensions of a categorical groupG by
a given symmetric G-categorical group A. The variant here for the classification of
all singular extensions uses, as a starting point, the simplicial set, Ner(G), nerve of a
categorical group G introduced in [6].

Recall that Takeuchi–Ulbrich’s cohomology (see [22,23]) allows to define coho-
mology groups of a simplicial set K•, with coefficients in a symmetric categorical
groupA, by considering the cochain complex of symmetric categorical groups C(AK•)
that, in anydimensionn ≥ 0, consists of the functors from the discrete category Kn toA
(where tensor product, inverses and symmetry are given pointwise by the correspond-
ing ones in A) and where the coboundary homomorphisms are given by alternating
sums of the coface homomorphisms d∗

i : AKn −→ A
Kn+1 induced by the face maps
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454 A. R. Garzón

of K•. In particular, if K• is the simplicial set Ner(G), then 1-coboundaries and 2-
cocycles obtained from the cocomplex C(ANer(G)) are just (up to renumbering) those
studied in [5]. If A is not merely a symmetric categorical group, but it is a symmetric
G-categorical group, the complex C(ANer(G)) can be modified to a new one, C(G,A),
with the same symmetric categorical groups at any dimension, but where the cobound-
aries take into account the action ofG on A. We shall remark that Takeuchi-Ulbrich’s
cohomology of this complex would give cohomology groups Hn(Ner(G),A) defined
after passing to isomorphism classes of respective symmetric categorical groups of
n-cocycles and (n − 1)-coboundaries. However, our proposal of H2 (see Definition
1) is obtained by applying the notion of cokernel [24] to the coboundary homomor-
phism from the symmetric categorical group of 1-cochains to that one of 2-cocycles.
In this way we obtain a symmetric categorical group whose π0 (i.e., connected com-
ponents) gives Takeuchi-Ulbrich’s cohomology. Therefore, projection fromH2 via π0
produces, in several cases, other well-known cohomology groups (c.f. Example 3.4).

We start recalling, in a quick review, the study about general extensions of categor-
ical groups with symmetric kernel done in [13].

3.1 Singular extensions of categorical groups

If A and G are categorical groups, with A symmetric, and ϕ : G → Eqs(A) is a
symmetric action, an extension of G by A is a 6-tuple

(B, ψ : B → Eqs(A), T : A → B, ν, χ, S)

where (B,A, ψ, T, ν, χ) is an object in SCCM with T faithful (that is, A is a sym-
metric normal sub-categorical group of B) and S : B/T → G is an equivalence in CG.
When ψ, ν and χ are understood, we denote an extension of G by A by

A
T

B
C(T )

B/T
S

G .

Note that in any extension ofG byA the symmetric categorical groupA is equivalent,
as a normal sub-categorical group, to the kernel of S · C(T ) : B → B/T → G. Also
note that, since A is symmetric, there is a symmetric action of G on A (that we recall
as the action of G on A induced by the extension) given by the composite

G
S−1

B/T
˜ψ

Eqs(A)

where (˜ψ,˜δ) is the factorization through the quotient

A
T

0

B
C(T )

ψ

B/T

˜ψ

⇓δ

Eqs(A)

⇓˜δ
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Singular extensions and the second cohomology categorical group 455

where the morphism δ : ψ · T ⇒ 0 is given by δA,B : T AB → B defined by

T AB� T AB⊗A⊗A∗ χA,B⊗1
A⊗B⊗A∗ cA,B⊗1

B⊗A⊗A∗ � B .

Extensions of G by A are the objects of a 2-groupoid, Ext(G,A), whose 1-cells
are the homomorphisms of extensions, that is, 4-tuples

(R, λ, τ,m) : (B,A, ψ, T, ν, χ, S) → (B′,A, ψ ′, T ′, ν′, χ ′, S′)

where m : S ⇒ S′ · ˜R is a morphism in CG (with ˜R induced between the quo-
tient categorical groups by λ and τ ), and (R, IdA, λ, τ ) : (B,A, ψ, T, ν, χ) →
(B′,A, ψ ′, T ′, ν′, χ ′, ) is a homomorphism in SCCM

B

R

ψ

C(T )
B/T

˜R

S

A

T

T ′

⇓τ Eqs(A)⇓λ G⇓m

B
′

ψ ′

C(T ′)
B

′/T ′.
S′

A morphism of extensions

β : (R, λ, τ,m)⇒(R′, λ′, τ ′,m′) : (B,A, ψ, T, ν, χ, S)→(B′,A, ψ ′, T ′, ν′, χ ′, S′)

is a morphism (β, id) : (R, IdA, λ, τ ) ⇒ (R′, IdA, λ′, τ ′) in SCCM making compat-
ible the morphisms m and m′ (see condition (ext1) in [13]).

Now we pay special attention to singular extensions of G by A, that is, extensions
such that the action of G on A induced by the extension coincides, up to a morphism,
with the given one. More precisely, we have (see Definition 8.7 in [13]):

Definition 3.1 Let ϕ : G → Eqs(A) be a symmetric action. A ϕ-extension of G by
A (or a singular extension if ϕ is understood) is a 7-tuple

(B, ψ : B → Eqs(A), T : A → B, ν, χ, S, s)

where

A
T

B
C(T )

B/T
S

G

is an extension of G by A, and
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456 A. R. Garzón

G

ϕ⇓s

B/T

S

˜ψ
Eqs(A)

is a morphism in CG.
A homomorphism of ϕ-extensions

(R, λ, τ,m) : (B,A, ψ, T, ν, χ, S, s) → (B′,A, ψ ′, T ′, ν′, χ ′, S′, s′)

is a homomorphism of extensions (R, λ, τ,m) such that the following diagram com-
mutes

(ϕext1) ϕ · S s

ϕ◦m

˜ψ

˜λ

ϕ · S′ · ˜R
s′◦˜R

˜ψ ′ · ˜R

A morphism of ϕ-extensions

β : (R, λ, τ,m) ⇒ (R′, λ′, τ ′,m′) : (B,A, ψ, T, ν, χ, S, s)

→ (B′,A, ψ ′, T ′, ν′, χ ′, S′, s′)

is just a morphism of extensions.

Note that the three notions in the above definition (singular extension, homomor-
phism and morphism) have equivalent formulations that, occasionally, can be easier
to handle than the original ones (see Remark 8.8 in [13]).

It is remarkable the fact that ϕ-extensions of G by A, with their homomorphisms
and morphisms, form a 2-groupoid denotedOpext(ϕ,G,A) (see Remark 8.4 in [13]).

Remark 3.2 For any symmetricG-categorical groupA, a notion of singular extension

of G by A was introduced in [9, Definition 4.1] as a pair (E, ϕ) where E : A j−→
E

P−→ G is a sequence of categorical group homomorphisms, P is an essentially
surjective fibration, j gives an equivalence betweenA and the fibre category of P over
the unit object I of G, and

ϕ = (ϕE,A : E ⊗ j (A) −→ j (p(E)A) ⊗ E)(A,E)∈Obj (A)×Obj (E)

is a family of natural isomorphisms in E that have to satisfy suitable coherence condi-
tions. This notion is equivalent (c.f. [20]) to the one considering essentially surjective
homomorphisms and their homotopy kernels and then, according to Proposition 2.1,
to the notion of singular extension here considered. These different approaches are,
in fact, the categorical-group version of the group case, where an extension can be
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Singular extensions and the second cohomology categorical group 457

presented as a surjective homomorphism together with its kernel or as a normal sub-
group together with its cokernel. The advantage with the definition that we handle in
this paper, is that, when the normal sub-categorical group is symmetric, it is easy to
construct an action of the quotient on the kernel, much easier than doing the same if
one defines an extension as an essentially surjective homomorphism with a symmetric
kernel. The price to pay is that (contrarily to what happens with groups) to be a nor-
mal sub-categorical group is a structure, and not a property, and the only reasonable
way to handle such a structure is to see it as a special case of the general structure of
categorical crossed module.

3.2 The second cohomology categorical group

We fix a categorical groupG and a symmetricG-categorical group A = (A, ϕ : G →
Eqs(A)) and, since the action ϕ has been fixed, here after we usually avoid to name it.

Below we describe explicitly the cochain complex of symmetric categorical groups
C(G,A) in low dimensions.

– C0(G,A) is the trivial category.
– C1(G,A): Its objects are maps γ : Obj(G) → Obj(A); an arrow γ → γ ′ is a
family {γX → γ ′

X
| X ∈ Obj(G)} of morphisms in A.

– C2(G,A): Its objects are maps f �→ p( f ) from the set of morphisms of G, of
the form f : X ⊗ Y → Z , into the objects of A; an arrow p → p′ is a family
{p( f ) → p′( f )} f of morphisms in A indexed by morphisms in G of the form
f : X ⊗ Y → Z .

– C3(G,A): Its objects are maps α �→ q(α) from the set of commutative diagrams
α in G of the form

X ⊗ Y ⊗ Z
1⊗i

f ⊗1

X ⊗ T

h

R ⊗ Z
g

S

(1)

(where the associativity isomorphisms are omitted) into the objects ofA; an arrow
q → q ′ is a family {q(α) → q ′(α)}α of morphisms in A indexed by commutative
squares α as above.

– C4(G,A): Its objects are maps θ �→ r(θ) from the set of commutative diagrams θ

in G of the form

X ⊗ Y ⊗ Z ⊗ R

f ⊗1⊗1

1⊗1⊗k

1⊗u⊗1
X ⊗U ⊗ R

x⊗1

1⊗vS ⊗ Z ⊗ R

1⊗k

g⊗1
V ⊗ R

h
X ⊗ Y ⊗ T

f ⊗1

1⊗s
X ⊗ K

m

S ⊗ T
j

W

(2)
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458 A. R. Garzón

(where the associativity isomorphisms are omitted) into the objects ofA; an arrow
r → r ′ is a family {r(θ) → r ′(θ)}θ of morphisms in A indexed for commutative
cubes θ as above.

