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Abstract Let X be a 2-local ring spectrum of type n which is homotopy commutative
up to a finite level of coherence (homotopy associativity is not assumed). We prove
that, if f : �k X → X is a vn self-map, there exists an N such that, for all m > 0, the
cofiber C( f mN ) of f mN has a ring spectrum structure extending that on X which is
homotopy commutative up to the same level of coherence. A strong analogue of this
result holds at odd primes. We also discuss the relevance of this result to the problem
of constructing explicit vn+1 self-maps and provide a framework for extending our
results to higher multiplicative structures including higher homotopy associativity.

Keywords Type n finite spectra · vn self-maps · Extended powers
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1 Introduction

Let X be a ring spectrum, bywhichwemean an object X in the stable category together
with morphisms μ : X ∧ X → X and η : �∞S0 → X such that

X = �∞S0 ∧ X
η∧X−−−−→ X ∧ X

μ−−−−→ X
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330 E. S. Devinatz

is the identity there. In particular, neither (homotopy) associativity nor commutativity
is assumed; it is not even assumed that η is a two-sided unit. In [2], we gave conditions
on a self-map f : �k X → X so that the cofiber C( f ) of f is itself a ring spectrum
and so that the inclusion X → C( f ) is a map of ring spectra. We also observed
that, if X is in addition of type n > 0 for a prime p and if g is a vn self-map, then
nilpotence technology implies that there exists N > 0 such that gmN satisfies the
requisite hypotheses for all m > 0. Hence C(gmN ) is a ring spectrum of type n + 1,
and this process may be continued.

The result that a finite ring spectrum of type n has a vn self-map such that the cofiber
of any of its iterates is also a ring spectrum was one of the original conjectures now
known collectively as the Ravenel conjectures ([12, Sect. 10]). (Of course, all of these
conjectures are now theorems, with the exception of the Telescope conjecture, which
remains open for n > 1). The motivation for this conjecture came from the problem
of—in modern terminology—constructing explicit vn self-maps. Indeed, if X is a ring
spectrum, then any map f̄ : Sk → X gives rise to the self-map

�k X = X ∧ Sk
X∧ f̄−−−−−→ X ∧ X −→ X, (1.1)

which, of course, restricts to f̄ on Sk = �k S0.
For example, recall how the β family in π∗S0 for p ≥ 5 is constructed. Write

M(pi ) for the mod (pi ) Moore spectrum and M(pi0 , vi11 , . . . , v
in−1
n−1) for a type n

spectrum obtained as the cofiber of a self map onM(pi0 , vi11 , . . . , v
in−2
n−2)which induces

multiplication by v
in−1
n−1 on BP-homology. If p ≥ 3, it follows from dimensional

reasons in the Adams-Novikov spectral sequence that there exists a map

v̄2 : S2(p−1) → M(p, v1) ≡ V (1)

inducing multiplication by v2 in BP-homology. If p ≥ 5, V (1) is a ring spectrum and
thus the construction of 1.1 may be used to obtain a self-map v2 : �2(p2−1)V (1) →
V (1). Then βt is defined to be the composition

�2t (p2−1)S0 −→ �2t (p2−1)V (1)
vt2−−−−−→ V (1) −→ S2p,

where the left map is the inclusion of the bottom cell and the right map is the collapse
onto the top cell. On the other hand, if p = 3, V (1) is not a ring spectrum and in fact
M(3, v1, v2) does not exist. (Yet M(3, vt1) is a ring spectrum for t ≥ 2 [10]).

One might further ask whether these spectra have ring spectrum structures which
are homotopy commutative and/or homotopy associative. Such issues were considered
by Oka [11], who used his results to construct explicit vn self-maps.

Of course, Oka was working before the general results of Hopkins and Smith on
vn self-maps [6] and so he limited his investigations to only certain type n spectra
for small values of n. However, his construction may be described in more general
terms, and—at the risk of becoming overly technical—we feel that some readers may
appreciate a synopsis.
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Higher homotopy commutativity of small ring spectra 331

Suppose then that (pi , w1, . . . , wn−1) is an invariant ideal in BP∗ with

wi ≡ v
ti
i mod (p, v1, . . . , vi−1)

for 1 ≤ i ≤ n, and that X is a homotopy commutative and homotopy associative
finite ring spectrum with BP∗X ≈ BP∗/(pi , w1, . . . , wn−1) as algebras over BP∗.
Assume that

fn : �2tn(pn−1)X −→ X

is a self-map such that BP∗ fn is multiplication by an element wn ∈ BP∗ with

wn ≡ vtnn mod (p, v1, . . . , vn−1).

(Since any self-map of a spectrum with cyclic BP-homology is just multiplication by
an element of BP∗, we will write

BP∗ fn = wn ≡ vtnn mod (p, v1, . . . , vn−1).)

Let dm denote the composition

C( f mn )
∂−−−−→ �2mtn(pn−1)+1X

i−−−−→ �2mtn(pn−1)+1C( f mn ),

where ∂ and i are the maps in the cofiber sequence induced by f mn . If C( f mn ) has the
structure of a homotopy commutative and homotopy associative ring spectrum such
that dm is a derivation, and if fn+1,m is a self-map of C( f mn ) with

BP∗ fn+1,m ≡ vtn+1 mod (p, v1, . . . , vn),

then Oka observed that there exists a self-map fn+1,2m of C( f 2mn ) with

BP∗ fn+1,2m ≡ v
pi t
n+1 mod (p, v1, . . . , vn).

This procedure may of course be iterated—assuming C( f mn ) has the requisite mul-
tiplicative properties—to obtain explicit vn+1 self-maps for an entire family of type
(n + 1) spectra. Observe also that if s ≤ 2 j , we may form the composition

S2p
i j t (pn+1−1)

f̄n+1,2 j m−−−−−→ C( f 2
j m

n ) −−−−→ C( f smn ),

where the left map is the restriction of fn+1,2 j m to the unit and the right map is the
evident projection.Wemay than use the process of 1.1 to extend this map to a self-map
fn+1,sm of C( f smn ) with

BP∗ fn+1,sm ≡ v
tpi j

n+1 mod (p, v1, . . . , vn).
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332 E. S. Devinatz

Oka was able to show that the spectra M(p, vs1) for p ≥ 5, s ≥ 1, and M(p, v1, vs2)
for p ≥ 7, 1 ≤ s ≤ [(p − 2)/3], have homotopy commutative and homotopy asso-
ciative multiplications. However, the general question as to whether a ring spectrum
of, say, the form M(pi0 , vi11 , . . . , v

in
n ) has a homotopy commutative and homotopy

associative multiplication is apparently quite subtle, even in the case n = 0. Indeed,
M(2) is not a ring spectrum and M(4) is a ring spectrum which is not homotopy com-
mutative. If i ≥ 3, M(2i ) has a homotopy commutative multiplication which is also
homotopy associative if i ≥ 4. In this case, though, note that there is a v0 self-map
f : S0(2) → S0(2) such that C( f m) has the desired multiplicative properties for all m.
One is naturally, then, led to ask whether the result of [2] can be refined to produce

homotopy commutative or homotopy associative ring spectra or even ring spectra with
higher multiplicative structures. In this paper, we will extend our previous result to
obtain ring spectra commutative up to arbitrary finite homotopy. Although we have
no immediate applications of higher multiplicative structures on these spectra, we
will see that looking at higher homotopies clarifies the issues involved and that it
is no harder to obtain results for higher commutativity than it is for just ordinary
homotopy commutativity. However, the existence of a multiplication commutative up
to higher homotopies imposes more and more stringent requirements on a (2-local)
finite spectrum: we will prove in “Appendix 1” that, for each i , M(2i ) is commutative
up to only a finite number of higher homotopies. On the other hand, at odd primes,
the issue of higher homotopy commutativity is essentially trivial (see Remark 1.2
and Sect. 4), although we will also prove in “Appendix 1” that, for each i , the p-
fold multiplication on M(pi ) is commutative up to only a finite number of higher
homotopies as well.

We now make our notion of higher homotopy commutativity precise. Let E be a
free connected Z/(2)-CW complex, and let X be an object in a suitable model for the
stable category (we will say more about this below). An E-commutative ring spectrum
structure on X is a pair of maps

ξ : E �Z/(2) (X ∧ X) → X

η : �∞S0 → X

such that X becomes a ring spectrum with unit η and multiplication

μ : X ∧ X = Z/(2) �Z/(2) (X ∧ X) −→ E �Z/(2) (X ∧ X)
ξ−→ X.

Here Z/(2) → E is any Z/(2)-equivariant map; any two such maps will yield homo-
topicmultiplications. In particular,μ is homotopy commutative. The space E of course
organizes information about the homotopy commutativity and all the higher homo-
topies involved. We can now state our main result.

Theorem 1.1 Let X be a 2-local E-commutative ring spectrum of type n, E finite,
and let g : �|g|X → X be a vn self-map. (If n = 0, we assume that X = �∞S0(2);
then g will just be multiplication by a power of 2.) There exists N > 0 such that, for
any m > 0, C(gmN ) has an E-commutative ring spectrum structure extending that
on X.
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Higher homotopy commutativity of small ring spectra 333

Remark 1.2 If p > 2, the strongest variant of this result holds. Namely, we will show
(Propositions 4.2 and 4.4) that the p-local analogue of this theorem is true whenever
E = W is a contractible free Z/(2)-CW complex. In fact, any homotopy commutative
ring spectrum structure on a connective p-local object X extends uniquely to an E-
commutative ring spectrum structure. This of course does not hold when p = 2.

Remark 1.3 If g : X → X is a v0 self-map, X a spectrum of type 0, then by nilpo-
tence technology (see Theorem 2.1), some iterate of g is just multiplication by pi .
Replacing g by this iterate, it then follows that C(gm) = X ∧ M(pim). If X is an
E-commutative ring spectrum, then any E-commutative ring spectrum structure on
M(pim) extending the canonical such structure on �∞S0(p) yields an E-commutative
ring spectrum structure on C(gm) extending that on X .

In general, say that X has a j -fold multiplication with unit if there exist maps
μ : X ( j) → X and η : S0 → X such that μ ◦ (η( j−1) ∧ X) : (S0)( j−1) ∧ X → X
is the identity (in the stable category). If E is a free connected � j -CW complex,
say that the j-fold multiplication μ extends over E �� j X

( j) if there exists a map
ξ : E �� j X

( j) → X such that the composition

X ( j) = � j �� j X
( j) ι j (X)−−−−−→ E �� j X

( j) ξ−→ X (1.2)

is μ. As before, ι j (X) is induced by any equivariant map � j → E . We will be most
interested in the cases where E = E� j , a free contractible � j -complex (which we
always assume to have a finite number of cells in each dimension), or E = E�N

j , the
N -skeleton of such a complex. The following result was alluded to earlier.

Theorem 1.4 For each prime p and i ≥ 1, there exists an N such that M(pi ) does
not have a p-fold multiplication with unit extending over E�N

p ��p M(pi )(p).

Theorems 1.1 and 1.4 now suggest that, for a type n spectrum X , the following sort
of structure might be relevant. This structure might be thought of as an action in the
stable category of a finite skeleton of an E∞ operad on X . In more detail, fix positive
integers M ≥ 2 and k2, . . . , kn , and assume that there exist maps

η : �∞S0 → X

ξ j : E�
k j
j �� j X

( j) → X 2 ≤ j ≤ M

such that the diagrams in [1, Chapter 1, Definition 3.1] commute in the stable category
when restricted to appropriate skeleta and appropriate values of j and k. (Here ξ0 = η

and ξ1 = id). Then, if g : �|g|X → X is a vn self-map, one might ask whether
there exists N—depending of course on k2, . . . , kM—such that C(gmN ) has the same
structure for any positive integer m. Theorem 1.1 answers the question affirmatively
for M = 2, and in “Appendix 2” we will describe a framework for attacking the
question in general.

Our use of extended powers necessitates working in a model for the stable category
with good point-set properties including an associative, commutative, and unital smash
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334 E. S. Devinatz

product. Our choice for such amodel is the category of S-modules of [5]. Although the
point-set description of this category—most notably the smash product—is somewhat
complicated, the advantage of it is that one can often deal with S-modules as one
does with ordinary pointed topological spaces. Just as with spaces, each S-module is
fibrant, and there is a good notion of CW objects. The stable category may then be
regarded as the category whose objects are the CW S-modules and whose morphisms
are the homotopy classes of S-module maps, defined in the evident way. We also use
this analogy between S-modules and spaces in Sect. 5, where we employ standard
identities involving space-level cofibers in the context of S-modules. For the less
expert reader, we have included in “Appendix 3” a brief account of the construction
of the category of S-modules as well as a sketch of how these sorts of basic results are
obtained.

We are interested in S-modules with an action of� j (in the category of S-modules).
If Y is such a spectrum, and E is a free � j -CW complex, then

E �� j Y ≡ E+ ∧� j Y,

where E+ ∧ Y is just the smash product of Y with the space E+. We will write
E+ ∧� j Y as e j (Y ) or as eE, j (Y ) if E needs to be specified. If f : Y → Z is a
� j -equivariant map of S-modules, we will write e j ( f ) for E+ ∧� j f . Since we will
only be considering j = 2 for most of the paper, we will write e(Y ) or eE (Y ) or e( f )
for e2(Y ) or eE,2(Y ) or e2( f ). In particular, if X is an S-module, then the S-module
X ( j) is acted upon by � j via permutations, and we can form E �� j X

( j).
There is one more fact about smash products of S-modules worth mentioning now.

If A is a pointed space and X is an S-module, then A∧ X is defined in the obvious way
and is naturally isomorphic to �∞A ∧ X . We will from now on—except as noted in
“Appendix 1”—always write the suspension spectrum of a pointed space A as �∞A,
leaving the notation A for the space itself. However, even if A has the homotopy type
of a based CW-complex, �∞A has the homotopy type of a CW S-module if and
only if it is contractible (see [4]). We thus write 	�∞A for a CW S-module weakly
homotopy equivalent to �∞A.

Here now is the organization of this paper. We begin by recalling the needed nilpo-
tence technology and obtain some general consequences of this technology. This is
carried out in Sect. 2. In Sect. 3, we establish some properties of the twisted half-
smash product construction; in particular, with j = 2, we construct a stable map
〈 f 〉 : eE (X) → eE (Y ) whenever f is a (non-equivariant) map from X to Y . This
map may be thought of as eE applied to the stable map f + σ f σ : X → Y , where
σ : X → X and σ : Y → Y both denote the action of the nontrivial element σ of
Z/(2). With these preliminaries, the proof of our version of Theorem 1.1 for p > 2
is now easy and is carried out in Sect. 4. The rest of the paper is then devoted to the
proof of Theorem 1.1. An outline is given in Sect. 5 with the omitted details provided
in Sects. 6, 7, 8 and 9. The main issue here is showing that the homotopies making
certain squares homotopy commutative are in a certain sense compatible, so that the
induced maps on cofibers are also compatible, again in an appropriate sense.

As indicated earlier, there are three Appendices. In the first, we give a short proof of
1.4, and in the second, more speculative, Appendix, we describe our proposed strategy
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Higher homotopy commutativity of small ring spectra 335

for proving the above far-reaching generalization of the main result of this paper. The
third Appendix recalls some of the constructions needed to work with S-modules.

