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Abstract This paper continues the study of self-dual axioms on forms, i.e. faithful
amnestic functors, motivated by properties of subobject forms in non-abelian algebra
(which in many cases are Grothendieck bifibrations), and in particular, by properties
of forms of substructures of group-like structures. In this paper we explore axiomatic
origins of this kind, of a hierarchy of contexts introduced by M. Grandis for his pro-
jective approach to non-abelian homological algebra. This reveals new links between
those contexts and the theory of factorization systems. Among other things, we show
that a Grandis exact category is the same as an Isbell bicategory whose form (fibration)
of projections is isomorphic to the form (opfibration) of injections.

Keywords Grothendieck bifibration · Factorization system · Ex4-category ·
Exact form · Universalizer

1 Introduction

The aim of this series of papers is to study duality phenomena in various parts of non-
abelian algebra, which is revealed by replacing the standard context of a category, with
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that of a category C equipped with a form F over C, i.e. a faithful amnestic functor
F to C. In some sense, the context of a category equipped with a form is a suitable
refinement of the context of a lattice-ordered bicategory introduced in [13] for a similar
purpose, and which, while effective for “abelian algebra” (leading to the notion of an
abelian category), turned out to be less effective for a self-dual treatment of topics from
“non-abelian algebra”, such as, say, isomorphism theorems and homological diagram
lemmas for non-abelian groups—in spite of the attempt by Wyler [14]. Before we
can begin to use forms in developing a self-dual treatment of such topics, we need
to organize a suitable system of dual axioms on a form. These axioms will be found
by establishing “classification theorems”—theorems which classify, via axioms on
forms, different types of categories, or structures on categories, that are encountered
in modern categorical algebra. Several such classification theorems were obtained in
[8], which gave rise to this series of papers, as well as in the first paper [9] from the
series. In the present paper, relying on results obtained in [9], we extend this collection
of theorems with several new such theorems. These theorems identify dual axioms
which are inherent in the exactness axioms considered by Grandis in [4–6]. Examples
of forms which satisfy some or all of these new axioms include the forms of normal
subobjects over various categories of algebras (see Sect. 7), as well as the form of
subobjects over any normal category [10], e.g. the category of groups.

2 Preliminaries

We begin by recalling some basic notions and notation/terminology from [9], and
introducing some new ones, required for the present paper. Consider a form F : B →
C. As usual, the fibre of F at an object X in C, written as F−1(X), is the ordered
set (class) given by the subcategory of B consisting of those objects which by F are
mapped to X , and those morphisms which by F are mapped to the identity morphism
1X . We write 1X (and sometimes simply 1) for the upper bound of F−1(X), when it
exists, and 0X (or simply 0) for the lower bound, again when it exists. We say that a
form is locally bounded if each of its fibres have both upper and lower bounds. When
a morphism f : X → Y has a cocartesian lifting at an object A ∈ F−1(X), the
codomain of this cocartesian lifting will be denoted by f A (and sometimes by f · A).
Dually, when f has a cartesian lifting at B ∈ F−1(Y ), the domain of this lifting will
be denoted by B f (and sometimes by B · f ). When we say that B f (or f A) is defined
we are making a claim/assumption that the object which it is supposed to represent
exists, i.e. the (co)cartesian lifting of f at B (at A) exists.

The following lemmas are consequences of standard properties of (co)cartesian
liftings of morphisms:

Lemma 2.1 Consider two morphisms f : X → Y and g : Y → Z, and an object
A ∈ F−1(X). If f · A is defined, then g · ( f · A) is defined if and only if (g ◦ f ) · A
is defined, and g · ( f · A) = (g ◦ f ) · A when they are defined. Dually, for any object
B ∈ F−1(Z), if B · g is defined then (B · g) · f is defined if and only if B · (g ◦ f ) is
defined, and (B · g) · f = B · (g ◦ f ) when they are defined.
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Lemma 2.2 Consider a morphism f : X → Y and two objects A1, A2 ∈ F−1(X). If
both f · A1 and f · A2 are defined, then A1 � A2 implies f · A1 � f · A2. Dually, for
any two objects B1, B2 ∈ F−1(Y ), if both B1 · f and B2 · f are defined, then B1 � B2
implies B1 · f � B2 · f .

Henceforth in this section we work in a category C equipped with a form F which
is bounded in the following sense:

Definition 2.3 A form F over a category C is said to be bounded when it is locally
bounded and for any morphism f : X → Y in C, both f · 1X and 0Y · f are defined.