The corresponding coboundaries are defined by:

– ∂0(∗)(X) = I for all X ∈ G;
– ∂1(γ )( f ) = XγY ⊗ γX ⊗ γ ∗

Z
for all f : X ⊗ Y → Z in G;

– ∂2(p)(α) = p( f ) ⊗ p(h)∗ ⊗ p(g) ⊗ Xp(i)∗ for all diagrams α as in (1);
– ∂3(q)(θ) = q(α0) ⊗ q(α1)

∗ ⊗ q(α2) ⊗ q(α3)
∗ ⊗ Xq(α4) for all diagrams θ as in

(2) where α0 ⊗ 1 is its upper face, α1 its down face, α3 its front face, 1 ⊗ α4 its
back face and α2 its right side face.

From the truncated cocomplex

C0(G,A)
∂0 C1(G,A)

∂1 C2(G,A)
∂2 C3(G,A)

∂3 C4(G,A)

(adding the normalization condition γI
∼= I compatible with arrows γ → γ ′) we

get the cohomology categorical group H2(G,A) following the general construction
given in [11, Definition 3.1]: take first the relative kernel Z2(G,A) of (∂2, ∂3), then
H2(G,A) is the cokernel of the factorization T of ∂1 through Z2(G,A).

For the reader’s convenience, we make now such a construction explicit.
We start describing the categorical group Z2(G,A) of normalized 2-cocycles ofG

with coefficients in A. Note that its set of objects is just (up to a dimensional shift)
the set of normalized 1-cocycles ofG with coefficients in theG-module A introduced
in [9].

– The objects of Z2(G,A) are systems (t, p), consisting of the following data:
(a) For any three objects X,Y, Z and any morphism f : X ⊗ Y → Z of G,

there is an object p( f ) ∈ A.

(b) For any four morphisms

f : X ⊗ Y → R, g : R ⊗ Z → S, h : X ⊗ T → S, i : Y ⊗ Z → T

in G making diagram (1) commutative, there is a morphism

t f,g,h,i : p( f ) ⊗ p(g) → X p(i) ⊗ p(h)

in A subject to the following conditions:
(NC) Normalization conditions:

NC1: For any object X in G, p(rX ) ∼= I ∼= p(lX );
NC2: For any f : X ⊗ Y → Z , tr, f, f,l : I ⊗ p( f ) → X I ⊗ p( f ) is the canonical

isomorphism.

(CC) Cocycle condition: For any ten objects X,Y, Z , R, S, T,U, V,W, K and ten
morphisms
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f : X ⊗ Y → S, g : S ⊗ Z →V, h : V ⊗ R→W, j : S ⊗ T → W, k : Z ⊗ R → T

m : X ⊗ K →W, s : Y ⊗ T →K , x : X ⊗U →V, u : Y ⊗ Z →U, v : U ⊗ R→K

in G making diagram (2) commutative, the diagram

p( f ) ⊗ p(g) ⊗ p(h)
t f,g,x,u⊗1

1⊗tg,h, j,k

X p(u) ⊗ p(x) ⊗ p(h)

1⊗tx,h,m,v

p( f ) ⊗ S p(k) ⊗ p( j)

c⊗1

X p(u) ⊗ X p(v) ⊗ p(m)

ϕ2⊗1

S p(k) ⊗ p( f ) ⊗ p( j)

1⊗t f, j,m,s

X (p(u) ⊗ p(v)) ⊗ p(m)

X tu,v,s,k⊗1

S p(k) ⊗ X p(s) ⊗ p(m)

( f p(k)⊗1)−1

X (Y p(k) ⊗ p(s)) ⊗ p(m)

ϕ−1
2 ⊗1

X⊗Y p(k) ⊗ X p(s) ⊗ p(m)
ϕ−1
1 ⊗1

X (Y p(k)) ⊗ X p(s) ⊗ p(m)

commutes.

– An arrow α : (t, p) → (t ′, p′) in Z2(G,A) is a family {α f : p( f ) → p′( f )} f of
morphisms in A indexed by morphisms f : X ⊗ Y → Z in G, such that for any
commutative diagram like (1), the following diagram commutes

p( f ) ⊗ p(g)
t f,g,h,i

α f ⊗αg

Xp(i) ⊗ p(h)

Xαi ⊗αh

p′( f ) ⊗ p′(g)
t ′
f,g,h,i Xp′(i) ⊗ p′(h).

– The tensor product in Z2(G,A) is given, on objects, by

(t, p) ⊗ (t ′, p′) = (t ⊗ t ′, p ⊗ p′)

where, for any f : X ⊗ Y → Z , (p ⊗ p′)( f ) = p( f ) ⊗ p′( f ) and, for any
commutative diagram like (1), (t⊗t ′) f,g,h,i is the dotted arrowmaking the following
diagram commutative
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p( f ) ⊗ p′( f ) ⊗ p(g) ⊗ p′(g)
(t⊗t ′) f,g,h,i

1⊗c⊗1

X (p(i) ⊗ p′(i)) ⊗ p(h) ⊗ p′(h)

ϕ−1
2 ⊗1p( f ) ⊗ p(g) ⊗ p′( f ) ⊗ p′(g)

t f,g,h,i ⊗t ′
f,g,h,i

Xp(i) ⊗ p(h) ⊗ Xp′(i) ⊗ p′(h)
1⊗c⊗1 Xp(i) ⊗ Xp′(i) ⊗ p(h) ⊗ p′(h)

The tensor product on arrows is pointwise. The rest of the symmetric categorical
group structure of Z2(G,A) is induced by that of A.

Remark 3.3 To help the reader with this notion of cocycle, let us look at what happens
when G and A are discrete (see also Example 3.4). If G is discrete, to have an arrow
f : X ⊗ Y → Z just means that Z = X ⊗ Y, so that the component p of a cocycle
(t, p) amounts to a map

p : Obj(G) × Obj(G) → Obj(A), X,Y �→ p(X,Y ).

Moreover, to give a commutative diagram like (1) means that

X ⊗ Y = R, R ⊗ Z = S, X ⊗ T = S, Y ⊗ Z = T .

Therefore,

p( f ) = p(X,Y ), p(g) = p(R, Z) = p(X ⊗ Y, Z)

p(i) = p(Y, Z), p(h) = p(X, T ) = p(X,Y ⊗ Z)

Finally, the existence of a morphism t f,g,h,i : p( f ) ⊗ p(g) → Xp(i) ⊗ p(h) means
that the usual cocycle equation holds:

p(X,Y ) ⊗ p(X ⊗ Y, Z) = Xp(Y, Z) ⊗ p(X,Y ⊗ Z).

The homomorphism of symmetric categorical groups

T = (T , T2) : C1(G,A) → Z2(G,A)

can be described as follows. Given an object γ ∈ C1(G,A), T (γ ) = (tγ , pγ ) where,
for any f : X ⊗ Y → Z , pγ ( f ) = XγY ⊗ γX ⊗ γ ∗

Z
and, for any diagram like (1),
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tγ
f,g,h,i

is the dotted arrow making the following diagram commutative

X γY ⊗ γX ⊗ γ ∗
R

⊗ RγZ ⊗ γR ⊗ γ ∗
S

can

t
γ
f,g,h,i X (Y γZ ⊗ γY ⊗ γ ∗

T
) ⊗ X γT ⊗ γX ⊗ γ ∗

S

canX γY ⊗ γX ⊗ RγZ ⊗ γ ∗
S

c⊗1

RγZ ⊗ X γY ⊗ γX ⊗ γ ∗
S

f −1
γZ ⊗1

X⊗Y γZ ⊗ X γY ⊗ γX ⊗ γ ∗
S
.

On arrows χ : γ → γ ′, T (χ) : (tγ , pγ ) → (t ′γ , p′γ ) is given, for any f : X ⊗ Y →
Z , by T (χ) f = XχY ⊗ χX ⊗ χ∗

Z
: pγ ( f ) → p′γ ( f ). The monoidal structure

T2 : T (γ ) ⊗ T (γ ′) → T (γ ⊗ γ ′)

is the canonical isomorphism

XγY ⊗ γX ⊗ γ ∗
Z

⊗ Xγ ′
Y

⊗ γ ′
X

⊗ γ ′∗
Z

can X (γY ⊗ γ ′
Y
) ⊗ γX ⊗ γ ′

X
⊗ γ ∗

Z
⊗ γ ′∗

Z

obtained from the symmetry of A and the isomorphism ϕ of the action of G on A.
We can close the previous discussion with the following:

Definition 1 The second cohomology categorical group of G with coefficients in the
symmetric G-categorical group A, H2(G,A), is the cokernel of the homomorphism
of symmetric categorical groups T : C1(G,A) → Z2(G,A), that is

H2(G,A) = Coker(T ).

The following example shows that ourH2(G,A) particularizes, in the discrete case,
to several well-known cohomology groups.

Example 3.4 1. If G is the discrete categorical group [G]0 associated with a group
G, then the set of objects of Z2([G]0,A) is identified with the set of Ulbrich’s
3-cocycles of G with coefficients in A, (see [23]). In particular (see Example 3 in
[9]), if A is the discrete symmetric [G]0-categorical group [A]0 associated with
a G-module A, then Z2([G]0, [A]0) is the discrete symmetric categorical group
[Z2(G, A)]0 associated with the abelian group of Eilenberg–Mac Lane 2-cocycles
of G with coefficients in A.