2 Nilpotence technology

Let X be a finite p-local CW S-module which is K (n−1)∗-acyclic. A vn self-map is a
map f : �k X → X such that K (n)∗ f is an isomorphism and K (m)∗ f is nilpotent for
m �= n. If n = 0, we make the additional assumption that HQ∗ f , the map induced by
f on ordinary rational homology, is multiplication by pi for some i . (Recall that K (0)
is just HQ). The following result is what we will in this paper refer to as nilpotence
technology.

Theorem 2.1 [6]

(i) If f : �k X → X and g : �l X → X are vn self-maps, then there exist r and s
such that f r is homotopic to gs .

(ii) If f : �k X → X and g : �lY → Y are vn self-maps, then there exist r and s
such that h ◦ f r � gs ◦ h for any h ∈ [X,Y ]∗. In particular, some iterate of f is
in the center of the ring [X, X ]∗.

Remark 2.2 Of course, part i follows from part ii but Hopkins and Smith prove ii as
a consequence of i. Indeed, let DX denote the (p-local) Spanier-Whitehead dual of
X and consider Y ∧ DX , which is naturally equivalent to the stable category function
object of maps from X to Y . Since g ∧ DX and Y ∧ Df are both vn self-maps, part i
implies that Y ∧ Df r � gs ∧ DX for some r and s. It now follows formally from the
adjunction property of the function object that f r and gs have the property given in
part ii.

In this paper we will use several general consequences of the above result. Our first
consequence is a generalization of a key technical piece of [2].

Proposition 2.3 Suppose that g : �kY → Y and h : �k Z → Z are vn self-maps
with k even (and induce multiplication by the same power of p on rational homology
if n = 0). Then there exists N such that, for any m > 0,

hmN ∧ C(gmN ) : �mNk Z ∧ C(gmN ) → Z ∧ C(gmN )

is trivial.

This result follows by nilpotence technology from the following.

Lemma 2.4 Let Y and Z beCW S-modules, and let g : �kY → Y and h : �k Z → Z
with k even. Suppose that h∧Y is central in the ring [Z ∧Y, Z ∧Y ]∗ and is homotopic
to Z ∧ g. Then

h2 ∧ C(g2) : �2k Z ∧ C(g2) → Z ∧ C(g2)

is trivial.
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336 E. S. Devinatz

Proof First mimic the proof of Lemma 4 of [2] to show that, if h ∧ Y � Z ∧ g, there
exists a map �k Z ∧ �k+1Y → Z ∧ Y such that the diagram

�k Z ∧ C(g)
h∧C(g)−−−−→ Z ∧ C(g)

⏐
⏐
�Z∧∂

�
⏐
⏐Z∧i

�k Z ∧ �k+1Y −−−−→ Z ∧ Y

is homotopy commutative, where ∂ and i are the maps in the evident cofibration
sequence. Then mimic the proof of Lemma 5 of [2] to show that if, in addition, h ∧ Y
is central, then h2 ∧ C(g2) is trivial. ��

Our next consequence will give us some point-set control in dealing with homo-
topies between vn self-maps. Let us first introduce some notation.

As usual, if X is a topological space and x0 ∈ X we write cx0 for the constant
loop at x0. We also write ω for the reverse of a path ω, ∗ for the operation of path
multiplication, and �p for path homotopy.

If X and Y are S-modules (resp. pointed spaces), letMapS(X,Y ) (resp.Map(X,Y ))
denote the topological space of S-module maps (resp. pointed maps) from X to Y .
If f : X → Y , MapSf (X,Y ) (resp. Map f (X,Y )) will denote the path component

of MapS(X,Y ) (resp. Map(X,Y )) containing f . If this space is to be regarded as a
based space, f will be its basepoint. In this context, we will denote the trivial map
by ∗, so that, for example, MapS∗(X,Y ) denotes the path component of MapS(X,Y )

containing the trivial map.
Suppose now that Z is a topological space and f : Z → MapS(X,Y ), g : Z →

MapS(W, X). We will write f ◦ g for the map Z → MapS(W,Y ) which sends z
to f (z) ◦ g(z). If f or g is just an element of MapS(X,Y ) or MapS(W, X), then
f ◦ g : Z → MapS(W,Y ) will be defined by regarding f or g to be the constant map
sending Z to f or g. If f : Z → MapS(�k X, X), then f (N ) : Z → MapS(�kN X, X)

denotes the map f ◦ �k f ◦ · · · ◦ �k(N−1) f . We will also use this notation when W ,
X , and Y are pointed topological spaces and we are dealing with Map( , ).

Proposition 2.5 Let X be a CW S-module, and suppose that f : �k X → X is central
in [X, X ]∗. If h ∈ π1(MapSf (�

k X, X)), then h ◦ �k h̄ ∈ π1(MapS
f 2

(�2k X, X)) is
trivial.

Proof First observe that

h ◦ �k h̄ �p ( f ◦ �k h̄) ∗ (h ◦ �k f ). (2.1)

The centrality of f implies that g ◦ (S1+ ∧ f ) = f ◦ g in [S1+ ∧ X, X ]∗ for any
g ∈ [S1+ ∧ X, X ]∗. Taking adjoints, this means that f ◦�kh : S1 → MapS(�2k X, X)

is freely homotopic to h ◦ �k f . Since each path component of MapS(�2k X, X) is
simple—if k > 0, this follows because MapS(�2k X, X) is an H -group, and if k = 0,
this follows fromRemark 2.6 below— f ◦�kh �p h◦�k f and the result is immediate
from 2.1. ��
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Remark 2.6 In general, if Y is a CW S-module and Z is any S-module, MapS(Y, Z)

is weakly homotopy equivalent to the H -group MapS(Y,��Z) [5, I, Corollary 6.3].
Hence each path component of MapS(Y, Z) is simple.

Remark 2.7 Elmendorf has proved [4] that if Y and Z are pointed spaces, then
Map(Y, Z) ≈ MapS(�∞Y, �∞Z). Remark 2.6 is therefore not true without some
sort of assumption on the domain S-module.

Remark 2.8 With the hypotheses of Proposition 2.5, the same sort of argument may
be used to prove that

h(N ) �p N ( f N−1 ◦ �kN h) = f N−1 ◦ �kN Nh.

Consequently, if Nπ1(MapSf (�
k X, X)) is trivial, then so ish(N ). SinceMapSf (�

k X, X)

is weakly homotopy equivalent to MapS∗(�k X, X), this is the case if and only if
N [X, X ]k+1 = 0.

These considerations imply the following result: suppose that X is a K (n − 1)∗-
acyclic finite CW S-module and that g : �k X → X is a vn self-map (if n = 0, we
assume that X = 	�∞S0(p)). If h ∈ π1(MapSg(�

k X, X)), then there exists N such

that h(N ) � cgN .

3 Extended powers

In this section, we establish some properties of the extended power construction, and,
more generally, the construction e(Y ) ≡ E+∧Z/(2)Y for Y an S-module equippedwith
a Z/(2) action. Normally, the actions on our S-modules will come from the switch
map, and, unless explicitly mentioned otherwise, this will be the presumed action
whenever it makes sense. For example, if we write Y ∧ X ∨ X ∧ Y , the action by the
nontrivial element of Z/(2) is taken to be the map which interchanges the summands
and switches the factors.

We will also need to consider the action ofZ/(2) on various suspensions. Normally,
if Y is an S-module and we write e(� j Y ), we are giving� j S0 the trivialZ/(2) action.
However, if we write e(� j X ∧ � j X), Z/(2) is assumed to act by switching the
factor � j X . If we write e(� j

−Y ), then Z/(2) acts on �
j
−S0 by sending [t1, . . . , t j ] to

[−t1, . . . ,−t j ], where the suspension coordinates are taken to be in [−1, 1].
Finally, we will be shuffling suspension coordinates in our construction of vari-

ous maps. When it’s not clear how we are doing this, we will add subscripts to the
suspension notation. For example, we might write something like �k

1�
k
2(X ∧ X) =

�k
1X ∧ �k

2X .
The next result gives us what we will need about suspensions in extended powers.

It is a version of an observation of Nishida [9].

Proposition 3.1 Let E be a finite free Z/(2)-CW complex. Then there exists an M
(depending on E) such that, if X is any CW S-module, �2Me(X ∧ X) is homotopy
equivalent to e(�M X∧�M X). This equivalence is natural in X in the stable category.
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338 E. S. Devinatz

The main ingredient in the proof is the fact that the canonical line bundle over a
finite dimensional real projective space has finite order in reduced K -theory. Before
getting to that, however, we need to recall a little about the relationship between the
various Z/(2) actions on suspensions.

Let R denote the real line with trivial Z/(2) action, let R− denote the real line with
Z/(2) action given by σ(t) = −t , and let (R⊕R)reg denote the regular representation;
i.e. σ(s, t) = (t, s). There is an equivariant linear isomorphism (R⊕R)reg → R⊕R−
given by sending (s, t) to (s + t, s − t).

Now let S(V ) denote the one point compactification of the finite dimensional vector
space V , and give S(V ) the basepoint ∞, the point at infinity. If V is a representation
of Z/(2), then Z/(2) acts on S(V ) via its action on V and by fixing ∞. The above
remarks then show that there are equivariant homeomorphisms

� j S0 ∧ � j S0 ≈ S((R ⊕ R) jreg) ≈ S(R j ⊕ R
j
−) ≡ � j�

j
−S0. (3.1)

The next lemma is an alternate way to express the finite order of the canonical line
bundle over RPm , which will prove convenient to us.

Lemma 3.2 Let am denote the order of the canonical line bundle γm in K̃ O(RPm)

and suppose that am |l. Then for N sufficiently large, there exists a map G : Sm →
SO(l + N ) such that G(z)(u, v) = G(−z)(−u, v) for all z ∈ Sm, u ∈ R

l , and
v ∈ R

N . If am+1|l, then for N sufficiently large, G may be chosen to be homotopic to
a constant map.

Proof Let ε j denote the trivial j-plane bundle. The total space of the bundle lγm ⊕εN

is just Sm ×Z/(2) (Rl− ⊕ R
N ). But for N sufficiently large, lγm ⊕ εN ≈ εN+l ; this

implies that there is a homeomorphism

Sm ×Z/(2) (Rl− ⊕ R
N ) → Sm ×Z/(2) R

N+l

which is an isometry on each fiber. This homeomorphism sends (z, u, v) to
(z,G(z)(u, v)), where G(z) ∈ O(N + l). Since SO(N + l) is a component, we
may assume that G(z) ∈ SO(N + l). G clearly satisfies the desired requirements.

If am+1|l, then for N sufficiently large, lγm+1 ⊕ εN ≈ εN+l , so we get a map
G ′ : Sm+1 → SO(l + N ) as above. Now take G = G ′|Sm . This map is homotopic to
the constant map. ��
Proof of Proposition 3.1 E is the total space of a principal Z/(2)-bundle; hence there
exists an equivariant map θ : E → S∞. Since E is finite, the image of θ lies in Sm

for some m, and we write θ : E → Sm .
Let M = am and choose N > M so that the conclusion of the preceding lemma

holds with l = am . We then have an isomorphism

E+ ∧Z/(2) [S(RM− ⊕ R
N ) ∧ X ∧ X ] → E+ ∧Z/(2) [S(RN+M ) ∧ X ∧ X ]

given by sending (z, u, v, x) to (z,G(θ(z))(u, v), x) for z ∈ E , u ∈ R
M , v ∈ R

N ,
and x ∈ X ∧ X . (Note that SO( j) extends to an action on S(R j ) by always mapping
∞ to itself). But
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E+ ∧Z/(2) [S(RN+M ) ∧ X ∧ X ] ≈ �N−M�2Me(X ∧ X),

and by 3.1,

E+ ∧Z/(2) [S(RM− ⊕ R
N ] ∧ X ∧ X ] ≈ �N−Me(�M X ∧ �M X).

This completes the proof. ��

Wenext turn to the construction andproperties of the stablemap 〈 f 〉 : e(X) → e(Y )

alluded to in the Introduction; this map will play a key role in what follows.
Begin by recalling the space C j (2) of two little cubes in R

j , as described in [8],
for example. For our purposes, it will be the space of ordered pairs of nonoverlapping
j-dimensional “cubes” in [−1, 1] j , with Z/(2) acting by switching the elements of
the ordered pairs. By a j-dimensional cube, we mean a set of the form [a1, b1] ×
· · · × [a j , b j ] with ai < bi for all i . There are inclusions C j (2) → C j+1(2) given by
sending a cube [a1, b1]× · · ·× [a j , b j ] to the cube [a1, b1]× · · ·× [a j , b j ]× [−1, 1],
andwe setC∞(2) = lim→ C j (2).C∞(2) is the total space of a universal principalZ/(2)-

bundle; this implies that if E is a free Z/(2)-complex, then there exists an equivariant
map E → C∞(2), unique up to equivariant homotopy. If E is in addition finite,
then this map factors through CN (2) for N sufficiently large, and two such maps are
equivariantly homotopic as maps into CN (2), again for N sufficiently large.

If c = [a1, b1] × · · · × [a j , b j ], let us also write c for the map
∏ j

i=1[ai , bi ] →
[−1, 1] j which is the product of the increasing affine linear homeomorphisms sending
[ai , bi ] to [−1, 1]. As we will throughout the paper, regard the suspension coordinates
as lying in [−1, 1], so that the space � j S0 is the quotient [−1, 1] j/∂([−1, 1] j ). The
cube c can now also be regarded as a map

c : � j S0 → � j S0

defined by

c[t1, . . . , t j ] =
{

[c(t1, . . . , t j )] (t1, . . . , t j ) ∈ c

∗ ow

Construction 3.3 Let E be a finite free Z/(2)-CW complex and let ι : E → CN (2)
be equivariant. Write ι(z) = (ι1(z), ι2(z)), where each ιi (z) is a cube in [−1, 1]N .
Suppose that X and Y are CW S-modules, each with a cellular Z/(2) action; the
action on each spectrum by the nontrivial element of Z/(2) will be denoted by σ . If
f : X → Y is a (not necessarily equivariant) map of S-modules, define

〈 f 〉ι : �N
R eE (X) → �N

R eE (Y )
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by

〈 f 〉ι[z, x, t1, . . . , tN ] =

⎧

⎪
⎨

⎪
⎩

[z, f (x), ι1(z)[t1, . . . , tn]] [t1, . . . , tn] ∈ ι1(z)

[z, σ f σ(x), ι2(z)[t1, . . . , tn]] [t1, . . . , tn] ∈ ι2(z)

∗ ow

where z ∈ E, x ∈ X, and [t1, . . . , tN ] ∈ �N S0. The subscript R here indicates that
the suspension coordinates are to be written on the right.

Remark 3.4 If ι′ : E → CN ′(2) is another equivariant map, then there exists M such
that

ι : E → CN (2) ↪→ CM (2)

and

ι′ : E → CN ′(2) ↪→ CM (2)

are equivariantly homotopic. It then follows that �M−N
R 〈 f 〉ι is homotopic to

�M−N ′
R 〈 f 〉ι′ . Although this observation is reassuring, we shall in this paper be fixing

our map E → C∞(2).