In a bounded form F , a left universalizer of an object B ∈ F−1(Y ) is a morphism
f : X → Y which is terminal with the property that f ·1X � B, i.e. it has this property
and for any other morphism f ′ : X ′ → Y having the same property f ′ · 1X ′ � B,
there exists a unique morphism x : X ′ → X such that f ′ = f x . Similarly, a right
universalizer of an object A ∈ F−1(X) is a morphism f : X → Y which is initial
with the property that A � 0Y · f , i.e. it has this property and for any other morphism
f ′ : X → Y ′ having the same property A � 0Y

′ · f ′, there exists a unique morphism
y : Y → Y ′ such that f ′ = y f .

The notion of a bounded form is self-dual, in the sense that a form F : B → C is
bounded if and only if the dual form Fop : B

op → C
op is bounded. In a similar sense,

the notion of a left universalizer is dual to the notion of a right universalizer: f is a
left universalizer of B, in a form F : B → C, if and only if f is a right universalizer
of B in the dual form Fop : B

op → C
op.

Lemma 2.4 Any left universalizer f of an object B ∈ F−1(Y ) is necessarily a
monomorphism, and f ′ is another left universalizer of the same object B if and
only if f ′ = f i for some isomorphism i. Dually, a right universalizer of an object
A ∈ F−1(X) is an epimorphism, and if f is a right universalizer of A then f ′ is also
a right universalizer of A if and only if f ′ = j f for an isomorphism j.

We write lun(B) : Lun(B) → Y for any given left universalizer of B ∈ F−1(Y ),
when it exists, and we say that lun(B) is defined to claim/assume that B has a left
universalizer. Similarly, for right universalizers we use the notation run(A) for the
morphism, and Run(A) for its codomain.

The proof of the above lemma uses the fact that if f : X → Y is an isomorphism
then f · 1X = 1Y (and dually, 0Y · f = 0X ). In general, a morphism f : X → Y such
that f · 1X = 1Y will be called a thick morphism. Dually, when 0Y · f = 0X we say
that f is thin.

A class C of morphisms is said to be a left class if it has the following properties:

• C contains all identity morphisms.
• C is closed under composition.
• If f g ∈ C then g ∈ C.

Dually, C is said to be a right class if the first two conditions above hold, and
f g ∈ C always implies f ∈ C. Notice that the class of split monomorphisms is
the smallest left class, and the class of split epimorphisms is the smallest right class.
Note also that a left/right class always contains all isomorphisms. The class of all
mono(/epi)morphisms is another example of a left(/right) class.
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Lemma 2.5 The class of all thin morphisms is a left class, and dually, the class of all
thick morphisms is a right class.

An object A ∈ F−1(X) is said to be normal when A = 0Y · f for some morphism
f : X → Y in C. Dually, an object B ∈ F−1(Y ) is said to be conormal when
B = f · 1X for some morphism f : X → Y .

Lemma 2.6 Consider a left universalizer f : X → Y of an object B ∈ F−1(Y ).
Then:

• f is also a left universalizer of f · 1X .
• B is conormal if and only if f · 1X = B.
• f is an isomorphism if and only if B = 1Y .

Dually, if f is a right universalizer of an object A ∈ F−1(X), then f is also a right
universalizer of 0Y · f and A is normal if and only if 0Y · f = A, and finally, f is an
isomorphism if and only if A = 0X .

Amorphism f : X → Y is said to be an embedding if for any two conormal objects
A1, A2 ∈ F−1(X) we have

f · A1 � f · A2 ⇒ A1 � A2.

Dually, f is a coembedding if for any two normal objects B1, B2 ∈ F−1(Y ) we have

B1 · f � B2 · f ⇒ B1 � B2.

Lemma 2.7 The class of all (co)embeddings is a left (right) class.

3 The general theory

We recall from [3] (see also [1]) some notation and some very basic notions and results
from the theory of factorization systems. A morphism e is said to be orthogonal to a
morphism m, written as e ↓ m, if any commutative square of solid arrows

• e

v

•
ud

•
m

•
(1)

admits a unique diagonal fill-in d which makes the two triangles inside the square
commute. For two classes E andM of morphisms, we write E ↓ M when e ↓ m for
all e ∈ E and m ∈ M. Then, for a class C of morphisms,

C↓ = {m | C ↓ {m}}, C↑ = {e | {e} ↓ C}.

A prefactorization system is a pair (E,M) such that E = M↑ and E↓ = M. A
factorization system is a prefactorization system (E,M) such that any morphism
f decomposes as f = me where e ∈ E and m ∈ M. Already in a prefactorization
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system both classes E andM contain isomorphisms and are closed under composition.
A factorization system can be equivalently defined as a pair (E,M) such that E ↓ M
and in addition:

• both E andM contain identity morphisms and are closed under composition with
isomorphisms;

• any morphism f decomposes as f = me where e ∈ E and m ∈ M.

Lemma 3.1 In a category equipped with a bounded form, we have e ↓ m in any of
the following cases:

• when e is thick and m is a left universalizer;
• when e is a right universalizer and m is thin.