2. If G = [G]0 and, moreover, A = [A]1 is the symmetric [G]0-categorical group
with only one object associated with a G-module A, then Z2([G]0, [A]1) is
the discrete symmetric categorical group associated with the abelian group of
Eilenberg–Mac Lane 3-cocycles of G with coefficients in the G-module A.
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3. When the action ofG on A is trivial, then the set of objects of Z2(G,A) is the set
of 1-cocycles introduced in [6]. If, moreover,G = [G]0, then the set of objects of
Z2([G]0,A) coincides with the set of Breen’s 1-cocycles introduced in [3].
In conclusion, the cohomology groups introduced by Eilenberg–Mac Lane [19],

Ulbrich [23], Breen [3], and Carrasco and Cegarra [6], can be obtained as special
instances of our symmetric categorical group H2(G,A) via the functor of connected
components π0.

3.3 The classification theorem

In order to compare H2(G,A) with the 2-groupoid Opext(ϕ,G,A), in the next the-
orem we look atH2(G,A) as a monoidal bicategory (this fact for the cokernel of any
homomorphism in SCG has been already remarked in Sect. 2). Following the same
line of arguments than that carried out in Proposition 9.1 and Theorem 9.3 in [13], we
will show a biequivalence betweenH2(G,A) and Opext(ϕ,G,A) by giving only the
constructive part of the proof andwill omit the long diagrammatic arguments needed to
check that the various constructions fulfill the requested coherence conditions. As we
will remark after its proof, the next theorem extends, to the appropriate bicategorical
context, the classification of singular extensions of categorical groups given in [9].

Theorem 3.5 LetG be a categorical group and ϕ : G → Eqs(A) a symmetric action.
Then, there exists a biequivalence of bicategories

E : H2(G,A) → Opext(ϕ,G,A).

Proof We split the proof in four steps.

Step 1 We construct a 2-functor

E : Z2(G,A) → Opext(ϕ,G,A)

where Z2(G,A) is seen as a 2-category with only identity 2-arrows.
Let (t, p) be a normalized 2-cocycle of G with coefficients in A and consider the

categorical group A ×(t,p) G described below:

– Objects: Obj(A ×(t,p) G)= Obj(A)× Obj(G).
– Morphisms: Pairs (u, f ) : (A, X) → (B,Y ) where f : X → Y is a morphism in
G and u : A ⊗ p( f lX ) → B is a morphism in A.

– Identities: 1(A,X) = (A ⊗ p(lX ) → A ⊗ I
rA−→ A, 1X ).

– Composition: Given morphisms (A, X)
(u, f )

(B,Y )
(v,g)

(C, Z) , their com-
position is (w, g f ) : (A, X) → (C, Z) where w : A ⊗ p(g f lX ) → C is the
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morphism in A determined by the commutativity of the following diagram:

A ⊗ p(g f lX )
w

can

C

A ⊗ p(lI ) ⊗ p(g f lX )

1⊗tlI ,g f lX ,glY , f lX

B ⊗ p(glY )

v

A ⊗ Ip( f lX ) ⊗ p(glY ) can
A ⊗ p( f lX ) ⊗ p(glY ).

u⊗1

– Tensor product: For objects it is given by

(A, X) ⊗ (B,Y ) = (A ⊗ XB ⊗ p(1X⊗Y ), X ⊗ Y )

and for arrows (u, f ) : (A, X) → (C, Z) and (v, g) : (B,Y ) → (D,W ) it is given
by

(u, f ) ⊗ (v, g) = (w, f ⊗ g) : (A ⊗ XB ⊗ p(1X⊗Y ), X ⊗ Y )

−→ (C ⊗ ZD ⊗ p(1Z⊗W ), Z ⊗ W )

where w is the morphism making commutative the following diagram:

A ⊗ XB ⊗ p(1X⊗Y ) ⊗ p(( f ⊗ g)lX⊗Y )
w

1⊗tlI⊗X ,( f ⊗g)lX⊗Y , f lX
⊗1,lX ⊗g

C ⊗ ZD ⊗ p(1Z⊗W )

A ⊗ XB ⊗ p(1X⊗Y ) ⊗ p( f lX ⊗ 1) ⊗ p((1 ⊗ g)lI⊗X⊗Y )

1⊗ f B⊗1

A ⊗ p( f lX ) ⊗ Z(B ⊗ p(glY )) ⊗ p(1Z⊗W )

u⊗ Zv⊗1

A ⊗ ZB ⊗ p(1X⊗Y ) ⊗ p( f lX ⊗ 1) ⊗ p((1 ⊗ g)lI⊗X⊗Y )

1⊗t−1
f lX ,1Z⊗Y , f lX ⊗1,1X⊗Y

⊗1

A ⊗ p( f lX ) ⊗ ZB ⊗ Zp(glY ) ⊗ p(1Z⊗W )

can

A ⊗ ZB ⊗ p( f lX ) ⊗ p(1Z⊗Y ) ⊗ p((1 ⊗ g)lI⊗X⊗Y )
1⊗t−1

lZ ,1⊗g,(1⊗g)lZ⊗Y ,1Z⊗Y

A ⊗ p( f lX ) ⊗ ZB ⊗ I ⊗ p(1 ⊗ g).

1⊗trZ ,1⊗g,1Z⊗W ,glY

– Inverse: (A, X)∗ = ( X∗
A∗ ⊗ X∗

p(1X⊗X∗ )∗ ⊗ X∗
p(r−1

X
lX ) ⊗ p(εX )∗, X∗)

– Action: ψ : A ×(t,p) G −→ Eqs(A) given by

ψ(A, X)(B) = (A,X)B = pr
A
((A, X) ⊗ (B, I ) ⊗ (A, X)∗) ⊗ p(η−1

X
(rX ⊗ 1)lX⊗I⊗X∗ ))

where pr
A
(A, X) = A.

In this way we actually have an extension E(p, t) of G by A

A

i
A

A ×(t,p) G
pr

G

G
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where i
A
(A, X) = A is a faithful homomorphism and pr

G
(A, X) = X is an essentially

surjective homomorphism of categorical groups. Moreover, there is an equivalence
betweenA andKer(pr

G
) given as follows: If (A, X) ∈ Ker(pr

G
), there exists an arrow

a : X → I in G and then � : Ker(pr
G
) −→ A is given, on objects, by �(A, X) =

A ⊗ p(arX ) and, on arrows (u, f ) : (A, X) → (B,Y ), �(u, f ) : A ⊗ p(arX ) −→
B⊗ p(brY ) is the morphism determined, in a canonical way, by u : A⊗ p( f lX ) → B
and t f lX ,brY ,l I ,arX

: p( f lX ) ⊗ p(brY ) −→ Ip(arX ) ⊗ p(lI ). Also (recall Proposition
2.1) there is an equivalence (A×(t,p)G)/ i

A
� G: For any arrow from (A, X) to (B,Y )

in A ×(t,p) G there is a morphism in G, X → I ⊗ Y , which canonically determines
the image f : X → Y through the equivalence.

The extension E(p, t) is actually a ϕ-extension of G by A because there is a mor-
phism σ : ϕ · prG ⇒ ˜ψ in CG obtained as follows. For any object (A, X) ∈ A×(t,p)G,
the morphism in A σ

(A,X)
(B) : XB → ˜ψ(A, X)(B) = (A,X)B is the part in A of the

morphism inA×(t,p)G, ( XB, I ) −→ (A, X)⊗(B, I )⊗(A, X)∗, canonically deduced
from the following one (A, X) ⊗ (B, I ) −→ ( XB, I ) ⊗ (A, X). This is given by the
pair (u, l−1

X
rX )where u : A⊗ XB⊗ p(1X⊗I )⊗ p(l−1

X
rX lX⊗I ) −→ XB⊗ A⊗ p(1I⊗X )

is the morphism in A deduced from t1,r,l−1rl,1 which is associated with the following
commutative diagram

I ⊗ X ⊗ I
1I ⊗1X⊗I

1I⊗X ⊗1I

I ⊗ X ⊗ I

l−1
X

rX lX⊗I

I ⊗ X ⊗ I rI⊗X
I ⊗ X.

Let now α : (t, p) → (t ′, p′) be a morphism of 2-cocycles. Thus we have a family
of morphisms in A, {α f : p( f ) → p′( f )} f :X⊗Y→Z and we get a homomorphism of
extensions E(α) : E(t, p) ⇒ E(t ′, p′) according to the following diagrams

A ×(t,p) G

Id

prG

A ×(t,p) G

Id

ψ

A

iA

iA

G, ⇓λ Eqs(A)

A ×(t ′,p′) G

prG

A ×(t ′,p′) G
ψ ′

where Id : A ×(t,p) G → A ×(t ′,p′) G is the identity functor with monoidal structure
given by

(A, X) ⊗(t,p) (B,Y )
(1⊗α1X⊗Y

,1)

(A, X) ⊗(t ′,p′) (B,Y )
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and λ(A,X),B is determined by the identity in pr
A
((A, X) ⊗ (B, I ) ⊗ (A, X)∗)) and

α
η
−1
X (rX ⊗1)lX⊗I⊗X∗

: p(η−1
X

(rX ⊗ 1)lX⊗I⊗X∗ ) −→ p′(η−1
X

(rX ⊗ 1)lX⊗I⊗X∗ ).

That E(α) is a homomorphism in Opext(ϕ,G,A), that is, that condition (ϕext1)
holds, follows from the own definition of λ.