In this paper, we will often need to work at the point-set level of spectra and S-
modules and therefore must use 〈 f 〉ι, instead of the stable map eE (X) → eE (Y ) that
it induces. We will, however, mostly delete the suspensions from the notation, as they
usually just add clutter to already cluttered diagrams. We will also mostly delete the
subscript ι, since it will be fixed throughout the paper.

There is only one place in this paper—the proof of the odd prime analogue of
Theorem 1.1—where we will need a construction of 〈 f 〉ι valid for E an infinite
complex. In this situation, the map is only defined in the stable category, but that is
good enough.

Construction 3.5 Suppose that E is a free Z/(2)-CW complex and that ι : E →
C∞(2) is equivariant. Consider the collection {Eα} of finite Z/(2)-subcomplexes,
ordered by inclusion, and write

ια ≡ ι
∣
∣
Eα

: Eα → CNα (2),

with Nα as small as possible. Let f : X → Y be as in Construction 3.3. We then have
a commutative diagram

eEα (X) −−−−→ �Nα�NαeEα (Y ) ←−−−− eEα (Y )
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

eEβ (X) −−−−→ �Nβ �Nβ eEβ (Y ) ←−−−− eEβ (Y ),
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where the left horizontal maps are the adjoints of 〈 f 〉ια and 〈 f 〉ιβ , and the right
horizontal maps are weak equivalences. Passing to homotopy colimits yields a stable
map 〈 f 〉ι : eE (X) → eE (Y ). Moreover, different choices of ι yield homotopic maps.

Constructions 3.3 and 3.5 have evident naturality properties and behave well with
respect to homotopies. We will also single out the following property, which requires
us to work with certain prespectra.

Say that a prespectrum X is a pre S-module if its spectrification LX is provided
with an L -algebra structure, so that �∞S0 ∧L LX is an S-module. A map f :
X → Y between pre S-modules is a pre S-module map if L f : LX → LY is an
L -algebra map, so that �∞S0 ∧L L f is an S-module map. If Z/(2) acts on X via
pre S-module maps, then X is called a pre S-module with Z/(2) action. Observe
that, if X is a prespectrum acted upon by Z/(2), then we may certainly form the
prespectrum E+ ∧Z/(2) X ≡ eE (X). If X is a pre-S-module with Z/(2) action, then
�∞S0 ∧L LeE (X) is naturally isomorphic to eE (�∞S0 ∧L LX). Finally, we will
tacitly assume that �∞S0 ∧L LX is a CW S-module and that the induced Z/(2)
action is cellular whenever we speak of a pre S-module with Z/(2) action X .

Lemma 3.6 Let X and Y be pre S-modules with Z/(2) action, and give the pre S-
module Y ∨ Y the Z/(2) action given by σ(y, ∗) = (∗, σ y) and σ(∗, y) = (σ y, ∗).
Let f : X → Y ∨Y be an equivariant pre S-module map, and let� : Y ∨Y → Y ∨Y
denote the map which is the identity on the first summand and trivial on the second. If
E is a finite free Z/(2)-CW complex and ι : E → CN (2), then�N

R eE ( f ) is homotopic
to 〈� ◦ f 〉ι.
Proof If c = ∏N

i=1[ai , bi ] is an N -dimensional cube in [−1, 1]N and 0 ≤ t ≤ 1,
write (c, t) for the cube

∏N
i=1[(1 − t)ai − t, (1 − t)bi + t]. Also write fi = πi ◦ f ,

where πi : Y ∨ Y → Y is the projection onto the i th summand.
Define a map

�N
R eE (X) ∧ I+ → �N

R eE (Y ∨ Y ) = E+ ∧Z/(2) (�NY ∨ �NY )

by sending [z, x, t1, . . . , tN , t] to

[z, [(ι1(z), t)(t1, . . . , tN ), f1(x)], [(ι2(z), t)(t1, . . . , tN ), f2(x)]],

where z ∈ E , x ∈ X , [t1, . . . , tN ] ∈ �N S0, and t ∈ I . This formula might require
some unpacking: [(ι1(z), t)(t1, . . . , tN )] and [(ι2(z), t)(t1, . . . , tN )] are in �N S0, so

([(ι1(z), t)(t1, . . . , tN ), f1(x)], [(ι2(z), t)(t1, . . . , tN ), f2(x)]) ∈ �NY × �NY.

But for each x , either f1(x) = ∗ or f2(x) = ∗, so the above element is actually in
�NY ∨ �NY . It is now easy to check that this map is a homotopy from 〈� ◦ f 〉ι to
�N

R eE ( f ). ��
Remark 3.7 If E is infinite and ι : E → C∞(2), the above proof can be easilymodified
to show that 〈� ◦ f 〉ι = eE ( f ) in the stable category.
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4 The odd prime case

We begin this section by showing how the main result of [2] can be refined to include
two-sided units. This does not require working at an odd prime.

Lemma 4.1 Let X be a ring spectrum with a two-sided unit, and let f : �k X → X
with k even. Suppose that

(i) The map f ∧ X : �k X ∧ X → X ∧ X is in the center of the ring [X ∧ X, X ∧ X ]∗.
(ii) The diagram

�2k X ∧ X
X∧ f 2−−−−→ X ∧ X

⏐
⏐
�μ

⏐
⏐
�μ

�2k X
f 2−−−−→ X

commutes (in the stable category).
(iii) (X ∧ i)∗ : [X ∧C( f 2),C( f 2)]2k+1 → [X ∧ X,C( f 2)]2k+1 is surjective, where

i : X → C( f 2) denotes the usual inclusion.

Then C( f 2) has the structure of a ring spectrum with a two-sided unit such that
i : X → C( f 2) is a map of ring spectra.

Proof By Theorem 1 of [2], properties (i) and (ii) imply that C( f 2) has the structure
of a ring spectrum extending that on X . Property (iii) then implies (see [10, Discussion
above Theorem 1.5]) that this structure can be chosen so that its unit is two-sided. ��

It may not be clear how condition (iii) relates to vn self-maps, but this can be dealt
with. First observe that, if X is p-locally finite,

(X ∧ i)∗ : [X ∧ C( f 2),C( f 2)]∗ → [X ∧ X,C( f 2)]∗
is surjective provided that X ∧ DC( f 2) → C( f 2) ∧ DC( f 2) is the inclusion of
a summand, where DC( f 2) denotes the p-local Spanier-Whitehead dual of C( f 2).
This is the case if and only if f 2 ∧ DC( f 2) : �2k X ∧ DC( f 2) → X ∧ DC( f 2) is
trivial. But this places us in the situation of Proposition 2.3, and we have the following
result.

Proposition 4.2 Suppose that X is a K (n−1)∗-acyclic p-locally finite ring spectrum
with a two-sided unit and that g is a vn self-map. Then there exists a natural number N
such that for each m > 0, C(gmN ) has the structure of a ring spectrum with two-sided
unit extending the ring spectrum structure on X.

Now suppose that p > 2 and that X is a p-local ring spectrum with a two-sided
unit. Let μ : X ∧ X → X denote the multiplication and let τ : X ∧ X → X ∧ X
denote the switch map. Then 1

2 (μ + μτ) : X ∧ X → X gives X the structure of a
homotopy commutative ring spectrum. If X is already homotopy commutative and
C( f ) has the structure of a ring spectrum with two-sided unit extending that on X ,
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then this construction provides C( f ) with the structure of a homotopy commutative
ring spectrum, and this structure again extends the ring spectrum structure on X .
We will use the construction 〈 〉 of the previous section to obtain the analogue of
these observations for W -commutative ring spectrum structures, where W is a free
contractible Z/(2)-CW complex.

Let W be as above, and let Y be a CW S-module with cellular Z/(2) action. Let ζ
denote the map

Y = Z/(2) ∧Z/(2) Y → W+ ∧Z/(2) Y,

where Z/(2) → W is any choice of equivariant map. We will also need to consider Y
with the trivial Z/(2) action; in this situation, let ε denote the composition

W+ ∧Z/(2) Y = B(Z/(2))+ ∧ Y → S0 ∧ Y = Y,

where B(Z/(2)) is sent to the non-basepoint of S0. Let t : Y → Y denote the identity
map, but with the domain understood to have the given action and the range understood
to have the trivial action. As usual, σ : Y → Y denotes the action by the nontrivial
element on Y .

Proposition 4.3 (i) ε ◦ 〈t〉 ◦ ζ � idY + σ

(ii) If p is odd and Y is p-local and connective, then ζ ◦ 1
2ε〈t〉 is a homotopy equiv-

alence.

Proof (i) This is easy to verify directly.
(ii) Since Y is p-local and p is odd,

H∗(Z/(2), Hs(Y )) = (Hs(Y ))Z/(2)

concentrated in degree 0. The spectral sequence

H∗(Z/(2), H∗(Y )) ⇒ H∗(W+ ∧Z/(2) Y )

thus collapses and H∗(W+ ∧Z/(2) Y ) = (H∗(Y ))Z/(2). Under this identification,
ζ induces the quotient map H∗Y → (H∗Y )Z/(2), so that ζ ◦ 1

2ε〈t〉 induces the
identity map on homology and is therefore a homotopy equivalence.

��
Proposition 4.4 Let p be an odd prime. Suppose that X and Y are p-local ring
spectra with two-sided units and that i : X → Y is a map of ring spectra. If X is
connective and its multiplication μ : X ∧ X → X is homotopy commutative, then
there exists a unique W-commutative ring spectrum structure extending μ, and there
exists a W-commutative ring spectrum structure on Y extending that on X.

Remark 4.5 Together with Proposition 4.2, this proves the odd primary analogue of
Theorem 1.1.
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Proof of Proposition 4.4 Define ξX to be the composition

W+ ∧Z/(2) (X ∧ X)
1
2 ε〈t〉−−−−→ X ∧ X

μ−−−−→ X.

Then ξX ◦ζ is homotopic to 1
2 (μ+μτ)which in turn is homotopic toμ, so ξX extends

μ. This extension is also unique: any two extensions will agree when precomposed
with ζ , but, by Proposition 4.3(ii), ζ is the projection onto a wedge summand.

Now let ν : Y ∧ Y → Y be the multiplication on Y , and let ξY be the composition

W+ ∧Z/(2) (Y ∧ Y )
1
2 ε〈t〉−−−−→ Y ∧ Y

ν−−−−→ Y.

An easy argument then show that ξY extends ξX . ��

5 Outline of Proof of Theorem 1.1

In this section, we begin the main work of this paper. Throughout, we will fix a
connected finite free Z/(2)-CW complex E together with an equivariant map ι : E →
CM (2). X will also be taken to be a p-locally finite K (n−1)∗-acyclic CW S0-module
with an E-commutative ring spectrum structure ξX : e(X∧X) = E+∧Z/(2)X (2) → X ,
although these assumptions will not be needed for most of the auxiliary results on
cofibrations appearing in this section.

We begin the process of extending ξX to an E-commutative ring spectrum structure
on C( f ), f : �k X → X an appropriate vn self-map, by constructing a map

ξX, f : e(C( f ) ∧ X ∪ X ∧ C( f )) → C( f )

extending ξX . The first step towards doing so is an easy observation for spaces, and
standard arguments extend it to S-modules as well (see “Appendix 3”).

Proposition 5.1 Let f : �k X → X and consider the Z/(2)-equivariant map

( f ∧ X, X ∧ f ) : (�k X ∧ X) ∨ (X ∧ �k X) → X ∧ X

which is f ∧ X on the first summand and X ∧ f on the second. The cofiber of this
map is naturally equivariantly isomorphic to C( f ) ∧ X ∪ X ∧ C( f ).

Now define ξX,k : e(�k X ∧ X ∨ X ∧ �k X) → �k X to be the composition

e(�k X ∧ X ∨ X ∧ �k X) = E+ ∧ (�k X ∧ X)

= �k(E+ ∧ X ∧ X) → �ke(X ∧ X)
�kξX−→ �k X.
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Proposition 5.2 Suppose g : �|g|X → X is a vn self-map. Then there exists N > 0
such that, if f = gmN , the diagram

is homotopy commutative. This in turn induces a map ξX, f : e(C( f ) ∧ X ∪ X ∧
C( f )) → C( f ) giving a homotopy commutative diagram

of cofibration sequences.

Proof By nilpotence technology, N may be chosen so that if f = gmN , then

is homotopy commutative. This immediately implies the desired result. ��

We next consider the Z/(2)-equivariant cofiber sequence

· · · → C( f ) ∧ X ∪ X ∧ C( f ) → C( f ) ∧ C( f )

→ C( f ) ∧ C( f ) ∪ C[C( f ) ∧ X ∪ X ∧ C( f )] δ f−→ · · ·

Let q f denote the map

C( f ) ∧ C( f ) ∪ C[C( f ) ∧ X ∪ X ∧ C( f )] → C( f ) ∧ C( f )

C( f ) ∧ X ∪ X ∧ C( f )
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followed by the identification

C( f ) ∧ C( f )

C( f ) ∧ X ∪ X ∧ C( f )
= ��k X ∧ ��k X.

Proposition 5.3 q f is a Z/(2)-equivariant homotopy equivalence.

Proof We first indicate the proof for spaces. That q f is a homotopy equivalence is
standard; the only issue is that it is in fact an equivariant homotopy equivalence. But
this follows from the equivariant way that the product of two NDR-pairs is expressed
as an NDR-pair (see [13, Theorem 6.3]). We then use the techniques of “Appendix 3”
to extend the result to the category of S-modules. ��

Since we will be working at the point-set level, it will often be convenient to use
the S-module C( f ) ∧C( f ) ∪C[C( f ) ∧ X ∪ X ∧C( f )]; by an abuse of notation, we
will write

C( f ) ∧ C( f ) ∪ C[C( f ) ∧ X ∪ X ∧ C( f )] ≡ (�k+1X ∧ �k+1X)′.