Proof Suppose e is thick andm is a left universalizer. Consider a commutative square
(1) of solid arrows. Since m is a monomorphism (Lemma 2.4), it suffices to show that
md = u for some morphism d. Since m is a left universalizer of m · 1 (Lemma 2.6),
the existence of such d will follow from the inequality u · 1 � m · 1. Since e is thick,
we have: u · 1 = u · (e · 1) = (u ◦ e) · 1 = (m ◦ v) · 1 = m · (v · 1) (Lemma 2.1). At
the same time, m · (v · 1) � m · 1 (Lemma 2.2). Orthogonality of e and m in the case
when e is a right universalizer and m is thin follows by duality.

Throughout the rest of this paper, for a bounded form F , we write RF to denote
the class of right universalizers and LF to denote the class of left universalizers.

Definition 3.2 A bounded form F over a category C is said to be

• a pre-exact form when every conormal object has a left universalizer and every
normal object has a right universalizer;

• an orthogonal form when it is a pre-exact form and RF ↓ LF ;
• a closed orthogonal formwhen it is an orthogonal form and in additionRF = R↓↑

F

and LF = L↑↓
F ;

• an exact form when it is a pre-exact form and (RF ,LF ) is a prefactorization
system.

Proposition 3.3 For any pre-exact form F we have:L↑
F is the class of thickmorphisms

and R↓
F is the class of thin morphisms.

Proof Already by Lemma 3.1, L↑
F contains all thick morphisms. If a morphism f :

X → Y belongs to L↑
F , then we obtain a commutative diagram

X
f

Y

1Yd

Lun( f 1)
lun( f 1)

Y

This gives that lun( f 1) is a split epimorphism. As lun( f 1) is also a monomorphism
(Lemma 2.4), we obtain that it is an isomorphism. Then f 1 = 1 (Lemma 2.6), showing
that f is thick. Dually, R↓

F is the class of thin morphisms.
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Note that as a consequence of the above proposition, we get that for a pre-exact
form F the following conditions are equivalent:

(i) F is an orthogonal form.
(ii) Every left universalizer is thin.
(iii) Every right universalizer is thick.

We now characterize orthogonality of forms via existence of special factorizations of
morphisms:

Theorem 3.4 For any bounded form F over a category C the following conditions
are equivalent:

(i) F is an orthogonal form.
(ii) Each morphism f : X → Y in C admits a factorization f = mθe where m is a

left universalizer of f 1 and e is a right universalizer of 0 f .

Proof (i) ⇒ (ii): Suppose (i) holds. Consider any morphism f : X → Y in C. Since
f 1 is conormal, it has a left universalizer. Dually, 0 f has a right universalizer. We then
obtain a commutative diagram, where the morphisms u and v arise from the universal
properties of the given left and right universalizers, respectively:

X
run(0 f )

u f

Run(0 f )

v

Lun( f 1)
lun( f 1)

Y

Now, orthogonality produces a diagonal fill-in:

X
run(0 f )

u

Run(0 f )

vθ

Lun( f 1)
lun( f 1)

Y

The zigzag in the above diagram is the desired factorization of f .
(ii) ⇒ (i): Suppose that (ii) holds. For a conormal object B = f · 1X , the left

universalizer of B is the morphism m in the factorization of f given by (ii), which
shows that every conormal object has a left universalizer. Dually, every normal object
has a right universalizer. So F is a pre-exact form. With Proposition 3.3 in mind, to
show that F is an orthogonal form, it suffices to show that any left universalizer is
thin. If f is a left universalizer, then f is a left universalizer of f 1 (Lemma 2.6),
which forces the composite θe in the factorization f = mθe given by (ii) to be an
isomorphism (Lemma 2.4). This implies that e is a split monomorphism. Since e is a
right universalizer, it is also an epimorphism (Lemma 2.4). Hence e is an isomorphism.
Now, e is a right universalizer of 0 f , and so 0 f = 0 (Lemma 2.6), showing that f is
thin. 	
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Closed orthogonal and exact forms can be also characterized via presence of suitable
factorizations of morphisms, as the two theorems below show. In fact, as we will see,
much more can be said in these two cases. We state both theorems before presenting
their proofs:

Theorem 3.5 For any bounded form F over a category C the following conditions
are equivalent:

(i) F is a closed orthogonal form.
(ii) Each morphism f : X → Y in C admits a factorization f = mθe where m is

a thin left universalizer, e is a thick right universalizer, and θ is both thick and
thin.

(iii) Each morphism f : X → Y in C admits a factorization f = mθe where m is a
left universalizer of f 1, e is a right universalizer of 0 f , and θ is both thick and
thin.

(iv) F is an orthogonal form with both RF and LF closed under composition.
(v) Every conormal object has a left universalizer which is a thin embedding, and

dually, every normal object has right universalizer which is a thick coembedding.
(vi) F is an orthogonal form and the pairs (RF ,R↓

F ) and (L↑
F ,LF ) are factorization

systems.