Step 2 We construct now a 2-natural transformation

Z2(G,A)

E⇓�

C1(G,A)
0

T

Opext(ϕ,G,A).

Let γ : Obj(G) → Obj(A) a normalized object of C1(G,A). Then T (γ ) = (tγ , pγ )

and we get a homomorphism of extensions as follows

A ×(tγ ,pγ ) G

�γ

prG

A ×(tγ ,pγ ) G

�γ

ψ

A

iA

iA

⇓τ G ⇓λ Eqs(A)

A ×ϕ G

prG

A ×ϕ G

ψ ′

where A ×ϕ G is the semidirect product (see [12,17]) and the symmetric action

ψ ′ : A×ϕG→Eqs(A) is explicitly givenby ψ ′(A, X)(B)= A⊗ XB⊗ A∗ can XB .

The functor�γ is defined on objects by�γ (A, X) = (A⊗γX , X). Now, for any arrow
(u, f ) : (A, X) → (B,Y ) in A ×(tγ ,pγ ) G we have arrows f : X → Y in G and
u : A⊗ pγ ( f lX ) → B inA and since, by definition, pγ ( f lX ) ∼= γX ⊗γ ∗

Y
, the arrow u

induces, in a canonical way, the required one�γ (u, f ) : (A⊗γX , X) → (B⊗γY ,Y ).
The monoidal structure of �γ is obtained in a canonical way since

�γ ((A, X) ⊗ (B,Y )) = �γ (A ⊗ XB ⊗ pγ (1X⊗Y ), X ⊗ Y )

= (A ⊗ XB ⊗ Xγ Y ⊗ γX ⊗ γ ∗
X⊗Y

⊗ γX⊗Y , X ⊗ Y )

whereas

�γ (A, X) ⊗ �γ (B,Y ) = (A ⊗ γX , X) ⊗ (B ⊗ γY ,Y )

∼= (A ⊗ γX ⊗ XB ⊗ XγY , X ⊗ Y ).

Finally, since γI
∼= I , the morphism τ : �γ · iA ⇒ iA is defined in a canonical way

and the morphism λ : ψ ⇒ ψ ′ · �γ is the opposite of the morphism σ used in Step 1.
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Step 3Now we extend the 2-functor E : Z2(G,A) → Opext(ϕ,G,A), constructed in
Step 1, to a homomorphism of bicategories

E : H2(G,A) → Opext(ϕ,G,A)

(we limit ourselves to define E on objects, 1-arrows and 2-arrows; to check that E
is indeed a homomorphism of bicategories is long but essentially straightforward).
On objects, E is defined as E . Consider now a 1-arrow (γ, α) : (t, p) → (t ′, p′)
in H2(G,A), that is, γ ∈ C1(G,A) and α : (t, p) ⊗ (tγ , pγ ) → (t ′, p′) is a 1-
arrow inZ2(G,A); the homomorphism E(γ, α) : E(t, p) → E(t ′, p′) factors through
E((t, p) ⊗ (tγ , pγ )) and is described in the following diagram, where �γ and τ are
as in Step 2, and Id is the identity functor with monoidal structure determined by α as
in Step 1

⇑τ

A ×(t,p) G prG

A

iA

iA

iA

A ×(t,p)⊗(tγ ,pγ ) G
prG

�γ

Id

G

A ×(t ′,p′) G prG

Consider now a 2-arrow β : (γ, α) ⇒ (γ ′, α′) in H2(G,A), that is, a morphism
β : γ ⇒ γ ′ in C1(G,A) (i.e., a family of morphisms in A, βX : γX → γ ′

X
, indexed in

the objects X of G) such that

(t, p) ⊗ (tγ , pγ )
1⊗T (β)

α

(t, p) ⊗ (tγ
′
, pγ ′

)

α′

(t ′, p′)

(3)

commutes, where, for anymorphism f : X⊗Y → Z inG, T (β) f : pγ ( f ) → pγ ′
( f )

is given by T (β) f = XβY ⊗βX ⊗β∗
Z
. Then themorphism E(β) : E(γ, α) → E(γ ′, α′)

is described in the diagram

A ×(t,p) G

β⇒

A ×(t,p)⊗(tγ ,pγ ) G

�γ

Id

Id

A ×
(t,p)⊗(tγ ′

,pγ ′
)
G

�γ ′

A ×(t ′,p′) G

Id
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where β A,X : (A ⊗ γX , X) → (A ⊗ γ ′
X
, X) is given, since p(1X lX ) ∼= I and up to a

canonical morphism, by the pair (1X , 1A ⊗βX ). The monoidal structure on the identity
functor Id is determined by 1 ⊗ T (β) as in Step 1.

Finally, the fact that the identity natural transformation in the bottom triangle is
monoidal is precisely condition (3). Also, the natural transformation β is monoidal
and this fact follows from the observation that themorphism involved in such condition

�
γ ′ Id((A, X) ⊗ (B,Y )) −→ �

γ ′ Id((A, X)) ⊗ �
γ ′ Id((B,Y ))

is determined, since pγ (1X⊗Y ) = XγY ⊗ γX ⊗ γ ∗
X⊗Y

, by the following composition

XγY ⊗ γX ⊗ γ ∗
X⊗Y

⊗ γ ′
X⊗Y

1⊗β∗
X⊗Y

⊗1
XγY ⊗ γX ⊗ γ

′∗
X⊗Y

⊗ γ ′
X⊗Y

XβY ⊗βX ⊗can
Xγ ′

Y
⊗ γ ′

X
.

Step 4 Finally, we have to prove that the homomorphism E : H2(G,A) →
Opext(ϕ,G,A), constructed in Step 3, is a biequivalence, that is, it is locally an
equivalence and biessentially surjective on objects (i.e., surjective up to equivalence).
E is locally faithful:

If β, β ′ : (γ, α) → (γ ′, α′) are such that E(β) = E(β ′), then for all A ∈ A and
X ∈ G we have

1A ⊗ βX = 1A ⊗ β ′
X : A ⊗ γX → A ⊗ γ ′

X

and taking A = I we get βX = β ′
X and so β = β ′.

E is locally full:
Suppose (γ, α), (γ ′, α′) : (t, p) −→ (t ′, p′) two 1-arrows in H2(G,A) and let

us suppose that β : E(γ, α) ⇒ E(γ ′, α′) is a 2-arrow between both morphisms of
singular extensions from E(t, p) to E(t ′, p′). We look for a 2-arrow in H2(G,A),
β : (γ, α) −→ (γ ′, α′) such that E(β) = β. Explicitly, β is a natural transformation

β
A,X

: �γ (A, X) = (A ⊗ γX , X) −→ (A ⊗ γ ′
X
, X) = �

γ ′ (A, X)

and so it has two components

β1(A, X) : A ⊗ γX −→ A ⊗ γ ′
X
, β2(A, X) : X → X.

We define βX : γX −→ γ ′
X
as follows

γX
∼= I ⊗ γX

β1(I,X)
I ⊗ γ ′

X
∼= γ ′

X
.

In this way, condition (pcm5) in [13] on β gives the normalization condition for
β : γ → γ ′ being a morphism in C1(G,A) and the monoidal character of β gives
condition (3) so that β : (γ, α) −→ (γ ′, α′) is a 2-arrow in H2(G,A). Moreover,
condition (act10) in [13] on β gives that β1(A, X) = 1 ⊗ βX : A ⊗ γX −→ A ⊗ γ ′

X
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and the fact that β is a morphism of extensions gives that β2(A, X) = 1X : X → X .
Thus, by definition, E(β) = β.
E is locally essentially surjective:

Consider two cocycles (t, p), (t ′, p′) ∈ Z2(G,A) and (R, τ, μ) : E(t ′, p′) →
E(t, p) a homomorphism in Opext(ϕ,G,A)

A ×(t,p) G

prG

A

iA

iA

⇓τ G⇑μ

A ×(t ′,p′) G

R

prG

We are going to construct an 1-arrow (γ, α) in H2(G,A), that is, γ ∈ C1(G,A) and
α : (t, p) ⊗ (tγ , pγ ) → (t ′, p′) an arrow in Z

2(G,A), and β : �γ ⇒ R a morphism
in Opext(ϕ,G,A). Let us write

R(A, X) = (R1(A, X), R2(A, X))

for the two components of R, and

τA = (τ 1(A), τ 2(A)) : (A, I ) → (R1(A, I ), R2(A, I ))

for the two components of τ, and observe that

μA,I = τ 2(A) : I → R2(A, I )

because of condition (ext2) in [13], and

τ 1(A) : A ⊗ p(μA,I l) −→ R1(A, I ).