We will also need to consider maps between cofibration sequences at the point-set
level. For example, the map

· · · −−−−→ �2k X
f 2−−−−→ X −−−−→ C( f 2) −−−−→ �2k+1X −−−−→ · · ·

⏐
⏐
��k f

∥
∥
∥

⏐
⏐
�

⏐
⏐
��k+1 f

· · · −−−−→ �k X
f−−−−→ X −−−−→ C( f ) −−−−→ �k+1X −−−−→ · · ·

induces a map

C( f 2) ∧ C( f 2) ∪ C[C( f 2) ∧ X ∪ X ∧ C( f 2)]
→ C( f ) ∧ C( f ) ∪ C[C( f ) ∧ X ∪ X ∧ C( f )]

which makes the diagram

C( f 2) ∧ C( f 2) ∪ C[C( f 2) ∧ X ∪ X ∧ C( f 2)]
q f 2−−−−→ �2k+1X ∧ �2k+1X

⏐
⏐
�

⏐
⏐
��k+1 f ∧�k+1 f

C( f ) ∧ C( f ) ∪ C[C( f ) ∧ X ∪ X ∧ C( f )] q f−−−−→ �k+1X ∧ �k+1X

commute. We will therefore denote this map by (�k+1 f ∧ �k+1 f )′.
We will obtain our extension of ξX by proving that �ξX, f ◦ e(δ f ) : e(�k+1X ∧

�k+1X)′ → �C( f ) is null homotopic for f an appropriate vn self-map. The heart of
this proof will involve examination of the map e(δ f ). We begin with an observation
whose proof is similar to Propositions 5.1 and 5.3. Recall from the beginning of
Sect. 3 our use of the notation �1, �2 etc. in indicating how suspension coordinates
are shuffled.
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Proposition 5.4 The composition

(�k+1X ∧ �k+1X)′
δ f−→ �(C( f ) ∧ X ∪ X ∧ C( f ))

�p f−−−−−→
�2(�k X ∧ X ∨ X ∧ �k X)

�2π1−−−−−→ �2(�k X ∧ X)

is naturally homotopic to the composition

(�k+1X ∧ �k+1X)′
q f−→(�k+1X ∧ �k+1X)

�k+1X∧� f−−−−−−−−→
�1�

k X ∧ �2X = �1�2(�
k X ∧ X),

where p f denotes the boundary map in the cofibration sequence of Proposition 5.1
and, as usual, π1 denotes the projection onto the first summand.

Proposition 5.5 The composition

e(�k+1X ∧ �k+1X)′
e(δ f )−−−−−→ e(�[C( f ) ∧ X ∪ X ∧ C( f )]) e(�p f )−−−−−→

e(�2(�k X ∧ X ∨ X ∧ �k X))

is naturally homotopic to the composition

e(�k+1X ∧ �k+1X)′
e(q f )−→ e(�1�

k X ∧ �2�
k X)

〈�1�
k X∧�2 f 〉−−−−−−−−−−−→

e[�1�2(�
k X ∧ X ∨ X ∧ �k X)].

Remark 5.6 By 〈�1�
k X ∧�2 f 〉, we mean the application of Construction 3.3 to the

composition

�k+1X ∧ �k+1X
�k+1X∧� f−−−−−−−−→ �1�

k X ∧ �2X = �1�2(�
k X ∧ X)

→ �1�2(�
k X ∧ X ∨ X ∧ �k X),

where Z/(2) acts in the usual way on �k X ∧ X ∨ X ∧ �k X and trivially on �2S0.
We have also, of course, left out the suspensions arising from this construction.

Proof of Proposition 5.5 Since�p f ◦δ f is defined at an appropriate level of prespec-
tra, Lemma 3.6 is applicable. The desired result then follows from Proposition 5.4.

��
Proposition 5.7 Suppose that f = h2, where h : � j X → X with j even, and that

h ∧ h : �
j
1�

j
2 (X ∧ X) = �

j
1 X ∧ �

j
2 X → X ∧ X

is homotopic to

X ∧ f : �k(X ∧ X) = X ∧ �k X → X ∧ X.
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Then the diagram

e(�k+1X ∧ �k+1X)′
e(� j+1h∧� j+1h)◦e(q f )−−−−−−−−−−−−−−→ e(� j+1X ∧ � j+1X)

⏐
⏐
�e(δ f )

⏐
⏐
�〈ρ〉

e(�[C( f ) ∧ X ∪ X ∧ C( f )]) e(�p f )−−−−→ e(�2(�k X ∧ X ∨ X ∧ �k X))

is homotopy commutative, where ρ : � j+1X ∧� j+1X → �2(�k X ∧ X ∨ X ∧�k X)

is given by the composition

�1�
j
2 X ∧ �3�

j
4 X → �1�3(�

j
2�

j
4 X ∧ X) → �2(�k X ∧ X ∨ X ∧ �k X).

Proof This follows from Proposition 5.5 and the fact that, since j is even, the map
ρ ◦ (� j+1h ∧ � j+1h) is homotopic to the map of Remark 5.6. ��

In general, if h : � j X → X and f = h2, let Kh denote the cofiber of the map
e(� j+1h∧� j+1h)◦e(q f ); note that there is a canonical map κh : K f → Kh yielding
a commutative diagram

of cofibration sequences.
If f and h satisfy the hypotheses of Proposition 5.7, then there is a homotopy

commutative diagram

(5.1)

of cofibration sequences. It follows from Proposition 2.3 that, for h an appropriate
iterate of a given vn self-map g, λh is unique up to homotopy. In general, of course,
given a homotopy commutative square, there may be many maps between the cofibers
yielding a homotopy commutative diagram of cofibration sequences. If a homotopy
is specified, a map of cofibers may also be specified (see Construction 7.1). Despite
the uniqueness of λh , we will need to use these considerations, together with a com-
patibility result for certain homotopies, to prove the next crucial result. This will be
carried out in Sects. 7, 8 and 9.

Lemma 5.8 Let p = 2 and let g be a vn self-map of X. (If n = 0, we assume that
X = (	�∞S0)(2)). There exists N > 0 such that if h = gmN , then λh and λ f

( f = h2) may be chosen so that λ f = λh ◦ κh.
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In fact, taken together with the next result, this lemma implies that λ f � ∗. This is
the beginning of our proof that �ξX, f ◦ e(δ f ) � ∗ for f an appropriate vn self-map.

Lemma 5.9 Let g be a vn self-map on X. There exists N > 0 such that, if h = gmN :
� j X → X and f = h2 : �k X → X, then the composition

e(� j+1X ∧ � j+1X)
〈ρ〉−→ �2e(�k X ∧ X ∨ X ∧ �k X) → �2e(X ∧ X)

is null homotopic.

Lemma 5.9 will be proved in Sect. 6.

Corollary 5.10 With the hypotheses and notation of Lemma 5.8, there exists N > 0
such that λ f � ∗ and hence e(δ f 2) ◦ ∂ f � ∗.

Proof By Lemma 5.9, there is a factorization

Kh
�∂h

λh

�e(�k+1X ∧ �k+1X)′

�2e(X ∧ X)

and hence, by Lemma 5.8, we have

K f
κh

λ f

Kh �e(�k+1X ∧ �k+1X)′

�2e(X ∧ X).

But the composition in the top row is trivial by the very construction of κh . ��

We are now ready to complete the proof of our main result.

Proof of Theorem 1.1 By iterating g if necessary, we may assume by Proposition 3.1
that �2|g|e(Y ∧ Y ) is naturally homotopy equivalent to e(�|g|Y ∧ �|g|Y ) for Y a CW
S-module. Moreover, I claim that

�2|g|e(�X ∧ �X) � e(�|g|+1X ∧ �|g|+1X)
e(�g∧�g)−−−−−−−−→ e(�X ∧ �X) (5.2)

is a vn-self-map. If n > 0, this follows easily by induction up the skeletal filtration
of E ; for n = 0, the effect of e(�g ∧ �g) on rational homotopy is determined by
examining its effect on rational cellular chains. We will also write the map in (5.2) as
e(�g ∧ �g).
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Now choose N large enough, N even, so that if f = gmN , then e(δ f ) ◦ ∂h � ∗.
This implies that there is a factorization

e(�k+1X ∧ �k+1X)′
e(� j+1h∧� j+1h)◦e(q f )

e(δ f )

e(� j+1X ∧ � j+1X)

�e(C( f ) ∧ X ∪ X ∧ C( f ))

�ξX, f

�C( f )

(5.3)

We now identify e(�k+1X ∧ �k+1X) and e(� j+1X ∧ � j+1X) with �2ke(�X ∧
�X) and�2 j e(�X∧�X) in the stable categoryby iterating the homotopy equivalence
�2|g|e(Y ∧Y ) � e(�|g|Y ∧�|g|Y ). With this identification, e(� j+1h∧� j+1h) is just

�2 j e(�g ∧ �g)
mN
2 . But by Proposition 2.3, we may choose N so that, in addition,

�2 j e(�X ∧ �X) ∧ DC( f )
e(�g∧�g)

mN
2 ∧DC( f )−−−−−−−−−−−−→ e(�X ∧ �X) ∧ DC( f )

is trivial. This shows that, for such an N , the composition �ξX, f ◦ e(δ f ) is trivial.
Therefore, ξX, f extends to a map ξ0C( f ) : e(C( f ) ∧ C( f )) → C( f ).

Finally, to obtain the unit condition, observe that there is a homotopy commutative
diagram

· · · �k X
f

X C( f ) · · ·

|� |� |�

· · · �k X ∧ 	�∞S0 X ∧ 	�∞S0 C( f ) ∧ 	�∞S0 · · ·

· · · e(�k X ∧ X ∨ X ∧ �k X)

ξX,k

e(X ∧ X)

ξX

e(C( f ) ∧ X ∪ X ∧ C( f ))

ξX, f

· · ·

· · · �k X X C( f ) · · ·

of cofibration sequences, where the two leftmost vertical compositions are homotopic
to the identity. It follows that the right vertical composition is a homotopy equivalence
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and that composing ξ0C( f ) with the inverse of this equivalence yields the desired E-
commutative structure ξC( f ) : e(C( f ) ∧ C( f )) → C( f ). ��

6 Proof of Lemma 5.9

We begin the proof by observing that it suffices to show that the composition

χ0 : e(� j+1X ∧ � j+1X)
〈ρ〉−→ �2e(�k X ∧ X ∨ X ∧ �k X)

= �2E+ ∧ (�k X ∧ X) → �2+ke(X ∧ X)

is null homotopic. Indeed, N may be chosen so that �2+ke(X ∧ X) � �2e(� j X ∧
� j X) (Proposition 3.1) and so that

�2E+ ∧ (�k X ∧ X)
E+∧ f ∧X

�2E+ ∧ (X ∧ X)

�2+ke(X ∧ X)

|�

�2e(� j X ∧ � j X)
e(h∧h)

�2e(X ∧ X)

is homotopy commutative (nilpotence technology).
Now let α j : � j+1S0 ∧ � j+1S0 → � j+1�

j+1
− S0 be a Z/(2)-equivariant

homeomorphism—see discussion at the beginning of Sect. 3—and define α′
j :

�k+2S0 → �k+2S0 so that the diagram

�1�
j
2 S

0 ∧ �3�
j
4 S

0

α j

�1�3�
j
2�

j
4 S

0

α′
j

� j+1�
j+1
− S0 �k+2S0

commutes.
Recall that we have fixed a map ι : E → CM (2) and that χ0 is really a map

from �M
R e(� j+1X ∧ �k+1X) to �M

R �2+ke(X ∧ X). There is then a commutative
diagram
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�M
R e(� j+1X ∧ � j+1X)

χ0

�M
R e(α j∧X∧X)

�M
R �k+2e(X ∧ X)

�M
R (α′

j∧e(X∧X))

�M
R e(� j+1�

j+1
− X ∧ X)

∥
∥
∥
∥

�M
R � j+1e(� j+1

− X ∧ X)
� j+1χ1

�M
R �k+2e(X ∧ X)

where

χ1 : �M
R e(� j+1

− X ∧ X) → �M
R � j+1e(X ∧ X)

is given by

χ1[z, s, u, x, t1, . . . , tM ] =
{

[s, u, z, x, ι1(z)(t1, . . . , tM )] (t1, . . . , tM ) ∈ ι1(z)

[−s,−u, z, x, ι2(z)(t1, . . . , tM )] (t1, . . . , tM ) ∈ ι2(z).

Here [t1, . . . , tM ] ∈ �M
R S0, z ∈ E , x ∈ X ∧ X , [s, u] = [s, u1, . . . , u j ] ∈ � j+1S0,

and −u = (−u1, . . . ,−u j ).
The map χ1 is homotopic to the map χ2 given by

χ2[z, s, u, x, t1, . . . , tM ] =
{

[2s + 1, u, z, x, ι1(z)(t1, . . . , tM )] −1 ≤ s ≤ 0

[1 − 2s,−u, z, x, ι2(z)(t1, . . . , tM )] 0 ≤ s ≤ 1;

if

L(t, s) =
{

(1 − t)s + t (2s + 1) (1 − t)s + t (2s + 1) ≤ 1

1 (1 − t)s + t (2s + 1) ≥ 1

for t ∈ I , s ∈ [−1, 1], then the mapping

([z, s, u, x, t1, . . . , tM ], t) �→
{

[L(t, s), u, z, x, ι1(z)(t1, . . . , tM )] (t1, . . . , tM ) ∈ ι1(z)

[L(t,−s),−u, z, x, ι2(z)(t1, . . . , tM )] (t1, . . . , tM ) ∈ ι2(z)

defines a homotopy from χ1 to χ2.
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The map χ2 is in turn homotopic to the map �M
R χ , where χ : e(� j+1

− X ∧ X) →
� j+1e(X ∧ X) is defined by

χ [z, s, u, x] =
{

[2s + 1, u, z, x] −1 ≤ s ≤ 0

[1 − 2s,−u, z, x] 0 ≤ s ≤ 1.

To see this, just make use of linear homotopies from ι1(z) : �M
R S0 → �M

R S0 and
ι2(z) : �M

R S0 → �M
R S0 to the identity. We will show that, for appropriate N—and

hence j—χ is null homotopic.
Let θ : E → Sl be equivariant and, choosing N larger if necessary, assume that

al+1| j . (As before, al+1 is the order of the canonical line bundle in K̃ O(RPl+1)). Let
G : Sl → SO( j + J ) be as in Lemma 3.2; i.e., G is homotopic to the constant map
at the identity and

G(z)(u, v) = G(−z)(−u, v) (6.1)

for all z ∈ Sl ,u ∈ R
j , andv ∈ R

J .As in theproof ofProposition3.1, SO( j+J ) acts on
S(R j+J ) ≡ � j+J S0;wemay then regardG asmapping intoMap(� j+J S0, � j+J S0).
G is still homotopic to the constantmapat the identity andEq. 6.1 holdswithu ∈ � j S0,
v ∈ � J S0.

Let

H : Sl ×
[

0,
1

2

]

→ Map(� j+J S0, � j+J S0)

be a homotopy with H(z, 0) = id� j+J S0 and H(z, 1
2 ) = G(z), and define

H̃ : � J e(� j+1
− X ∧ X) ∧ I+ → �

j+1
1 � J

2 e(X ∧ X) = � J
2 �

j+1
1 e(X ∧ X)

as follows. If 0 ≤ t ≤ 1
2 ,

H̃ [v, z, s, u, x, t] =
{

[2s + 1, H(θ(z), t)(u, v), z, x] −1 ≤ s ≤ 0

[1 − 2s, H(−θ(z), t)(−u, v), z, x] 0 ≤ s ≤ 1,

where v ∈ � J S0, z ∈ E , s ∈ �S0, u ∈ � j S0, and x ∈ X ∧ X . If 1
2 ≤ t ≤ 1,

H̃ [v, z, s, u, x, t] =
{

[(4 − 4t)s + 3 − 4t, G(θ(z))(u, v), z, x] −1 ≤ s ≤ 0

[(4t − 4)s + 3 − 4t, G(−θ(z))(−u, v), z, x] 0 ≤ s ≤ 1.