Now we put

γ : Obj(G) → Obj(A) by γX = R1(I, X) ⊗ p(μI,X l)
∗ ∈ Obj(A)

As far as the natural transformation β is concerned, it is of the form

βA,X =(β1(A, X), β2(A, X)) : �γ (A, X)=(A ⊗ γX , X)→(R1(A, X), R2(A, X))

and we put

β2(A, X) = μA,X : X → R2(A, X)
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To construct the first component β1(A, X) : A ⊗ γX ⊗ p(μA,X l) −→ R1(A, X),

observe that for any cocycle (t, p) one has (A, I ) ⊗
(t,p) (I, X) ∼= (A ⊗ p(1I⊗X ), I ⊗

X) ∼= (A, X) where the second isomorphism is given by the morphism t : p(ll) ⊗
p(1I⊗X ) −→ I determined by the following commutative diagram

I ⊗ I ⊗ I ⊗ X
1⊗ll

l⊗1

I ⊗ X

1I⊗X

I ⊗ I ⊗ X
l

I ⊗ X

Thus the monoidal structure of R provides a natural family of arrows RA,X
2 with two

components of the form

ρ2(A, X) : R2(A, I ) ⊗ R2(I, X) −→ R2(A, X),

ρ1(A, X) : R1(A, I ) ⊗ R1(I, X) ⊗ p(1
R2(A,I )⊗R2(I,X)

)

⊗p(ρ2(A, X)l) −→ R1(A, X)

and we put β1(A, X) as the following composite

A ⊗ γX ⊗ p(μA,X l)

A ⊗ R1(I, X) ⊗ p(μI,X l)∗ ⊗ p(μA,X l)

induced by τ1(A) and the symmetry

R1(A, I ) ⊗ R1(I, X) ⊗ p(μA,I l)
∗ ⊗ p(μI,X l)∗ ⊗ p(μA,X l)

t1

R1(A, I )⊗R1(I, X)⊗ p(μA,I ⊗1)∗⊗ p(1
R2(A,I )⊗R2(I,X)

)⊗ p(μA,I l)
∗⊗ p(μI,X l)∗⊗ p(μA,X l)

t2

R1(A, I ) ⊗ R1(I, X) ⊗ p(μA,I ⊗ μI,X )∗ ⊗ p(1
R2(A,I )⊗R2(I,X)

) ⊗ p(μA,X l)

t3

R1(A, I ) ⊗ R1(I, X) ⊗ p(ρ2(A, X)l) ⊗ p(1
R2(A,I )⊗R2(I,X)

)

ρ1(A,X)

R1(A, X)
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where ti , i = 1, 2, 3, are respectively determined by the following commutative dia-
grams:

I ⊗ I ⊗ R2(I, X)
1⊗μA,I ⊗1

μA,I l⊗1

I ⊗ R2(A, I ) ⊗ R2(I, X)

l

R2(A, I ) ⊗ R2(I, X)
1

R2(A, I ) ⊗ R2(I, X),

I ⊗ I ⊗ X
1⊗μI,X l

l⊗1

I ⊗ R2(I, X)

μA,I ⊗1

I ⊗ X
μA,I ⊗μI,X

R2(A, I ) ⊗ R2(I, X),

I ⊗ I ⊗ X
1⊗μA,I ⊗μI,X

l⊗1

I ⊗ R2(A, I ) ⊗ R2(I, X)

ρ2(A,X)l

I ⊗ X
μA,X l

R2(A, X).

Finally, to construct the arrow α : (t, p)⊗(tγ , pγ ) → (t ′, p′) inZ2(G,A)we need
to give, for any morphism in G, f : X ⊗ Y −→ Z , a morphism in A

α f : p( f ) ⊗ pγ ( f ) −→ p′( f )

which we give as the following composite:

p( f ) ⊗ R1(I, X) ⊗ p(μI,X l)
∗ ⊗ XR1(I,Y ) ⊗ Xp(μI,Y l)

∗

i)

R1(p′( f ), Z) ⊗ p(μ
p′( f ),Z l)

∗

i i)

p′( f ) ⊗ R1(I, Z) ⊗ p(μI,Z l)
∗

where:

– the morphism ii) is induced by

β1(p′( f ), Z)−1 : R1(p′( f ), Z)−→ p′( f )⊗R1(I, Z) ⊗ p(μI,Z l)
∗⊗ p(μ

p′( f ),Z l)
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– The morphism i) is given as the following composite (as usual, symmetry in A is
freely used):

p( f ) ⊗ R1(I, X) ⊗ p(μI,X l)
∗ ⊗ XR1(I, Y ) ⊗ Xp(μI,Y l)

∗

t1

p( f ) ⊗ R1(I, X) ⊗ p(μI,X l)
∗ ⊗ XR1(I, Y ) ⊗ p(1 ⊗ μI,Y )∗ ⊗ p(1

X⊗R2(I,Y )
)

t2

R1(I, X) ⊗ XR1(I, Y ) ⊗ p(1
R2(I,X)⊗R2(I,Y )

) ⊗ p( f ) ⊗ p(1 ⊗ μI,Y )∗ ⊗ p(μI,X l ⊗ 1)∗

t3

R1(I, X) ⊗ XR1(I, Y ) ⊗ p(1
R2(I,X)⊗R2(I,Y )

) ⊗ p( f ) ⊗ p(μI,X ⊗ μI,Y )∗

t4

R1(I, X) ⊗ XR1(I, Y ) ⊗ p(1
R2(I,X)⊗R2(I,Y )

) ⊗ p(ρ2(p′( f ), Z)−1μ
p′( f ),Z l)

∗

ξ

R1(p′( f ), Z) ⊗ p(μ
p′( f ),Z l)

∗

where ti , i = 1, 2, 3, 4, are respectively determined by the following commutative
diagrams

X ⊗ I ⊗ Y
1⊗μI,Y l

r⊗1

X ⊗ R2(I, Y )

1

X ⊗ Y
1⊗μI,Y

X ⊗ R2(I, Y ),

I ⊗ X ⊗ R2(I, Y )
1⊗1

μI,X l⊗1

I ⊗ X ⊗ R2(I, Y )

μI,X l⊗1

R2(I, X) ⊗ R2(I, Y )
1

R2(I, X) ⊗ R2(I, Y ),

I ⊗ X ⊗ Y
1⊗1⊗μI,Y

l⊗1

I ⊗ X ⊗ R2(I, Y )

μI,X l⊗1

X ⊗ Y
μI,X ⊗μI,Y

R2(I, X) ⊗ R2(I, Y ),

I ⊗ X ⊗ Y
1⊗ f

l⊗1

I ⊗ Z

ρ2(p′( f ),Z)−1μ
p′( f ),Z l

X ⊗ Y
μI,X ⊗μI,Y

R2(I, X) ⊗ R2(I, Y ),

and ξ is deduced from the following arrow,
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(R1(I, X) ⊗ XR1(I,Y ) ⊗ p(1
R2(I,X)⊗R2(I,Y )

), R2(I, X) ⊗ R2(I,Y ))

(R1(I, X), R2(I, X)) ⊗(t,p) (R1(I,Y ), R2(I,Y ))

R((I, X) ⊗(t ′,p′) (I,Y ))

(R1(p′(1X⊗Y ), X ⊗ Y ), R2(p′(1X⊗Y ), X ⊗ Y ))

(R1(p′( f ), Z), R2(p′( f ), Z))

(R1(p′( f ), Z) ⊗ p(μ−1
p′( f ),Z l), Z)

(R1(p′( f ), Z) ⊗ p(μ
p′( f ),Z l)

∗, Z)

where we use the definition of ⊗(t,p) in the first step, the monoidal structure of R in
the second step, ϕX• and the definition of ⊗(t ′,p′) in the third step, the existence of the
morphism (I, X) ⊗(t ′,p′) (I,Y ) −→ (p′( f ), Z) associated with the morphism in A,
p′(1X⊗Y ) ⊗ p′( f l) −→ p′( f ), deduced from the commutative diagram

I ⊗ X ⊗ Y
1⊗ f

1⊗1

I ⊗ Z

l

I ⊗ X ⊗ Y
f l

Z ,

in the fourth step, the morphism in A ×(t ′,p′) G

(1, μ−1
p′( f ),Z ) : (R1(p′( f ), Z), R2(p′( f ), Z)) −→ (R1(p′( f ), Z) ⊗ p(μ−1

p′( f ),Z l), Z)

in the fifth step and, in the last step, the existence of the morphism in A,

p(μ−1
p′( f ),Z l) −→ p(μ

p′( f ),Z l)
∗
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determined by the commutative diagram

I ⊗ R2(p′( f ), Z) ⊗ I
1⊗r

μ−1
p′( f ),Z l⊗1

I ⊗ R2(p′( f ), Z)

l

I ⊗ I
μ
p′( f ),Z l

R2(p′( f ), Z).

E is biessentially surjective:
We have to prove that E is surjective up to equivalence. Let

Eqs(A)

⇐σ

G
ϕ

A
T

E

ψ

C(T )
E/T

S

be a ϕ-extension. Up to the equivalencesG � E/T we can describe a cocycle (t, p) ∈
Z2(E/T,A)) as follows.Anymorphism [A, f ] : X ⊗ Y ◦ Z inE/T is an equiv-

alence class of prearrows (A ∈ A, X⊗Y
f−→ T (A)⊗ Z) and we choose p([A, f ]) =

A (and we denote A = p( f )) . Also, recalling that the identity in an object X is the
class [I, can : X → T (I )⊗ X ]we have that, for any commutative diagram inE/T as

X ⊗ Y ⊗ Z ◦

◦

[I,can]⊗[p(i),i]

[p( f ), f ]⊗[I,can]

X ⊗ T

◦ [p(h),h]

R ⊗ Z ◦[p(g),g] S

and, according to the definition of the tensor product of morphisms in the quotient
categorical group (see Sect. 2), the object part of the composite [p(h), h] · ([I, can]⊗
[p(i), i]) is, unless canonical isomorphisms, Xp(i) ⊗ p(h), whereas the object part
of the composite [p(g), g] · ([p( f ), f ] ⊗ [I, can]) is, again unless canonical isomor-
phisms, p( f ) ⊗ p(g). Then the commutativity of the square implies the existence of
a morphism in A

t[p( f ), f ],[p(g),g],[p(h),h],[p(i),i] : Xp(i) ⊗ p(h) −→ p( f ) ⊗ p(g)

such that the following diagram in E is commutative

X ⊗ Y ⊗ Z T (Xp(i) ⊗ p(h)) ⊗ S

T (t[p( f ), f ],[p(g),g],[p(h),h],[p(i),i] )⊗1

T (p( f ) ⊗ p(g)) ⊗ S.
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In this way it is straightforward to check that the pair (t, p) ∈ Z2(G,A). Moreover,
any other choice of the objects p( f ) gives a cohomologous 2-cocycle, that is, isomor-
phic in the quotientH2(G,A). We finish by showing that E(t, p) is isomorphic to the
given ϕ-extension. The needed arrow in Opext(ϕ,G,A) is given by