H̃ is a homotopy from � Jχ to the trivial map, completing the proof.
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7 Homotopies and cofiber sequences

In this section, we set up our conventions for using homotopies to definemaps between
cofibers.We thenobserve that compatible homotopies lead tohomotopicmapsbetween
cofibers. This will be used in Sect. 9 to prove Lemma 5.8. Since Z/(2) actions play
no role in these general considerations, we will, up through Proposition 7.2, give �

coordinates in [0, 1], and, when dealing with cones, take 0 to be the cone point.

Construction 7.1 Suppose that

X
i

δ

Y

c

U
u

V

(7.1)

is a homotopy commutative diagram of S-modules, and let H be a homotopy from uδ

to ci . Define

cH : Y ∪i C X → V ∪u CU

by

cH (y) = c(y) y ∈ Y

cH ([x, s]) =
{

[δ(x), 2s] x ∈ X, 0 ≤ s ≤ 1
2

H(x, 2s − 1) x ∈ X, 1
2 ≤ s ≤ 1.

The diagram

· · · X
i

δ

Y

c

Y ∪i C X

cH

�X

�δ

· · ·

· · · U
u

V V ∪u CU �U · · ·

is homotopy commutative, and cH will be called the map induced by H.

If diagram (7.1) is explicitly assumed to commute on the nose, then define c̄ :
Y ∪i C X → V ∪u CU by c̄(y) = c(y) for y ∈ Y and c([x, s]) = [δ(x), s] for x ∈ X
and 0 ≤ s ≤ 1. Since c̄ is homotopic to the map induced by the stationary homotopy,
this should not lead to any confusion.

More generally, if H ′ is another homotopy from uδ to ci with H �p H ′ in
MapS(X, V ), then cH � cH ′ . We may also replace δ and c by homotopic maps.
More precisely: if G is a homotopy from δ to δ′ and H ′ is a homotopy from uδ′ to
ci with H �p (u ◦ G) ∗ H ′, then cH � cH ′ . Similarly, if G is a homotopy from c′
to c and H ′ is a homotopy from uδ to c′i with H �p H ′ ∗ (G ◦ i), then cH � c′

H ′ .
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Finally, if

U
u−−−−→ V

γ

⏐
⏐
�

⏐
⏐
�d

W
w−−−−→ Z

is another homotopy commutative diagram of S-modules with homotopy G from wγ

to du, then dG ◦ cH : Y ∪i C X → Z ∪w CW is homotopic to (d ◦ c)L , where L is
the homotopy from w(γ δ) to (dc)i given by L = (G ◦ δ) ∗ (d ◦ H).

An easy consequence of these observations is the following result, which will be
used later.

Proposition 7.2 Consider the diagrams

· · · X1
i1

γ1

Y1

a

Z1

ā

�X1

�γ1

· · ·

· · · E
e

γ2

F

b

G

b̄H2

�E

�γ2

· · ·

· · · X2
i2

Y2 Z2 �X2 · · ·

· · · X1
i1

δ1

Y1

c

Z1

c̄H1

�X1

�δ1

· · ·

· · · U
u

δ2

V

d

W

d̄

�U

�δ2

· · ·

· · · X2
i2

Y2 Z2 �X2 · · ·

of S-modules, where the rows are cofibration sequences, ai1 = eγ1, du = i2δ2,
γ2γ1 = δ2δ1 ≡ δ, H1 is a homotopy from uδ1 to ci1, and H2 is a homotopy from i2γ2
to be. Suppose that K is a homotopy fromdc to ba and consider themap X1∧�̇2+ → Y2
defined as follows:

If this map extends to a map X1 ∧ �2+ → Y2, then d̄ ◦ c̄H1 is homotopic to b̄H2 ◦ ā.
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We will apply Proposition 7.2 to the following diagrams:

· · · e(�2k+1X ∧ �2k+1X)′
e(�k+1 f ∧�k+1 f )◦e(q

f 2
)

e(�k+1 f ∧�k+1 f )′

e(�k+1X ∧ �k+1X)

e(� j+1h∧� j+1h)

K f

κh

· · ·

· · · e(�k+1X ∧ �k+1X)′
e(� j+1h∧� j+1h)◦e(q f )

e(δ f )

e(� j+1X ∧ � j+1X)

〈ρ〉

Kh · · ·

· · · e(�(C( f ) ∧ X ∪ X ∧ C( f )))
e(�p f )

e(�2(�k X ∧ X ∨ X ∧ �k X)) e(�2(X ∧ X)) · · ·

(7.2)

· · · e(�2k+1X ∧ �2k+1X)′
e(�k+1 f ∧�k+1 f )◦e(q

f 2
)

e(δ
f 2

)

e(�k+1X ∧ �k+1X)

〈ρ〉

K f · · ·

· · · e(�(C( f 2) ∧ X ∪ X ∧ C( f 2)))

e(�p
f 2

)

e(�2(�2k X ∧ X ∨ X ∧ �2k X)) e(�2(X ∧ X)) · · ·

‖

· · · e(�(C( f ) ∧ X ∪ X ∧ C( f )))
e(�p f )

e(�2(�k X ∧ X ∨ X ∧ �k X)) e(�2(X ∧ X)) · · ·

To do this, we will need to examine homotopies making the bottom left square of the
first diagram and the top left square of the second diagram commute, together with
a homotopy between the middle vertical compositions. We will carry this out in the
next two sections.

8 Homotopies between vn self-maps

To show that the diagrams (7.2) satisfy the compatibility condition of Proposition 7.2,
we will need to examine homotopies between certain vn self-maps. More precisely,
suppose that X is a K (n−1)∗-acyclic finite 2-local CW S-module and that g : � j X →
X is a vn self-map such that g ∧ X is homotopic to X ∧ g. (Once again, if n = 0,
we will assume that X = 	�∞S0(2)). Let U : I → MapS(� j X ∧ X, X ∧ X) be a
homotopy from g∧ X to X ∧ g. Using the notation of Sect. 2, our goal will be to show
that there exists N > 0 such that

(gN ∧ X) ◦ �N jU (N ) �p U (N ) ◦ �N j (gN ∧ X)

(X ∧ gN ) ◦ �N jU (N ) �p U (N ) ◦ �N j (X ∧ gN )
(8.1)

as paths in MapS(�2N j X ∧ X, X ∧ X).
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At this point, the alert reader may have noticed that the above two relations do not
make sense as written. For example,

(gN ∧ X) ◦ �N jU (N )(1) = (gN ∧ X) ◦ �N j (X ∧ gN )

and

U (N )(1) ◦ �N j (gN ∧ X) = (X ∧ gN ) ◦ �N j (gN ∧ X).

But (gN ∧ X) ◦ �N j (X ∧ gN ) is the composition

�
N j
1 �

N j
2 X ∧ X = �

N j
1 X ∧ �

N j
2 X

gN∧gN−−−−−→ X ∧ X,

whereas (X ∧ gN ) ◦ �N j (gN ∧ X) is the composition

�
N j
1 �

N j
2 X ∧ X = �

N j
2 X ∧ �

N j
1 X

gN∧gN−−−−−→ X ∧ X.

If j > 0, these compositions are not equal: they differ by a permutation of suspen-
sion coordinates. Of course, if j is even, any permutation of the factors of (S j )(l), the
l-fold smash product of S j , is homotopic to the identity. The necessary modification
of (8.1) is a consequence of the following result.

Proposition 8.1 With notation as above, there exists N > 0 such that, for any m,

U (mN ) ◦ �NmjŪ (mN ) ◦ (T ∧ X ∧ X)

∈ π1

(

MapSgmN∧gmN

(

SNmj ∧ SNmj ∧ X ∧ X, X ∧ X
))

is trivial, where T is some homotopy from the identity to the switch map

τ : SNmj
1 ∧ SNmj

2 → SNmj
2 ∧ SNmj

1 .

Remark 8.2 Ifu : �k X → W andv : �lY → Z , thenbyu∧v : �k+l X∧Y → W∧Z ,
we mean the composition

�k+l X ∧ Y = �k
1�

l
2X ∧ Y = �k

1X ∧ �l
2Y

u∧v−→W ∧ Z .

Before proving this result, we give the following consequence, which is what we
will use in the next section.

Corollary 8.3 With notation as above,

(gmN ∧ X) ◦ �NmjU (mN ) �p U
(mN ) ◦ (�Nmj gmN ∧ X) ◦ (T ∧ X ∧ X)

and

(X ∧ gmN ) ◦ �NmjU (mN ) ◦ (τ ∧ X ∧ X) �p U (mN ) ◦ (�Nmj X ∧ gmN ) ◦ (T ∧ X ∧ X).
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Proof of Corollary To prove the first statement, observe that

U (mN ) ◦ �Nmj Ū (mN ) ◦ (T ∧ X ∧ X) �p [(gmN ∧ X) ◦ �Nmj Ū (mN )]
∗ [U (mN ) ◦ (�Nmj gmN ∧ X) ◦ (T ∧ X ∧ X)].

To prove the second statement observe that

U (mN ) ◦ �Nmj Ū (mN ) ◦ (T ∧ X ∧ X) �p [U (mN ) ◦ (�Nmj X ∧ gmN ) ◦ (T ∧ X ∧ X)]
∗ [(X ∧ gmN ) ◦ �Nmj Ū (mN ) ◦ (T (1) ∧ X ∧ X)].

��
We now turn to the proof of Proposition 8.1. The main ingredients are Proposition

2.5 as applied to vn self-maps together with a little bit of understanding of homotopies
between permutations of the factors of (S j )(l). These permutations add a lot of clutter
to the proofs of Proposition 8.1 and Lemma 5.8 in Sect. 9; the reader may therefore
find them easier to follow and the ideas involved more transparent if all considerations
involving permutations are ignored on the first pass through. With this warning, we
begin our work.

As before, let �l denote the symmetric group on l letters. If σ ∈ �l , we will also
write σ for the map (S j )(l) → (S j )(l) sending S j

1 ∧· · ·∧ S j
l to S j

σ−1(1)
∧· · ·∧ S j

σ−1(l)
.

If σ 2 = id, σ will be called a conjugation. This is equivalent to saying that σ is the
composition of commuting transpositions.

Lemma 8.4 Let σ ∈ �l , and let T σ : I → Map(S jl , S jl) be any homotopy from id
to σ . Then T σ ◦ T σ ∈ π1(Mapσ (S jl , S jl)) is trivial. If σ is a conjugation and 4| j ,
then T σ ◦ T σ ∈ π1(Mapid(S

jl , S jl)) is also trivial.

Proof Assume that j > 0; otherwise everything is trivial (remember, we are working
in the category of pointed spaces here).

To prove the first assertion, begin by observing that

T σ ∗ (σ ◦ T σ ) �p T σ ◦ T σ �p T σ ∗ (T σ ◦ σ)

and therefore that σ ◦ T σ �p T σ ◦ σ . But

T σ ◦ T σ �p (T σ ◦ σ) ∗ (σ ◦ T σ );

hence

T σ ◦ T σ �p (σ ◦ T σ ) ∗ (σ ◦ T σ ) �p σ ◦ (T σ ∗ T σ ) �p cσ .

For the second assertion, we first construct a homotopy T τ
0 with the property that

T τ
0 ◦ T τ

0 ∈ π1(Mapid(S
2 j , S2 j )) is trivial. Here τ is the switch map and l = 2.

Let γ2 denote the canonical line bundle over RP2. Since 4γ2 = 0 in K̃ O(RP2)

and BO(4) → BO is a 4-equivalence, we have that 4γ2 ≈ ε4. By Lemma 3.2, there
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exists G0 : S2 → SO(2 j) such that G0(z)(u, v) = G0(−z)(−u, v) for all u, v ∈ R
j .

If we choose a point e ∈ S2, we may also assume that G0(e) = I . Now R
j ⊕ R

j with
the Z/(2)-action given by the switch map is equivariantly isometric to R

j
− ⊕ R

j (see
discussion preceding Lemma 3.2); we thus obtain a map G : S2 → SO(2 j) such that
G(e) = I and G(z)(u, v) = G(−z)(v, u) for all u, v ∈ R

j . By regarding S j as the
one point compactification of R

j , we may regard G as a map from S2 to the space
Map(S j ∧ S j , S j ∧ S j ).

Choose a path ϕ in S2 from e to −e and define T τ
0 = G ◦ ϕ. Observe that

(T τ
0 ◦ τ)(t)(u, v) = (T τ

0 )(t)(v, u) = G(ϕ(t))(v, u) = G(−ϕ(t))(u, v).

But −ϕ(t) is a path from −e to e in S2 and is therefore path homotopic to the reverse
of ϕ. Since

T τ
0 ◦ T τ

0 �p T τ
0 ∗ (T τ

0 ◦ τ),

it follows that T τ
0 ◦ T τ

0 � cid .
In general, if σ ∈ �l is a conjugation, then we may compose the above homotopies

in an evidentway to obtain a homotopy T σ
0 with (T σ

0 )(2) trivial inπ1(Mapid(S
jl , S jl)).

However, we must show that (T σ )(2) is trivial for any homotopy.
To prove this, write T σ �p ω ∗ T σ

0 with ω ∈ π1(Mapid(S
jl , S jl)). Then

(T σ )(2) = (ω ∗ T σ
0 )(2) �p (ω ∗ T σ

0 ) ∗ (σ ◦ (ω ∗ T σ
0 ))

�p ω ∗ T σ
0 ∗ (σ ◦ ω) ∗ (σ ◦ T σ

0 )

�p ω ∗ [T σ
0 ∗ (σ ◦ ω) ∗ T σ

0 ] ∗ (T σ
0 ∗ (σ ◦ T σ

0 )).

But since π1(Mapid(S
jl , S jl)) = Z/(2), ω ∗ [T σ

0 ∗ (σ ◦ ω) ∗ T σ
0 ] is path homotopic

to the constant loop, and therefore

(T σ )(2) �p T σ
0 ∗ (σ ◦ T σ

0 ) �p (T σ
0 )(2) �p cid .

��

We will also need the following easily proved result.

Lemma 8.5 Suppose that W, X,Y , and Z are CW S-modules and that V and V ′ are
loops inMapS(X,Y ) such that V ∗ · · · ∗ V

︸ ︷︷ ︸

m

≡ mV �p mV ′. If K and L are any paths

inMapS(Y, Z) and MapS(W, X) respectively such that

K (0) ◦ V (0) ◦ L(0) = K (1) ◦ V (1) ◦ L(1),

then m(K ◦ V ◦ L) �p m(K ◦ V ′ ◦ L).
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Proof Observe that

K ◦ V ◦ L �p (K (0) ◦ V (0) ◦ L) ∗ (K (0) ◦ V ◦ L(1)) ∗ (K ◦ V (1) ◦ L(1))

�p [ω ∗ (K (0) ◦ V ◦ L(1)) ∗ ω] ∗ [ω ∗ (K ◦ V (1) ◦ L(1))],

where ω = K (0)◦V (0)◦ L . Since π1(Mapq(W, Z)) is abelian for any q (see Remark
2.6), we have that

m(K ◦ V ◦ L) �p [ω ∗ (K (0) ◦ mV ◦ L(1)) ∗ ω] ∗ m[ω ∗ (K ◦ V (1) ◦ L(1))].