A
T

i
A

⇓τ

E
C(T )

R

E/T

A ×(t,p) E/T
prE/T

with R(X) = (I, X) and τA : (I, T (A)) −→ (A, I ) the morphism in A ×(t,p) E/T

determined by the arrow in E/T [A, r−1
T (A)

] : T (A) ◦ I and the arrow in A

I ⊗ p(r−1
T (A)

l) = I ⊗ A can
A . ��

The Baer sum of singular extensions of a group G by a G-module A can be defined
in a direct way or, alternatively in an indirect way, by using the bijection of the set of
classes of such extensions with the second cohomology group H2(G, A). This second
approach can be used to define also a Baer sum in the categorical group case. The
biequivalence ε of previous theorem induces an equivalence between the respective
groupoids obtained by taking 2-isomorphisms classes of 1-arrows as arrows. Each
pseudo-inverse of this equivalence certainly allows to define, using the tensor product
in the symmetric categorical groupH2(G,A), a symmetric categorical group structure
(i.e., a Baer sum) on the groupoid Opext(ϕ,G,A) and, of course, all these different
structures yield to equivalent symmetric categorigal groups. In summary we get the
following corollary.

Corollary 3.6 LetG be a categorical group and ϕ : G → Eqs(A) a symmetric action.
Each weak-inverse of the biequivalence

E : H2(G,A) → Opext(ϕ,G,A)

induces a structure of symmetric categorical group on the groupoid Opext(ϕ,G,A)

an all of them are equivalent.

Remark 3.7 With the appropriate notion of morphism between those singular exten-
sions recalled inRemark 3.2 (introduced in [9,Definition 4.1]), the category of singular
extensions E(G,A) was also considered in [9] where, actually, it was proved the exis-
tence of a bijection [9, Theorem 4.4] π0(E(G,A)) ∼= H1(G,A) of its connected
components with the first cohomology group there introduced. Comparing the con-
struction of this H1 with our definition of the categorical groupH2(G,A), we see that
H1(G,A) � π0(H2(G,A)) and then this isomorphismprovides, at this group-level, an
alternative and dual point of view of the classification theorem 3.5. In that way, singu-
lar extensions in terms of surjective fibrations and fibre categories or, equivalently (c.f.
[20]), of essentially surjective homomorphisms and their homotopy kernels, would be
considered instead of those singular extensions studied in this paper which are defined
in terms of faithful homomorphisms and their homotopy cokernels.
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4 A new Hochschild–Serre 2-exact sequence

In Corollary 6.5 of [13] we showed categorical group versions of the classical
Hochschild–Serre 5-term exact group sequences [14]. These categorical versions
involve derivations and a second categorical cohomology groupH2 able of classifying
the singular extensions of categorical groups with symmetric kernel and a functorial
section. In order to classify all singular extensions, we have introduced in Sect. 3 a
new second categorical cohomology group H2 and now, in this section, our aim is to
show that, involving thisH2, there are also corresponding categorical group versions
of the classical 5-term Hochschild–Serre sequences.

We fix an essentially surjective homomorphism of categorical groups P : E → G,

a symmetric G-categorical group A = (A, ϕ : G → Eqs(A)) and we consider the
faithful homomorphisms given by composition with P , PC : C1(G,A) → C1(E,A)

and PZ : Z2(G,A) → Z2(E,A).
Note that the kernel of the homomorphism T : C1(G,A) → Z2(G,A) is the

symmetric categorical groupD(G,A) that we call of the ‘non-functorial’ derivations.
This name is justified because its objects are maps D : Obj(G) → Obj(A) together
with a family of isomorphisms

{β = β f : D(X) ⊗ XD(Y ) → D(Z)}{ f :X⊗Y→Z∈Mor(G)}

such that, for any commutative diagram as (1), the following diagram is commutative:

D(X) ⊗ XD(Y ) ⊗ X (YD(Z))
1⊗ϕ2

1⊗ϕ1

D(X) ⊗ X(D(Y ) ⊗ YD(Z))

1⊗Xβi

D(X) ⊗ XD(Y ) ⊗ X⊗YD(Z)

1⊗ fD(Z)

D(X) ⊗ XD(T )

βhD(X) ⊗ XD(Y ) ⊗ RD(Z)

β f ⊗1

D(R) ⊗ RD(Z)
βg

D(S).

An arrow in D(G,A) from (D, β) to (D′, β ′) is a family of isomorphisms

{εX : D(X) −→ D′(X)}X∈G

such that, for any morphism f : X ⊗ Y → Z in G, the following condition holds:

β ′
f · (εX ⊗ X

εY ) = εZ · β f . (4)

Of course, the symmetric categorical group structure inD(G,A) is induced by that of
A.

123



476 A. R. Garzón

Remark 4.1 When the action of G on A is the trivial one, the symmetric categorical
groups D(G,A) of ‘non-functorial derivations’ becomes a categorical group of ‘non-
functorial homomorphisms’ from G to A that we will denote by n fHom(G,A). Its
objects are pairs (F, F2) where F is a map F : Obj(G) → Obj(A) and

F2 = F f
2 : F(X) ⊗ F(Y ) → F(Z)

is a family of isomorphisms indexed in all morphisms f : X ⊗ Y → Z in G, such
that, for any commutative diagram as (1), the following condition holds

Fh
2 · (1 ⊗ Fi

2) = Fg
2 · (F f

2 ⊗ 1).

There exists then a morphism F0 : I → F(I ) such that, for any X ∈ G, the equalities
Fr
2 · (1 ⊗ F0) = r and Fl

2 · (F0 ⊗ 1) = l hold.

In particular, there always exists amorphism F1X⊗Y
2 : F2(X)⊗F2(Y ) → F2(X⊗Y )

and therefore, for any morphism f : X ⊗ Y → Z in G and considering the induced
one ˜f : X ⊗ Y ⊗ Z∗ → I , there exists also a morphism F(X ⊗ Y ⊗ Z∗) → I

canonically deduced from the one Fl·( ˜f ⊗1)
2 : F(X ⊗ Y ⊗ Z∗) ⊗ F(I ) → F(I ).

Amorphism in n fHom(G,A) from (F, F2) to (F ′, F ′
2) is a family of isomorphisms

{τX : F(X) −→ F ′(X)}X∈G such that, for any morphism f : X ⊗ Y → Z in G, the
following condition holds

F ′ f
2 · (τX ⊗ X

τY ) = τZ · F f
2 .

Considering the kernel and cokernel of the homomorphism T : C1(G,A) →
Z2(G,A), we have the following 2-exact sequence

D(G,A)
K (T )

C1(G,A)
T Z2(G,A)

C(T )
H2(G,A).

There is also a homomorphism of symmetric categorical groups, dG : A −→
D(G,A), given by inner derivations, that is, for any A ∈ A and X ∈ G, dG(A)(X) =
XA ⊗ A∗.

The cokernel Coker(dG) deserves to be called the first cohomology categorical
group of G with coefficients in A and will be denoted by H1(G,A).

Now, following the same steps as in Section 5 of [13],we can construct the following
diagram in SCG:
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A

dG

Id
A

dE

D(G,A)

K(TG)

C(dG)

D(E,A)

K(TE)

C(dE)

Ker(TP )

K(TP )

πP

H1(G,A)

K(TG)

H1(E,A)

K(TE)

Ker(T P )

K(T P )C1(G,A)

TG

C(K(TG)·dG)

PC
C1(E,A)

TE
C(K(TE)·dE)

C(PC)
C1(P,A)

TP

π P

C1(G,A)

T G

PC C1(E,A)

T E

C(PC)

C1(P,A)

T P

Z2(G,A)

C(TG)

C(T G)

PZ
Z2(E,A)

C(TE)

C(T E)

C(PZ )
Z2(P,A)

C(TP )

C(T P )

H2(G,A) H2(E,A) Coker(T P )

H2(G,A)

sG

H2(E,A)

sE

Coker(TP )

sP

where

– C1(G,A) is the cokernel of K(TG) · dG and H2(G,A) is the cokernel of T G;
– C1(P,A) is the cokernel of PC, C1(P,A) is the cokernel of PC, and Z2(P,A) is
the cokernel of PZ .

Now, the proof of the next proposition is identical to that of Proposition 5.4 in [13].

Proposition 4.2 Let P : E → G be an essentially surjective homomorphism of cat-
egorical groups and A a symmetric G-categorical group. There exists a diagram of
2-exact sequences of symmetric categorical groups

D(G,A)

C(dG)

D(E,A)

C(dE)

Ker(TP )

πP

H2(G,A)

sG

H2(E,A)

sE

Coker(TP )

sP

H1(G,A) H1(E,A) Ker(T P ) H2(G,A) H2(E,A) Coker(T P )

where C(dG) and C(dE) are essentially surjective, sG and sE are full and essentially
surjective and πP and sP are equivalences.