But V ′(0) = V (0) = V (1) = V ′(1), so by the same argument,

m(K ◦ V ′ ◦ L) �p [ω ∗ (K (0) ◦ mV ′ ◦ L(1)) ◦ ω] ∗ m[ω ∗ (K ◦ V (1) ◦ L(1))].

Since mV �p mV ′, the desired result follows. ��
Proof of Proposition 8.1 First observe that there exists R such that

2Rπ1

(

MapSq
(

�N j X ∧ X, X ∧ X
))

= 0

for all N and q : �N j X ∧ X → X ∧ X . If n > 0, this follows from the fact that
idX∧X ∈ [X ∧ X, X ∧ X ]0 is annihilated by a power of two, and if n = 0, this follows
from the fact that MapSq (�

N j X ∧ X, X ∧ X) � MapSq (	�∞S0(2), 	�∞S0(2)), so that

π1

(

MapSq
(

�N j X ∧ X, X ∧ X
))

= Z/(2).

It thus suffices to prove the following claim:
Suppose that r ≥ 0, that g ∧ g is in the center of [X ∧ X, X ∧ X ]∗ with 4| j , and

that

2r+1(U ◦ � jU ◦ (T0 ∧ X ∧ X)) �p cg∧g

for some homotopy T0 : I → Map(S j ∧ S j , S j ∧ S j ) from the identity to the switch
map. Then for eachm > 0, there exists a homotopy T : I → Map(S2mj∧S2mj , S2mj∧
S2mj ) from the identity to the switch map such that

2r
(

U (2m) ◦ �2mjU
(2m) ◦ (T ∧ X ∧ X)

)

�p cg2m∧g2m .

We first prove the inductive step with m = 1. Start with the relation

U ◦ � jU ◦ (T0 ∧ X ∧ X) ◦ �2 jU ◦ �3 jU ◦ (�2 j T 0 ∧ X ∧ X) �p c(g∧g)2 (8.2)

guaranteed by Proposition 2.5. The inductive hypothesis implies that

2r (U ◦ � jU ◦ (T0 ∧ X ∧ X)) �p 2r (U ◦ � jU ◦ (T 0 ∧ X ∧ X)); (8.3)
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it therefore follows from Lemma 8.5 that

2r [U ◦ � jU ◦ (T0 ∧ X ∧ X) ◦ �2 jU ◦ �3 jU ◦ (�2 j T0 ∧ X ∧ X)] �p c(g∧g)2 .

Next observe that

U ◦ � jU ◦ (T0 ∧ X ∧ X) ◦ �2 jU ◦ �3 jU ◦ �2 j (T0 ∧ X ∧ X)

= U ◦ � jU ◦ �2 jU ◦ �3 jU ◦ (T ττ ∧ X ∧ X)

for some homotopy T ττ from the identity to the permutation S j
1 ∧ S j

2 ∧ S j
3 ∧ S j

4 →
S j
2 ∧ S j

1 ∧ S j
4 ∧ S j

3 . Applying Lemmas 8.4 and 8.5, we then have

c(g∧g)2 �p 2
r [U ◦ � jU ◦ �2 jU ◦ �3 jU ◦ (T ττ ∧ X ∧ X)]

�p 2
r [U ◦ � jU ◦ �2 jU ◦ (� j T 0 ∧ X ∧ X)

◦ (� j T 0 ∧ X ∧ X) ◦ �3 jU ◦ (T ττ ∧ X ∧ X)]
�p 2

r [U ◦ � jU ◦ �2 jU ◦ (� j T0 ∧ X ∧ X) ◦ (� j T 0 ∧ X ∧ X)

◦ �3 jU ◦ (T ττ ∧ X ∧ X)]
�p 2

r [U ◦ � jU ◦ �2 jU ◦ �3 jU ◦ (σ ∧ X ∧ X) ◦ (T ττ ∧ X ∧ X)],

where σ denotes the permutation S j
1 ∧ S j

2 ∧ S j
3 ∧ S j

4 → S j
1 ∧ S j

3 ∧ S j
2 ∧ S j

4 . But

(g ∧ g)2 ◦ (σ ∧ X ∧ X) = g2 ∧ g2

and T ≡ σ ◦ T ττ ◦ σ is a homotopy from the identity to the switch map S2 j1 ∧ S2 j2 →
S2 j2 ∧ S2 j1 ; therefore

cg2∧g2 �p 2r
[

U (2) ◦ �2 jU
(2) ◦ (T ∧ X ∧ X)

]

, (8.4)

as desired.
This procedure may be iterated. For example, it follows from Eqs. 8.2, 8.4, and

Lemma 8.5 that

2r [U ◦ � jU ◦ (T0 ∧ X ∧ X) ◦ �2 jU ◦ �3 jU ◦ �2 j (T 0 ∧ X ∧ X) ◦ �4 jU (2)

◦ �6 jU
(2) ◦ (�4 j T ∧ X ∧ X)]

is path homotopic to the constant loop at (g∧ g)2 ◦�4 j (g2 ∧ g2). Then apply Eq. 8.3
repeatedly as above to obtain

cg4∧g4 �p 2r
[

U (4) ◦ �4 jU
(4) ◦ (T ∧ X ∧ X)

]
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for some (other) homotopy T : I → Map(S4 j ∧ S4 j , S4 j ∧ S4 j ) from the identity to
the switch map. Continue this process to obtain the desired result for all m. ��

9 Proof of Lemma 5.8

We are now ready to complete the proof of Lemma 5.8 by showing that, for appropriate
iterates of our original νn self-map, the homotopies appearing in the diagrams 7.2 may
be chosen so that the hypotheses of Proposition 7.2 are satisfied.

Suppose that h is an iterate of g such that j = deg h is even and such that there
exists a homotopy U from h ∧ X to X ∧ h such that

(h ∧ X) ◦ � jU �p U ◦ (� j h ∧ X) ◦ (T ∧ X ∧ X)

(X ∧ h) ◦ � jU ◦ (T (1) ∧ X ∧ X) �p U ◦ (� j X ∧ h) ◦ (T ∧ X ∧ X), (9.1)

where T : I → Map(S2 j , S2 j ) is some homotopy from the identity to the switch map
on S j ∧ S j . We will show that such a map h allows for the desired compatibility of
homotopies. By virtue of Corollary 8.3, this suffices to prove Lemma 5.8.

We now identify the homotopies appearing in Proposition 7.2 applied to the
diagrams 7.2. Begin by fixing a natural homotopy C f from e(�p f ) ◦ e(δ f ) to
〈�k+1X ∧ � f 〉 ◦ e(q f ) as in Proposition 5.5, and define

H(r) : I → MapS(e(�rk+1X ∧ �rk+1X)′, e(�2(�rk X ∧ X ∨ X ∧ �rk X)))

by

H(r) = C f r ∗ 〈�2+rk
[

(X ∧ hr ) ◦ �r jU
(r)

]

◦ (�2P(r) ∧ X ∧ X) ◦ q f r 〉.

Here P(r) : I → Map(S4r j , S4r j ) is any choice of homotopy from the identity to the
permutation

Sr j1 ∧ Sr j2 ∧ Sr j3 ∧ Sr j4 → Sr j1 ∧ Sr j3 ∧ Sr j4 ∧ Sr j2 ,

�rk+1X ∧ �rk+1X is identified with �2rk+2X ∧ X via

�1�
rk
2 X ∧ �3�

rk
4 X = �1�3�

rk
2 �rk

4 X ∧ X, (9.2)

and we include �2+rk(X ∧ X), the target of

�2+rk
[

(X ∧ hr ) ◦ �r jU
(r)

]

◦ (�2P(r) ∧ X ∧ X),

in �2(�rk X ∧ X ∨ X ∧ �rk X) in the usual way. Define the homotopies H1 and H2
by H1 = H(2) and H2 = H(1). The homotopy

K : I → MapS(e(�k+1X ∧ �k+1X), e(�2(�k X ∧ X ∨ X ∧ �k X)))
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may be defined by

K = 〈�2+k[(h ∧ X) ◦ � jU ] ◦ (�2T0 ∧ X ∧ X)〉,

where �k+1X ∧ �k+1X is identified with �2k+2X ∧ X as in Eq. 9.2,

T0 : I → Map(S4 j , S4 j )

is any choice of homotopy from the identity to the conjugation

S j
1 ∧ S j

2 ∧ S j
3 ∧ S j

4 → S j
1 ∧ S j

3 ∧ S j
2 ∧ S j

4 ,

and we include �2+k X ∧ X , the target of �2+k[(h ∧ X) ◦ � jU ] ◦ (�2T0 ∧ X ∧ X),
in �2(�k X ∧ X ∨ X ∧ �k X) as above. Finally, observe that

γ1 = e(�k+1 f ∧ �k+1 f )′

i1 = e(�k+1 f ∧ �k+1 f ) ◦ e(q f 2)

d = e(�2(�k f ∧ X ∨ X ∧ �k f )).

SinceC f ◦γ1 = d◦C f 2 by naturality, the hypotheses of Proposition 7.2 are satisfied
for diagrams 7.2 provided that the map

B : �̇2 → MapS(�4k X ∧ X, �k X ∧ X)

given by

extends over �2, where

B0 = �k[(h ∧ X) ◦ � jU ] ◦ (T 0 ∧ X ∧ X) ◦ (�k f ∧ �k f )

B1 = �k
[

( f ∧ f ) ◦ �2kU
(2)

]

◦ (P(2) ∧ X ∧ X)

B2 = �k[(X ∧ h) ◦ � jU ] ◦ (P(1) ∧ X ∧ X) ◦ (�k f ∧ �k f ). (9.3)

Using the relations 9.1, we have

B0 �p �k[U ◦ (� j h ∧ X)] ◦ (�k f ∧ �k f ) ◦ (S0 ∧ X ∧ X)

B1 �p �kU
(2) ◦ (�k f ∧ �k f ) ◦ (S1 ∧ X ∧ X)

B2 �p �k[(X ∧ h) ◦ � jU ] ◦ (�k f ∧ �k f ) ◦ (S2 ∧ X ∧ X), (9.4)
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where each Si : I → Map(S8 j , S8 j ) is a homotopy from a permutation σi ∈ �8 to
σi+1 ∈ �8 with σ3 = σ0.

Now σ2 = id and thus S2 ∗ S0 ∗ S1 ∈ π1(Mapσ2
(S8 j , S8 j ) is path homotopic to

ω ∧ S6 j for some ω ∈ π1(Mapid(S
2 j , S2 j )). Of course, ω �p ω, and if we replace

P(1) above by (ω ∧ S2 j ) ∗ P(1), then we obtain S2 ∗ S0 ∗ S1 �p cid . We also have
that

U
(2) �p [(X ∧ h) ◦ � jU ] ∗ [U ◦ (� j h ∧ X)];

hence it follows from 9.4 that B2 ∗ B0 �p B1. This proves that B extends over �2 as
desired.

10 Appendix 1: Proof of Theorem 1.4

In this section, we will be working entirely within the stable category, and we will
write Dj (X) for E� j �� j 	X ( j), where 	X is, as before, a CW-approximation to X .
If f : X → Y , we will write Dp( f ) for the evident map from Dp(X) to Dp(Y ).

We begin with a couple of observations. First, if M(pi ) has a p-fold multiplication
with unit, then the unit mapmust be just the usual inclusion of the bottom cell. Second,
since [E�N

p ��p M(pi )(p), M(pi )] is finite for each N , it suffices to show that no
such multiplication on M(pi ) extends over Dp(M(pi )).

Our proof follows an argument of Nishida used in his proof that elements of positive
degree in π∗S0 are nilpotent [9]. This work has been formulated in more modern
language in [1], and this is the reference we will use.

Let τp(X) : Dp(X) → X (p) be the map defined in [1, Chapter 2, Definition 1.4],
and let ιp(X) be the composition in Eq. 1.2. When no confusion will result, we will
write τp(X) and ιp(X) as τp and ιp respectively. By [1, Chapter 2, Corollary 1.8], we
have that Dp(pi ) : Dp(X) → Dp(X) decomposes as

Dp(p
i ) = piλ + upi−1ιpτp (10.1)

for some λ : Dp(X) → Dp(X) and unit u in Z(p).
If M(pi ) has a ring spectrum structure, then pi : M(pi ) → M(pi ) is trivial; it

therefore follows from 10.1 that, if the multiplication on M(pi ) extends to a map
ξ : Dp(M(pi )) → M(pi ), then the composition

Dp(M(pi ))
τp−−−−→ M(pi )(p)

μ−−−−→ M(pi )

is annihilated by pi−1. Here, of course, μ is the p-fold multiplication on M(pi ).
Now choose an element α ∈ π∗S0 such that pi−1α is not divisible by pi . Such

an α clearly exists; for example, it may be chosen to be in the image of the J -
homomorphism. By the Kahn-Priddy theorem (see[1, Chapter 2, Theorem 2.8]), there
exists h ∈ π∗(Dp(S0)) such that (τp)∗h = α. Let

h̄ = Dp(η)∗h ∈ π∗Dp(M(pi )),
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where η : S0 → M(pi ) is the unit. Then

μ∗τp(M(pi ))∗h̄ = μ∗η(p)∗ τp(S
0)∗h = μ∗η(p)∗ α = η∗α ∈ π∗M(pi ).

But pi−1η∗α �= 0, a contradiction.

11 Appendix 2: Further directions

The readermay have noticed that our proof of Theorem1.1made little use of properties
of the multiplication on X ; instead, most of our work involved a detailed study of the
vn self-map g. This study, in turn, had at its essence an understanding of the centrality
properties ofvn self-maps. In thisAppendix,wewill describe an alternative approach to
organizing the proof of Theorem1.1, one thatmore explicitly indicateswhat is required
of g. We will then use this approach to suggest a program for proving the more general
question involving actions of finite skeleta of E∞ operads. In addition, wewill see how
this approach might be used to prove other desired properties of a multiplication, such
as the derivation property used by Oka. Finally, we will suggest a version of centrality
of vn self-maps applicable to certain diagrams of type n spectra commutative up to (a
finite level of) higher homotopy. This notion appears to be an important ingredient in
any attempt to achieve our program. While much of this Appendix is speculative, we
hope that it illuminates some previously unexplored directions.

A key piece in our program is a generalization of Proposition 2.3 to extended
powers. We begin with some notation. If X , Y are S-modules and f : Y → X , filter
C( f ) by F0C( f ) = X and F1C( f ) = C( f ). This filtration induces a filtration on
C( f )( j) by

Fi (C( f )( j)) =
⋃

i1+···+i j≤i

(Fi1C( f ) ∧ · · · ∧ Fi j C( f ))

and a filtration on eE, j (C( f )( j)) by

FieE, j (C( f )( j)) = eE, j (Fi (C( f )( j))).

In addition, write

Qi (C( f )( j)) = Fi (C( f )( j))

Fi−1(C( f )( j))
;

then

eE, j Qi (C( f )( j)) = FieE, j (C( f )( j))

Fi−1eE, j (C( f )( j))
.
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In particular, if t : Y → X is the trivial map,

eE, j (C(t)( j)) = eE, j ((X ∨ �Y )( j)) =
∨

0≤i≤ j

eE, j (Qi (X ∨ �Y )( j)), (11.1)

and Qi (X ∨ �Y )( j) is the summand of (X ∨ �Y )( j) with exactly i factors of �Y .
Note further that Qi (C( f )( j)) = Qi (X ∨ �Y )( j) as S-modules with a � j -action, so
that eE, j (QiC( f )( j)) = eE, j (Qi (X ∨ �Y )( j)). We will mostly be interested in the
case where Y = �k X .

Now specialize to j = 2, and assume that g : �|g|X → X is a vn self-map. Of
course

F0e(C(g)(2)) = e(X ∧ X) = F0e(X ∨ �|g|+1X)(2);

moreover, if r : �|g|Y → Y is another vn self-map—inducing multiplication by the
same power of p on rational homology as g if n = 0—it follows from Proposition 5.1
together with Proposition 2.3 that there exists N such that

F1e
(

C(gmN )(2)
)

∧ C(r (mN )) � F1e((X ∨ �mN |g|+1X)(2)) ∧ C(r (mN ))

for any positive integer m. If in addition E is finite, then Corollary 5.10 applies and
implies—with N chosen larger if necessary—that

e(δ f ) : e(�k+1X ∧ �k+1X)′ → �F1e(C( f )(2))

factors as a composition

e(�k+1X ∧ �k+1X)′
e(� j+1h∧� j+1h)◦e(q f )−−−−−−−−−−−−−→ e(� j+1X ∧ S j+1X) ��� �F1e(C( f )(2)).

Here f = h2, h = gmN/2, and k, j are the degrees of f and h respectively. Choosing
N perhaps still larger, Proposition 2.3 then implies that e(δgmN ) ∧ C(rmN ) � ∗ and
therefore

e
(

C(gmN )(2)
)

∧ C(rmN ) �
[

F1e

(

C
(

gmN
)(2)

)

∨ e
(

�k+1X ∧ �k+1X
)
]

∧ C(rmN )

�
[

F1e
(

X ∨ �k+1X
)(2) ∨ e

(

�k+1X ∧ �k+1X
)
]

∧ C(rmN )

� e(X ∨ �k+1X)(2) ∧ C(rmN ). (11.2)

Of course, Proposition 2.3 also implies that

C(gmN ) ∧ C(rmN ) � (X ∨ �k+1X) ∧ C(rmN ); (11.3)
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furthermore, the equivalences 11.2 and 11.3 may be chosen so that

C(gmN ) ∧ C(rmN )
�−−−−→ (X ∨ �k+1X) ∧ C(rmN )

⏐
⏐
�η∧C(rmN )

⏐
⏐
�η∧C(rmN )

e
(

C
(

gmN
)(2)

)

∧ C(rmN )
�−−−−→ e

(
(

X ∨ �k+1X
)(2)

)

∧ C(rmN )

(11.4)

commutes up to homotopy. Here we are using the following convention: If Z is any
S-module with a map η : S0 → Z , we also write η for the composition

Z = Z ∧ S0
Z∧η−−−−−→ Z ∧ Z = Z/(2) �Z/(2) (Z ∧ Z) −→ e(Z ∧ Z).

Observe that if X has an E-commutative ring spectrum structure ξX : e(X ∧ X) →
X , then so does X ∨ �k+1X . Indeed, use the splitting 11.1 and define ξX∨�k+1X by
ξX∨�k+1X |e(Q0(X ∨ �k+1X)(2)) = ξX , ξX∨�k+1X |e(Q2(X ∨ �k+1X)(2)) = ∗, and
ξX∨�k+1X |e(Q1(X ∨ �k+1X)(2)) to be the map ξX,k+1 of Proposition 5.2, followed
by the inclusion �k+1X → X ∨ �k+1X .

Since DC(gmN ) � �−1D(gmN ), we may now use the equivalences 11.2 and 11.3
to write ξX∨�k+1X ∧ DC(gmN ) as a map

e
(

C(gmN )(2)
)

∧ DC(gmN ) −→ C(gmN ) ∧ DC(gmN ). (11.5)

We may then form the composition

e
(

C(gmN )(2)
)

∧ DC(gmN ) −→ C(gmN ) ∧ DC(gmN )
ε−→ S0, (11.6)

where ε is adjoint to the identity map. Taking the adjoint of this compostion yields a
map

ξC(gmN ) : e
(

C(gmN )(2)
)

−→ C(gmN ),

and one can check, using the commutative diagram 11.4, that this map is an E-
commutative ring spectrum structure on C(gmN ).

Moreover, the equivalences of 11.2 and 11.3 are filtration preserving—C(rnM ) is
given the trivial filtration—and are in fact the identity on the associated quotients.
This observation applied to F0 implies that ξC(gmN ) extends the E-commutative ring
spectrum structure on X .

The approach just outlined suggests a way to attack the general problem of con-
structing higher multiplicative structures on the cofiber of a vn self-map. Begin by
observing that, just as before, any map ξX : eE, j (X ( j)) → X induces a map
ξX∨�k+1X : eE, j ((X ∨�k+1X)( j)) → X which is trivial on eE, j (Qi (X ∨�k+1X)( j))

for i > 1. In this way, any higher multiplicative structure on X induces the same sort of
multiplicative structure on X ∨ �k+1X . Now let g : �|g|X → X and r : �|g|Y → Y
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be vn self-maps as before. We hope to find N > 0 such that, for each m > 0, there are
filtration preserving equivalences

[

E�i
j �� j C(gmN )( j)

]

∧ C(rmN ) �
[

E�i
j �� j

(

X ∨ �k+1X
)( j)

]

∧ C(rmN ),

(11.7)

k = mN |g|, valid for all j ≤ M and i ≤ k j . (Equivalence 11.3 is the j = 1 case). In
addition, we should require that these equivalences become the identity upon passing
to the quotients of the filtration and that, if M > 2, these equivalences are compatible
with the inclusions E�i

j → E�i+1
j . If X has a higher multiplicative structure with

structure maps ξ j,X : E�
k j
j � X ( j) → X , then we may, as before, use 11.7 and 11.3

to write ξ j,X∨�k+1X ∧ DC(gmN ) as a map

[

E�
k j
j �� j C(gmN )( j)

]

∧ DC(gmN ) −→ C(gmN ) ∧ DC(gmN ),

which, when composedwith the adjoint ε : C(gmN )∧DC(gmN ) → S0 of the identity,
yields a map

[

E�
k j
j �� j C

(

gmN
)( j)

]

∧ DC(gmN ) −→ S0.

The adjoint of this map is defined to be

ξ j,C(gmN ) : E�
k j
j �� j C(gmN )( j) −→ C(gmN ).

The idea then is that appropriate compatibility properties of the equivalences 11.7
ought to reduce theproblemof proving the required relationships among the ξ j,C(gmN )’s
to observing that they hold for the ξ j,X∨�k+1X ’s. For example, the diagram 11.4 is the
relevant diagram to establish that the multiplication on C(gmN ) is unital (in the stable
category).

Althoughwe are not yet able towrite down all of the compatibility diagrams, we can
give a non-trivial related example, arising from Oka’s work on explicit vn self-maps.
Recall that in this work, it is important for the multiplication on C(gmN ) to have the
property that the map

dgmN : C(gmN ) −→ �mN |g|+1X −→ �mN |g|+1C(gmN )

is a derivation. But the map

dtmN : X ∨ �k+1X −→ �k+1X −→ �k+1(X ∨ �k+1X)

is certainly a derivation; one might then expect that the desired property of dgmN is a
consequence of properties of the equivalences 11.2 and 11.3. This is indeed the case.
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Let Dg
mN and Dt

mN denote the compositions

e
(

C
(

gmN
)(2)

) 〈∂∧C(gmN )〉−−−−−−−→ e
[(

�k+1X ∧ C(gmN )
) ∨ (C(gmN ) ∧ �k+1X)

]

⏐
⏐
�Dg

mN

∥
∥
∥

�k+1e
(

C
(

gmN
)(2)

)

←−−−− �k+1E+ ∧ (X ∧ C(gmN ))

and

e
(
(

X ∨ �k+1X
)(2)

) 〈∂∧(X∨�k+1X)〉−−−−−−−−−−→ e
[(

�k+1X ∧ (

X ∨ �k+1X
)) ∨ ((

X ∨ �k+1X
) ∧ �k+1X

)]

⏐
⏐
�Dt

mN

∥
∥
∥

�k+1e((X ∨ �k+1X)(2)) ←−−−−− �k+1E+ ∧ (X ∧ (X ∨ �k+1X)),

and suppose that, with the equivalences 11.2 and 11.3, the following diagrams are
homotopy commutative:

e
(

C
(

gmN
)(2)

)

∧ C(rmN )
�−−−−→ e((X ∨ �k+1X)(2)) ∧ C(rmN )

⏐
⏐
�Dg

mN∧C(rmN )

⏐
⏐
�Dt

mN∧C(rmN )

�k+1e
(

C
(

gmN
)(2)

)

∧ C(rmN )
�−−−−→ �k+1e

(
(

X ∨ �k+1X
)(2)

)

∧ C(rmN )

(11.8)

C(gmN ) ∧ C(rmN )
�−−−−→ (X ∨ �k+1X) ∧ C(rmN )

⏐
⏐
�dgmN∧C(rmN )

⏐
⏐
�dtmN∧C(rmN )

�k+1C(gmN ) ∧ C(rmN )
�−−−−→ �k+1(X ∨ �k+1X) ∧ C(rmN )

(11.9)

e
(

C
(

gmN
)(2)

)

∧ C(rmN )
�−−−−→ e

((

X ∨ �k+1X)(2)
) ∧ C(rmN

)

⏐
⏐
�e

(

C
(

gmN
)(2)

)

∧drmN

⏐
⏐
�(id)∧drmN

�k+1e
(

C
(

gmN
)(2)

)

∧ C(rmN )
�−−−−→ �k+1e

(
(

X ∨ �k+1X
)(2)

)

∧ C(rmN )

(11.10)

C(gmN ) ∧ C(rmN )
�−−−−→ (X ∨ �k+1X) ∧ C(rmN )

⏐
⏐
�C(gmN )∧drmN

⏐
⏐
�(X∨�k+1X)∧drmN

�k+1C(gmN ) ∧ C(rmN )
�−−−−→ �k+1(X ∨ �k+1X) ∧ C(rmN ).

(11.11)
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Then one can show that dgmN is a derivation for themultiplication ξC(gmN ) defined as the
adjoint of 11.6. (Actually, the above diagrams need only commute for rmN = DgmN ).
Observe that the homotopy commutativity of diagram 11.9 is immediate from our
construction of the equivalence 11.3 but that the homotopy commutativity of the
others is not obvious.

How then might one establish the equivalences 11.7 together with the requisite
compatibility properties? In our view, an important ingredient will be understanding
vn self-maps on diagrams on type n spectra. To be sure, more may be required, but
since this idea seems to be of independent interest, we will explore it in some detail
now. Let us begin by making this notion a little more precise.

Let M+ denote the category whose objects are S-modules; the set of morphisms
between X and Y is the disjoint union of the S-module maps from �k X to Y as k
ranges over the nonnegative integers. If I is a small category, we may define the notion
of an M-homotopy commutative I-diagram F in M+ for any positive integer M (cf
[3]). For example, a 1-homotopy commutative diagram is just a pair of maps which
sends each object i in I to an object F(i) inM+ and eachmorphism f : i → j in I to a
morphism F( f ) : F(i) → F( j) inM+ such that F(idi ) = idF(i) and F(g)◦F( f ) �
F(g ◦ f ) whenever g : j → k. A 2-homotopy commutative diagram consists of all
the data for a 1-homotopy commutative diagram together with homotopies H(g, f )
from F(g) ◦ F( f ) to F(g ◦ f ) such that

(F(h) ◦ H(g, f )) ∗ H(h, g ◦ f ) �p (H(h, g) ◦ F( f )) ∗ H(h ◦ g, f )

in the appropriate space of maps for any composable triple of morphisms in I. In
addition, we require that H(id, g) and H( f, id) are the constant homotopies. This
process may be continued by the introduction of higher and higher homotopies to
define an M-homotopy commutative diagram for general M .

If F and F′ are M-homotopy commutative I-diagrams, a map w : F → F′ consists
of a morphism w(i) : F(i) → F ′(i) for each object i in I together with (higher)
homotopies expressing the compatibility of these morphisms with the (higher) homo-
topies occuring in F and F′. Explicitly, if M = 1, this amounts to requiring that
F ′( f )w(i) � w( j)F( f ) for all f : i → j in I. If M = 2, we must in addition spec-
ify a homotopy Gw( f ) from F ′( f )w(i) to w( j)F( f )—with Gw(id) the constant
homotopy—such that

(

F ′(g) ◦ Gw( f )
) ∗ (Gw(g) ◦ F( f )) �p

(

H ′(g, f ) ◦ w(i)
) ∗ Gw(g ◦ f ) ∗

(

w(k) ◦ H(g, f )
)

in MapS(F(i), F ′(k)) whenever f : i → j and g : j → k in I.
Wemay also talk about homotopies betweenmaps.AhomotopyU fromw : F → F′

to v : F → F′ is a collection of homotopies U (i) from w(i) to v(i) for each object i
in I together with higher homotopies expressing certain compatibility conditions. For
the lowest values of M , the conditions are again easy to describe. If M = 1, nothing
more of the U (i)’s is required, and if M = 2, we require, for each f : i → j in I, a
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path homotopy L( f ) from Gw( f ) ∗ (U ( j) ◦ F( f )) to (F ′( f ) ◦U (i)) ∗Gv( f ), with,
once again, L(idi ) the constant homotopy.

Finally, we will sometimes wish to consider M-homotopy commutative diagrams
as N -homotopy commutative diagrams for N ≤ M by neglect of structure. Maps
between such N -homotopy commutative diagrams will be referred to as N -homotopy
commutative maps and homotopies between them as N -homotopies.

Now suppose that I has only a finite number of objects, and letF be anM-homotopy
commutative diagram of type n; that is, each F(i) is a finite p-local CW S-module
of type n. A vn self-map on F is a map v : F → F such that v(i) : F(i) → F(i)
is a vn self-map for all i . (Recall that a map v(i) : F(i) → F(i) in M+ is a map
v(i) : �k(i)F(i) → F(i) of S-modules for some k(i) ≥ 0; we further assume that
k(i) is independent of i when discussing vn self-maps. If n = 0, we assume that each
v(i) induces multiplication by the same power of p on rational homology). If M = 1,
it follows immediately from nilpotence technology that there exists a vn self-map
v : F → F and that, if w : F → F is another vn self-map, then vr is homotopic to ws

for some r, s > 0. One might expect that such a result should hold for M > 1 as well.
Pre-Theorem Suppose that v : F → F is a (M − 1)-homotopy commutative

vn self-map. Then there exists s such that vs may be extended to an M-homotopy
commutative map. If v and w are M-homotopy commutative vn self-maps and U is a
(M − 1)-homotopy between them, then there exists s such that U(s) may be extended
to an M-homotopy between vs and ws .