We give now a suitable interpretation of the third point of these sequences (c.f.
Proposition 6.4 in [13]) in order to get the desired new 2-dimensional Hochschild–
Serre sequences involving the second cohomology categorical groupH2. For this, let
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K be the kernel of the fixed homomorphism P : E → G and recall, from Example
2.6.v in [10], that there is a canonical action •: E×K → Kwith constraints •0, •1, •2.
Explicitly,

E • (K , uK : PK → I ) = (E ⊗ K ⊗ E∗, uE⊗K⊗E∗ )

where

uE⊗K⊗E∗ = P(E ⊗ K ⊗ E∗)
P−1
2

PE ⊗ PK ⊗ PE∗ id⊗uK ⊗id
PE ⊗ I ⊗ PE∗ � I .

Let us consider now the symmetric categorical group

n fHom(K,A)

having equivariant non-functorial homomorphisms fromK toA as objects. Thismeans
that an object is a triplet (F, F2, Fϕ) where (F, F2) ∈ n fHom(K,A) (see Remark
4.1) and Fϕ is a family of arrows

F
E,(K ,uK )
ϕ : F(E • (K , uK )) → PEF(K , uK )

satisfying the following coherence conditions:

(nf1) F
I,(K ,uK )
ϕ · F2(•(K ,uK )

0 · l) · ((F0 ⊗ 1) · l−1) = P0F(K , uK ) · ϕ
F(K ,uK )

0

(nf2) PEF
id(K ,uK )⊗(J,u J )

2 · ϕ
PE,F(K ,uK ),F(J,uJ )

2 · (F
E,(K ,uK )
ϕ ⊗ F

E,(J,uJ )
ϕ )

= F
E,(K ,uK )⊗(J,uJ )
ϕ · F•E,(K ,uK ),(J,u J )

2
2

(nf3) PE,F
2 F(K , uK ) ·ϕPE,PF,F(K ,uK )

1 · PEF
F,(K ,uK )
ϕ ·FE,F•(K ,uK )

ϕ = F
E⊗F,(K ,uK )
ϕ ·

F(•E,F,(K ,uK )

1 )

A morphism

τ : (F, F2, Fϕ) ⇒ (F ′, F ′
2, F

′
ϕ) : K → A

in n fHom(K,A) is a morphism τ : (F, F2) → (F ′, F ′
2) in n fHom(K,A) such that

(nf4) PEτ
(K ,uK )

· FE,(K ,uK )
ϕ = F

′E,(K ,uK )
ϕ · τE•(K ,uK )

.

Next we see that this symmetric categorical group gives the desired interpretation
of Ker(TP ).

Theorem 4.3 Let P : E → G be an essentially surjective homomorphism of categor-
ical groups with kernel K and let A be a symmetric G-categorical group. Then there
is an equivalence of symmetric categorical groups

nfHom(K,A) � Ker(TP )
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Proof Recall that an object ofKer(TP ) consists of a pair (γ, uγ : TP (γ ) → 0) where
γ ∈ Obj(C1(P,A)) = Obj(C1(E,A)), that is, γ : Obj(E) → Obj(A), X �→ γX , is a
mapwith γI

∼= I , and uγ is a morphism inZ2(P,A). This means that uγ is the class of
a premorphism ((p, t), T

E
(γ ) −→ PZ (p, t)⊗(0, can))where (p, t) ∈ Z2(G,A) and

T
E
(γ ) = (pγ , tγ ), with pγ ( f ) = P(X)γY ⊗γX ⊗γ ∗

Z
for anymorphism f : X⊗Y → Z

inE. Moreover, since P is essentially surjective, we can choose, for any objectG ∈ G,

an object sG ∈ E and an isomorphism G
eG−→ P(sG). In particular, we choose

s I = I with eI = P0 and, for any G ∈ G, sG∗ = (sG)∗ with eG∗ = e∗
G . Note that,

for any object X ∈ E, the object X ⊗ sP(X)∗ together with the natural morphism
uX⊗sP(X)∗ : P(X ⊗ sP(X)∗) → P(X) ⊗ P(sP(X)∗) → P(X) ⊗ P(X)∗ → I
constitute an object ofK. Once this morphism is well-understood, in what follows we
will omit it for simplicity.

Then, for any object F = (F, F2, Fϕ) ∈ nfHom(K,A), we define

� : nfHom(K,A) −→ Ker(TP )

by �(F) = (γ F , u
γ F ) where, for any object X in E, γ F

X
= F(X ⊗ sP(X)∗. As for

u
γ F , it is given by the 2-cocycle (pF , t F ) ∈ Z2(G,A) and the morphism inZ2(E,A),

χ : T
E
(γ F ) −→ PZ (pF , t F ) ⊗ (0, can), described below.

On the one hand, since for any morphism g : G1 ⊗ G2 → G3 in G there is

a morphism u
sG3⊗sG∗

2⊗sG∗
1

: P(sG3 ⊗ sG∗
2 ⊗ sG∗

1)
e·P2 G3 ⊗ G∗

2 ⊗ G∗
1

g̃
I ,

the pair (sG3 ⊗ sG∗
2 ⊗ sG∗

1, usG3⊗sG∗
2⊗sG∗

1
) ∈ K and, by omitting the arrow part

of the object ofK, we put pF (g) = F(sG3⊗sG∗
2⊗sG∗

1). Then, for any commutative
diagram in G

G1 ⊗ G2 ⊗ G3
1⊗i

f ⊗1

G1 ⊗ G5

h

G4 ⊗ G3
g

G6,

the morphism

F(sG4 ⊗ sG∗
2 ⊗ sG∗

1) ⊗ F(sG6 ⊗ sG∗
3 ⊗ sG∗

4)

t Ff,g,h,i

G1F(sG5 ⊗ sG∗
3 ⊗ sG∗

2) ⊗ F(sG6 ⊗ sG∗
5 ⊗ sG∗

1)

is uniquely determined by the following commutative diagram

123



480 A. R. Garzón

F(sG4 ⊗ sG∗
2 ⊗ sG∗

1) ⊗ F(sG6 ⊗ sG∗
3 ⊗ sG∗

4)

t Ff,g,h,i

G4⊗G3F(sG∗
3 ⊗ sG∗

2 ⊗ sG∗
1 ⊗ sG6)

h·g−1
1

G1F(sG5 ⊗ sG∗
3 ⊗ sG∗

2) ⊗ F(sG6 ⊗ sG∗
5 ⊗ sG∗

1) G1⊗G5F(sG∗
3 ⊗ sG∗

2 ⊗ sG∗
1 ⊗ sG6)

where the horizontal morphisms are suitably obtained applying F2 and Fϕ .
On the other hand, χ is determined, for any morphism f : X ⊗ Y → Z in E, by

the morphism in A

pγ F
( f ) = P(X)F(Y ⊗ sP(Y )∗) ⊗ F(X ⊗ sP(X)∗) ⊗ F(Z ⊗ sP(Z)∗)∗

pF (P( f ) · P2) = F(sP(Z) ⊗ sP(Y )∗ ⊗ sP(X)∗)

defined by means of FX,Y⊗sP(Y )∗
ϕ , F2, f ∗ : Z∗ −→ Y ∗ ⊗ X∗, F(X ⊗ Y ⊗ Z∗) → I ,

FX⊗Y⊗sP(Z)∗,sP(Z)⊗sP(Y )∗⊗sP(X)∗
ϕ and canonical morphisms.
On arrows τ = (τK )K∈K : F → F ′, �(τ) : (γ F , u

γ F ) −→ (γ F ′
, u

γ F ′ ) is the

arrow in Ker(TP ) determined by v ∈ C1(G,A) given, for any G ∈ G, by vG = I and
the arrow ρ : γ F −→ PC(v) ⊗ γ F ′

in C1(E,A) given, for any X ∈ E, by the arrow
in A τX⊗sP(X)∗ : F(X ⊗ sP(X)∗) → F ′(X ⊗ sP(X)∗).

To see that � is a monoidal functor is straightforward. Let us prove now that � is
an equivalence.

To check that it is essentially surjective, suppose (γ, uγ ) an object of Ker(TP ).
Then there is (p, t) ∈ Z2(G,A) and, for any f : X ⊗ Y → Z in G, a morphism in
A, θ f : pγ ( f ) → p(P( f )). Let us consider F : Obj(K) → Obj(A) given, for any
(K , uK ) ∈ K, by F(K , uK ) = γK ⊗ p(uK · r)∗. Next we see that there exist F2 and
Fϕ such that F = (F, F2, Fϕ) ∈ nfHom(K,A).

For any morphism in K, (K , uK ) ⊗ (K ′, u
K ′ )

h−→ (K ′′, u
K ′′ ) the existence of

Fh
2 : F(K , uK ) ⊗ F(K ′, u

K ′ ) −→ F(K ′′, u
K ′′ ) means the existence of a morphism

γK ⊗ p(uK · r)∗ ⊗γ
K ′ ⊗ p(u

K ′ · r)∗ −→ γ
K ′′ ⊗ p(u

K ′′ · r)∗. Now, thanks to uγ and θh ,
there exists a morphism inA, γ

K ′ ⊗γK ⊗γ ∗
K ′′ −→ p(P(h) · P2), and this one together

with the morphism tP(h)·P2,u
K ′′ ·r,uK ·r,u

K ′ ·r , determined by the commutative square

P(K ) ⊗ P(K ′) ⊗ I
1⊗uK ′ ·r

P(h)·P2⊗1

P(K ) ⊗ I

uK ·r

P(K ′′) ⊗ I u
K ′′ ·r I

,

give the required morphism Fh
2 .
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For any objects X ∈ E and (K , uK ) ∈ K, the existence of F
X,(K ,uK )
ϕ satisfying

conditions (nf1), (nf2) and (nf3) means the existence of a morphism

ϒ : γX⊗K⊗X∗ ⊗ p(uX⊗K⊗X∗ · r)∗ −→ P(X)(γK ⊗ p(uK · r)∗)

and this is obtained as follows. Considering the morphisms

a−1
X,K ,X∗ : X ⊗ (K ⊗ X∗) → (X ⊗ K ) ⊗ K ∗, 1K⊗X∗ and η−1

X
: X ⊗ X∗ → I

and the following ones associated with them

θa−1
X,K ,X∗ : P(X)γK⊗X∗ ⊗ γX ⊗ γ ∗

(X⊗K )⊗X∗ −→ p(P(a−1
X,K ,X∗ ) · P2),

θ1
K⊗X∗ : γX∗ ⊗ γK ⊗ γ ∗

K⊗X∗ −→ p(P2)

and

θη−1
X

: P(X)γX∗ ⊗ γX −→ p(P(η−1
X

) · P2),

we can deduce the existence of the following morphism

θ : γ
(X⊗K )⊗X∗ → P(X)γK ⊗ p(P(η−1

X
) · P2) ⊗ P(X)p(P2)

∗ ⊗ p(P(a−1
X,K ,X∗ ) · P2)∗.

Now, finally, this morphism θ induces ϒ thanks to the morphism

P(X)p(uK · r) ⊗ p(P(η−1
X

) · P2) ⊗ P(X)p(P2)
∗ ⊗ p(P(a−1

X,K ,X∗ ) · P2)∗ ⊗ p(u
X⊗K⊗X∗ · r)∗

⏐

⏐

�
ζ

I

whose existence is easily deduced from the following morphisms:

t
r ·(1⊗uK ),P(η

−1
X )·P2,ξ,P2

: p(r · (1 ⊗ uK ) ⊗ p(P(η−1
X

) · P2) −→ P(X)p(P2) ⊗ p(ξ),

t
P(a−1)·P2,uX⊗K⊗X∗ ·r,ξ,r

: p(P(a−1) · P2) ⊗ p(uX⊗K⊗X∗ · r) −→ p(ξ) ⊗ I

and

tr ·(1⊗uK ),r,r,uK ·r : p(r · (1 ⊗ uK )) ⊗ I⊗ −→ I ⊗ P(X)p(uK · r),

respectively associated to the following commutative diagrams:
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P(X) ⊗ P(K ) ⊗ P(X∗) 1⊗P2

(1⊗uK )⊗1

P(X) ⊗ P(K ⊗ X∗)

ξP(X) ⊗ I ⊗ P(X∗)

r⊗1

P(X) ⊗ P(X∗)
P(η−1

X
)·P2

I,

P(X) ⊗ P(K ⊗ X∗) ⊗ I
1⊗r

P(a−1)·P2⊗1

P(X) ⊗ P(K ⊗ X∗)

ξ

P((X ⊗ K ) ⊗ X∗) ⊗ I u
X⊗K⊗X∗ ·r I,

and

P(X) ⊗ P(K ) ⊗ I
1⊗uK ·r

r ·(1⊗uK )⊗1

P(X) ⊗ I

r

P(X) ⊗ I r P(X).

Moreover, we have that �(F) = (γ F , u
γ F ) is isomorphic to (γ, u) in C1(P,A), the

existence of this isomorphism being given by an object v ∈ C1(G,A) and, for any
object X ∈ E, by a morphism γX −→ vP(X)

⊗ γ F
X

in A, both described below. For
any X ∈ E, γ F

X
= F(X ⊗ sP(X)∗) = γX⊗sP(X)∗ ⊗ p(uX⊗sP(X)∗ · r)∗ and therefore we

look for v ∈ C1(G,A) and, for any X ∈ E, for a morphism

α : γX −→ vP(X)
⊗ γX⊗sP(X)∗ ⊗ p(uX⊗sP(X)∗ · r)∗.

Now, on the one hand, consider the morphism

θ1
X⊗sP(X)∗ : P(X)γsP(X)∗ ⊗ γX ⊗ γ ∗

X⊗sP(X)∗ −→ p(P2)

and the following one induced by it

˜θ : γX −→ γX⊗sP(X)∗ ⊗ p(P2) ⊗ P(X)γ ∗
sP(X)∗ .

On the other hand, associated with the commutative diagram
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P(X) ⊗ P(sP(X)∗) ⊗ I
1⊗r

P2⊗1

P(X) ⊗ P(sP(X)∗)

η−1·(1⊗e)

P(X ⊗ sP(X)∗) ⊗ I u
X⊗sP(X)∗ ·r I

there is a morphism p(P2) ⊗ p(uX⊗sP(X)∗ · r) −→ p(η−1 · (1 ⊗ e)) which induces,
together with the above morphism ˜θ , a new morphism

γX −→ p(η−1 · (1 ⊗ e)) ⊗ P(X)γ ∗
sP(X)∗ ⊗ γX⊗sP(X)∗ ⊗ p(uX⊗sP(X)∗ · r)∗.

This is then the desired morphism α if we consider v ∈ C1(G,A) given, for any
G ∈ G, by vG = p(η−1 · (1 ⊗ e)) ⊗ sGγ ∗

sG∗ and this concludes the proof that � is
essentially surjective.

It remains to prove that � is full and faithfull, that is, that for any F, F ′ ∈
nfHom(K,A) the map (F

τ→ F ′) �→ (�(F)
�(τ)−→ �(F ′) is bijective.

Recall that �(τ) : (γ F , u
γ F ) −→ (γ F ′

, u
γ F ′ ) is the class of the premorphism

(v, ρ) with v ∈ C1(G,A) given, for any G ∈ G, by vG = I , and ρ : γ F −→
PC(v) ⊗ γ F ′

in C1(E,A) is given, up to a canonical morphism, for any X ∈ E, by the
arrow in A τX⊗sP(X)∗ : F(X ⊗ sP(X)∗) → F ′(X ⊗ sP(X)∗).

Suppose (w, h) any premorphism in Ker(TP ) from �(F) to �(F ′). Thus, w ∈
C1(G,A) and, for any X ∈ E, there is a morphism in A, hX : F(X ⊗ sP(X)∗) −→
wP(X)

⊗ F ′(X ⊗ sP(X)∗). Moreover, the equality u
γ F ′ · TP (w, h) = u

γ F must hold

and this implies the existence of a morphism inZ2(G,A), (pw, tw)⊗ (pF
′
, t F

′
) −→

(pF , t F ), that is, for anymorphismG1⊗G2 → G3 inG, the existence of a morphism

G1wG2
⊗ wG1

⊗ w∗
G3

⊗ F ′(sG3 ⊗ sG∗
2 ⊗ sG∗

1) −→ F(sG3 ⊗ sG∗
2 ⊗ sG∗

1).

In particular, considering the morphism G⊗ P(sG)∗ e−→ P(sG)⊗ P(sG)∗ → I ,
and taking into account that wI = I and s I = I , we find a morphism

ν : GwP(sG)∗ ⊗ wG ⊗ F ′((sP(sG)∗)∗ ⊗ sG∗) −→ F((sP(sG)∗)∗ ⊗ sG∗).

Also, considering for any G ∈ G the morphism

hsG∗ : F(sG∗ ⊗ (sP(sG)∗)∗) −→ wP(sG)∗ ⊗ F ′(sG∗ ⊗ (sP(sG)∗)∗)

and the one that it induces, P(sG)hsG∗ , we actually get a morphism

F((sP(sG)∗)∗) ⊗ sG∗) −→ GwP(sG)∗ ⊗ F ′((sP(sG)∗)∗) ⊗ sG∗).
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This last morphism together with the above ν imply the existence, for any G ∈ G, of
a morphism wG → I . Then, for any X ∈ E, hX induces a morphism

˜hX : F(X ⊗ sP(X)∗) −→ F ′(X ⊗ sP(X)∗)

and, in particular, for any object (K , uK ) ∈ K, we obtain a morphism

F(K ) ⊗ F(sP(K )∗)
F2

F(K ⊗ sP(K )∗)

˜hK
F ′(K ⊗ sP(K )∗)

F ′−1
2

F ′(K ) ⊗ F ′(sP(K )∗)

which determines the existence of τK : F(K ) −→ F ′(K ) with ˜hK = τK⊗sP(K )∗ and

such that, for any X ∈ E, τX⊗sP(X)∗ = ˜hX = hX · can. In this way we have that

�(τ) = (v, ρ) = (w, h) and so � is full.
Finally, if τ and τ ′ are such that �(τ) = �(τ ′) then, for any X ∈ E, we have

that τX⊗sP(X)∗ = τ ′
X⊗sP(X)∗ and, in particular, for any (K , uK ) ∈ K we have that

τK ⊗ τsP(K )∗ = F ′−1
2 · τK⊗sP(K )∗ · F2 = F ′−1

2 · τ ′
K⊗sP(K )∗ · F2 = τ ′

K
⊗ τ ′

sP(K )∗ and

therefore τ = τ ′ and so � is faithful. ��
Finally, Theorem 4.3 together with Proposition 4.2 give the following:

Corollary 1 (The Hochschild–Serre 2-exact sequences) Let P : E → G be an essen-
tially surjective homomorphism of categorical groups with kernel K and let A be a
symmetric G-categorical group. There exist 2-exact sequences of symmetric categor-
ical groups

D(G,A) D(E,A) nfHom(K,A) H2(G,A) H2(E,A)

H1(G,A) H1(E,A) nfHom(K,A) H2(G,A) H2(E,A).

Note that, when G is the discrete categorical group associated with a group G and
A is the discrete symmetric categorical group associated with a G-module, these
sequences reduce, by taking π0, to the classic 5-term group exact sequences by
Hochschild–Serre [14].
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