Although we are only able to verify this statement for M = 2—with an additonal
restriction if n = 0—we have labeled it a “Pre-Theorem” because we believe it is
undoubtedly true and that the method of proof in the M = 2 case should generalize:
the only issue is how to organize all of the higher order information in a manageable
way.We should also observe here that the compositions above involve “compositions”
of all of the higher order information and that has to made sense of as well. We hope to
be able to turn this Pre-Theorem into a Theorem in a later paper, but for now, we will
content ourselveswith presenting an outline of some of its applications to our program.

We begin by observing that a consequence of this Pre-Theorem has already been
used. The major technical result needed to establish the splitting 11.2 was Corollary
8.3, and this result may also be interpreted as follows. Using the notation of Sect. 8, let
g : � j X → X be a vn self-map such that g∧X is homotopic to X∧g. Let I be the free
monoid on one generator d with object∗, and letF be the I-diagramwith F(∗) = X∧X
and F(d) = g ∧ X . Then g ∧ X is a vn self-map of F, and if j is even, X ∧ g is a 2-
homotopy commutative vn self-map of F as well. (The homotopyGX∧g(ds) is defined

using an appropriate homotopy between the identity and the permutation map Ss j1 ∧
S j
2 → S j

2 ∧ Ss j1 ). Now letU be a homotopy from g∧ X to X ∧g. By the Pre-Theorem,
there exists an N such that U (N ) extends to a 2-homotopy and this fact implies that

(g ∧ X) ◦ � jU (N ) �p

[

U (N ) ◦ �N j (g ∧ X)
]

∗ GX∧gN (d)

�p

[

U (N ) ◦ �N j (g ∧ X)
]

∗
[ (

X ∧ gN
)

◦ �N j (g ∧ X) ◦ (T ∧ X ∧ X)

]

,
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where T is some homotopy from the identity to the permutation map S j
1 ∧ SN j

2 →
SN j
2 ∧ S j

1 . But

[

U (N ) ◦ �N j (g ∧ X)
]

∗
[(

X ∧ gN
)

◦ �N j (g ∧ X) ◦ (T ∧ X ∧ X)
]

�p U
(N ) ◦ �N j (g ∧ X) ◦ (T ∧ X ∧ X),

and putting these two homotopies together is easily seen to imply Corollary 8.3.
Although we will not give details here, we can also use the essential uniqueness up

to 2-homotopy of vn self-maps of I-diagrams to prove Proposition 2.3 and gain some
understanding of the null homotopy. (As above I is the free monoid on one generator).
This in turn allows us to establish the homotopy commutativity of diagrams 11.10 and
11.11. In addition, a similar sort of use of the M = 3 case of the Pre-Theorem yields
the homotopy commutativity of diagram 11.8.

We emphasize again that we do not yet know how decisive the Pre-Theoremwill be
in making progress on our more ambitious program. It does seem clear, though, that
these issues are closely related to more subtle centrality properties of vn self-maps.

12 Appendix 3: The category of S-modules

We begin by providing an outline of the construction of the category of S-modules
and its smash product. Our main reference is, of course [5], although the reader might
also wish to look at [7] for background information on spectra and prespectra.

One starts with a universeU , an inner product space isomorphic toR
∞, topologized

as the colimit of its finite dimensional subspaces. An indexing set A in U is a set of
finite dimensional vector subspaces of U , cofinal in the set of all finite dimensional
subspaces of U ordered by inclusion. If V is a finite dimensional subspace of U , let
S(V ) denote the one-point compactification of V (with base point the point at ∞) as
in Sect. 3, and for X a pointed space, let�V X = S(V )∧ X . A prespectrum E indexed
on A consists of a pointed space EV for each V ∈ A , together with based maps
σ : �W−V EV → EW for V ⊂ W inA such that σ is the identity whenW = V and
such that the diagram

�Z−W�W−V EV
�Z−W σ−−−−→ �Z−W EW

∥
∥
∥

⏐
⏐
�σ

�Z−V EV
σ−−−−→ EZ

commutes whenever V ⊂ W ⊂ Z . Here we define W − V to be the orthogonal
complement of V in W whenever V ⊂ W . Maps between prespectra indexed on A
are defined in the evident way, and we denote this category of prespectra byPA (U ).
A prespectrum E is a spectrum if each of the adjoint maps σ̃ : EV → �W−V EW
are homeomorphisms. This category of spectra is denoted SA (U ). The forgetful
functor SA (U ) → PA (U ) has a left adjoint L : PA (U ) → SA (U ) referred
to as spectrification; this implies thatSA (U ) has colimits—the colimit of a diagram
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in SA (U ) is just L applied to the colimit of the diagram regarded as a diagram in
PA (U ). In addition, L preserves colimits.

If X is a pointed space, there is a functor X∧? : PA (U ) → PA (U ) given in
the usual way: (X ∧ E)(V ) = X ∧ EV . By applying the spectrification functor L to
X ∧ E , we obtain a functor from SA (U ) to SA (U ) which we also denote X∧?.
Moreover, if E is a prespectrum, L(X ∧ E) ∼= L(X ∧ LE), so that L preserves smash
products with pointed spaces. If a functor between categories of (pre)spectra preserves
smash products with pointed spaces as well as colimits, we will say that the functor
preserves all colimits.

Although indexing sets are necessary for dealing with prespectra—for example,
the external smash product of two prespectra is not defined on all finite dimensional
subspaces of its universe of definition—SA (U ) is canonically isomorphic toS (U ),
where the indexing set in this latter category of spectra is taken to be the set of all
finite dimensional subspaces ofU . For this reason, we will omit references to indexing
sets and work with S (U ) and P(U ), although some constructions with prespectra
require specific choices of indexing sets. If U = R

∞, the universe we choose when
dealing with S-modules, we will write S and P for S (U ) and P(U ) respectively.
We also remark that, in this situation, the value of a spectrum on the subspace R

n is
the “nth space” of the spectrum.

If E ∈ P(U ) and E ′ ∈ P(U ′), the external smash product E � E ′ ∈ P(U ⊕U ′)
is defined by

(E � E ′)(V ⊕ V ′) = EV ∧ E ′V ′.

(Our notation�may not be entirely standard; we are using it to distinguish the external
from the internal smash product.) If E and E ′ are spectra, we may define a spectrum
E�E ′ by applying L to the prespectrum E�E ′. The external smash product preserves
all colimits andbehaveswellwith respect to spectrification; i.e., LE�LE ′ ∼= L(E�E ′)
for any prespectra E and E ′.

The construction of internal smash products requires the notion of twisted half-
smash products to go from spectra in S (U ⊕ U ) to spectra in S (U ). We follow
“Appendix A” of [5], due to Michael Cole, in our treatment. IfU andU ′ are universes,
an object E of the category S (U ′;U ) consists of a spectrum EV ∈ S (U ′) for
each finite dimensional subspace V of U , together with isomorphisms �W−VEW →
EV whenever V ⊂ W . These isomorphisms must satisfy the evident compatibility
conditionwhenV ⊂ W ⊂ Z . Now let D be inP(U ). For finite dimensional subspaces
V , W of U with V ⊂ W , we have the map

EV ∧ DV ∼= �W−VEW ∧ DV −→ EW ∧ DW

of spectra. We then define E ∧ D ∈ S (U ′) by

E ∧ D = colimV⊂U (E ∧ DV ).

The functor E∧? : P(U ) → S (U ′) preserves all colimits and moreover, E ∧ LD ∼=
E ∧ D.

123



374 E. S. Devinatz

Let I (U,U ′) denote the space of isometries from U to U ′; that is, an element
of I (U,U ′) is an inner product preserving linear transformation from U to U ′. Let
α : A → I (U,U ′) be a continuous map. In [5, “Appendix A”], an object Mα ∈
S (U ′;U ) is constructed using Thom spaces of various vector bundles over subspaces
of A, and the twisted half-smash product α�? : S (U ) → S (U ′) is defined by

α � E = Mα ∧ E .

If the map α is understood, we will often write α � E as A � E , and if A = ∗ with
α(∗) = f ∈ I (U,U ′), we often write f∗E for α � E . (We remark here that we also
use the notation A � E for A+ ∧ E when A is just a space and there is no “change of
universe” going on. This is indeed the case elsewhere throughout the paper: we only
use the twisted half-smash product here in passing from external to internal smash
products).

The twisted half-smash product has some additional properties of importance. If α

is as above and β : B → I (U ′,U ′′), let β ×c α denote the composition

B × A −−−−→ I (U ′,U ′′) × I (U,U ′) ◦−−−−→ I (U,U ′′),

where ◦ denotes the usual composition pairing. If γ : C → I (U1,U ′
1) and δ : D →

I (U2,U ′
2), let γ ×⊕ δ denote the composition

C × D −−−−→ I (U1,U ′
1) × I (U2,U ′

2)
⊕−−−−→ I (U1 ⊕U2,U ′

1 ⊕U ′
2),

where ⊕ denotes the evident map. We then have natural isomorphisms

(β ×c α) � E ∼= β � (α � E)

and

(γ ×⊕ δ) � (E1 � E2) ∼= (γ � E1) � (δ � E2).

This latter isomorphism follows immediately from a canonical isomorphism

M γ � M δ ∼= M (γ ×⊕ δ), (12.1)

where M γ � M δ ∈ S (U ′
1 ⊕U ′

2;U1 ⊕U2) is given by

(M γ � M δ)(V1⊕V2) = (M γ )V1 � (M δ)V2 .

Now fix a universe U , and let U j be the j-fold direct sum of U . Let L ( j) =
I (U j ,U ); these spaces form an operad called the linear isometries operad. There is
a monad L in SU with LE = L (1) � E , where L (1) → I (U,U ) is the identity,
and the category L[SU ] of L -algebras in SU will also be called the category of
L-spectra. For later use, we remark here that �∞X is canonically an L-spectrum for
any pointed space X .
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If M and N are in L[SU ], M ∧L N is defined as the coequalizer of the two maps

where the top map is induced by the operad structure mapL (2) ×L (1) ×L (1) →
L (2), and the bottom map is the composition

(L (2) × L (1) × L (1)) � (M � N ) ∼= L (2) � [(L (1) × L (1)) � (M � N )]
∼= L (2) � (LM � LN )

→ L (2) � (M � N ).

The last map in this composition is induced by the L-algebra structure maps LM →
M and LN → N . The pairing ∧L is easily seen to be commutative. Indeed, let
t ∈ I (U 2,U 2) denote the isometry sending (v,w) to (w, v); the switch map MV ∧
NV ′ → NV ′ ∧MV then induces an isomorphism M �N → t∗(N �M). This implies
that

L (2) � (M � N )
∼=−→L (2) � t∗(N � M) ∼= α � (N � M),

where α : L (2) → I (U 2,U 2) is given by α( f ) = f t . But composition by t yields
an isomorphism from α to the identity map over I (U 2,U ); hence

α � (N � M)
∼=−→L (2) � (N � M).

Similarly, there is an isomorphism

(L (2) × L (1) × L (1)) � (M � N )
∼=−→(L (2) × L (1) × L (1)) � (N � M)

which yields a map of coequalizer diagrams and hence an isomorphism

τ : M ∧L N
∼=−→ N ∧L M.

Using further properties of the linear isometries operad, one can prove that ∧L is also
associative. It is however not quite unital. There is a natural map λ : �∞S0 ∧L M →
M of L-spectra ([5, I, Proposition 8.3]) which is always a weak equivalence ([5, I,
Theorem 8.5]), but not an isomorphism in general. If M = �∞S0—or more generally
any suspension spectrum—λ is an isomorphism; it then follows (using commutativity
and associativity properties of λ) that

λ : �∞S0 ∧L (�∞S0 ∧L M) −→ �∞S0 ∧L M

is an isomorphism for any L-spectrum M .
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The category M of S-modules is defined to be the full subcategory of L[S ] con-
sisting of those objects for which λ is an isomorphism. If M and N are S-modules,
then M ∧L N is an S-module, and we define

M ∧ N ≡ M ∧S N ≡ M ∧L N .

With this smash product, the category of S-modules becomes symmetric monodical.
The categories S , L[S ], and M are all model categories over pointed topologi-
cal spaces—the weak equivalences in all three are the maps inducing isomorphisms
on stable homotopy groups of spectra—and the functors L(?) : S → L[S ] and
�∞S0∧L ? : L[S ] → M are both left adjoints of Quillen equivalences.

Despite the point-set technicalities involved in the construction of S-modules, these
objects can often—without undue effort—be dealt with as flexibly as ordinary topo-
logical spaces. As an example, we provide here a detailed proof of Proposition 5.1;
the proofs of Propositions 5.3 and 5.4 are similar.

To prove Proposition 5.1, start by considering the cofiber C( f � X, X � f ) of the
map

( f � X, X � f ) : �k X � X ∨ X � �k X −→ X � X.

We have a natural isomorphism

ζ f : C( f � X, X � f ) −→ C( f ) � X ∪ X � C( f )

in S (R∞ ⊕ R
∞); this is proved by observing that it holds at the level of prespectra

(by the usual argument for pointed spaces) and then using the fact that spectrification
commutes with all colimits as well as with the external smash product of prespectra.
The space level equivariance of the above isomorphism implies that ζ f is equivariant
in the following sense. The diagram

C( f � X, X � f )
ζ f−−−−→ C( f ) � X ∪ X � C( f )

⏐
⏐
�∼=

⏐
⏐
�∼=

t∗C( f � X, X � f )
t∗ζ f−−−−→ t∗(C( f ) � X ∪ X � C( f ))

is commutative, where the vertical maps are the isomorphisms induced by the switch
maps. This then implies that the isomorphism

L (2) � C( f � X, X � f )
L (2)�ζ f−−−−−−→ L (2) � (C( f ) � X ∪ X � C( f ))

is equivariant.
Now the isomorphism ζ f also behaves well with respect to smash products with

pointed spaces; together with 12.1 and the definition of twisted half-smash products,
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this yields a commutative diagram

(L (1) × L (1)) � C( f � X, X � f )
∼=−−−−→ C(L f � LX, LX � L f )

⏐
⏐
�(L (1)×L (1))�ζ f

⏐
⏐
�ζL f

(L (1) × L (1)) � (C( f ) � X ∪ X � C( f ))
∼=−−−−→ C(L f ) � LX ∪ LX � C(L f ).

(12.2)

Since f is a map of L-spectra, there is also a commutative diagram

C(L f � LX, LX � L f ) −−−−→ C( f � X, X � f )
⏐
⏐
�ζL f

⏐
⏐
�ζ f

C(L f ) � LX ∪ LX � C(L f ) −−−−→ C( f ) � X ∪ X � C( f ).

(12.3)

Finally, there are diagrams

and

whose coequalizers are C( f ∧ X, X ∧ f ) and C( f ) ∧ X ∪ X ∧ C( f ) respectively.
Each top map in these diagrams comes from the action ofL (1)×L (1) onL (2), and
each bottom map comes from the L × L-algebra structure on the respective spectra.
By 12.2 and 12.3, the isomorphisms (L (2) × L (1) × L (1)) � ζ f and L (2) � ζ f

give an isomorphism between the above diagrams and hence a natural isomorphism
from C( f ∧ X, X ∧ f ) to C( f ) ∧ X ∪ X ∧ C( f ). Since L (2) � ζ f is equivariant,
so is this isomorphism.
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