Theorem 3.6 For any bounded form F over a category C the following conditions
are equivalent:

(i) F is an exact form.
(ii) F is a closed orthogonal form and any morphism in C that is both thick and thin

is an isomorphism.
(iii) Each morphism f : X → Y in C admits a factorization f = me where m is a

thin left universalizer, and e is a thick right universalizer.
(iv) Each morphism f : X → Y in C admits a factorization f = me where m is a

left universalizer of f 1, and e is a right universalizer of 0 f .
(v) F is a pre-exact form and the pair (RF ,LF ) is a factorization system.

Proof of Theorem 3.5 (i)⇒(ii): Suppose F is a closed orthogonal form. By Theo-
rem 3.4, we have a factorization

X

e=run(0 f )

f
Y

Run(0 f )
θ

Lun( f 1)
lun( f 1)=m

Since the form is orthogonal, e is thick andm is thin (Proposition 3.3).Wewould like to
show that θ is both thick and thin. Since θ1 is conormal, it has a left universalizer. Since
LF = L↑↓

F , a composite of two left universalizers is a left universalizer. In particular,
the composite m ◦ lun(θ1) is a left universalizer. Then, it is a left universalizer of
(m ◦ lun(θ1)) · 1 (Lemma 2.6). Since lun(θ1) · 1 = θ1 (Lemma 2.6), we have:

(m ◦ lun(θ1)) · 1 = m · (lun(θ1) · 1) = m · θ1 = (m ◦ θ) · 1
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(Lemma 2.1). Now, since e is thick, we further have:

(m ◦ θ) · 1 = (m ◦ θ) · (e1) = (m ◦ θ ◦ e) · 1 = f 1

(Lemma 2.1). Thus, m ◦ lun(θ1) is a left universalizer of f 1. But so is m, and hence
lun(θ1) is an isomorphism (Lemma 2.4). Then, θ1 = 1 (Lemma 2.6). This shows that
θ is thick. By a dual argument, θ is also thin.

(ii)⇒(iii): Suppose (ii) holds. Consider a factorization

X

e

f
Y

•
θ

•
m

where e is a thick right universalizer, m is a thin left universalizer, and θ is both thick
and thin. Since both e and θ are thick, so is their composite θe (Lemma 2.5). Then
m1 = m · (θe · 1) = (mθe) · 1 = f 1 (Lemma 2.1). So m is a left universalizer of
m1 = f 1 (Lemma 2.6). Dually, e is a right universalizer of 0 f .

(iii)⇒(iv): Suppose (iii) holds. Then F is an orthogonal form by Theorem 3.4, and
so by Proposition 3.3, every left universalizer is thin and every right universalizer is
thick. We show that LF is closed under composition. Consider a composite m2m1 of
two left universalizers, and a commutative diagram of solid arrows

•

e=run(0m2m1)

m1 • m2 •

Run(0m2m1)
θ

Lun(m2m11)

d2 d1
lun(m2m11)=m

obtained by (iii). Since e is thick and θ is thick, so is their composite θe (Lemma 2.5).
The orthogonality θe ↓ m2 (Lemma 3.1) produces amorphism d1 such thatm2d1 = m
and d1θe = m1. Next, the orthogonality θe ↓ m1 produces a morphism d2 such
that d2θe is an identity morphism, and m1d2 = d1. Altogether, since the m’s are
monomorphisms (Lemma 2.4), we obtain that θe is an isomorphism (with inverse d2).
Then, sincem2m1 = mθe andm is a left universalizer,m2m1 is also a left universalizer
(Lemma 2.4). This shows that LF is closed under composition. Dually, RF is closed
under composition.

(iv)⇒(v): Suppose that (iv) holds. Consider a left universalizer f : X → Y and
two conormal objects A1, A2 ∈ F−1(X). Then A1 = lun(A1) ·1 and A2 = lun(A2) ·1
(Lemma 2.6). Suppose f · A1 � f · A2. By (iv), the composite f lun(A2) is a left
universalizer, and hence it is a left universalizer of ( f lun(A2)) · 1 (Lemma 2.6).
Now, ( f lun(A2)) · 1 = f · (lun(A2) · 1) = f · A2 (Lemma 2.1), and similarly,
( f lun(A1))·1 = f ·A1. So, f ·A1 � f ·A2 implies f lun(A1) = f lun(A2)u for some
morphism u. Since f is a monomorphism (Lemma 2.4), we get lun(A1) = lun(A2)u.
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This in turn gives A1 = lun(A1) ·1 = (lun(A2)u) ·1 = lun(A2) · (u ·1) (Lemma 2.1).
Finally, lun(A2) · (u · 1) � lun(A2) · 1 = A2 (Lemma 2.2) and so A1 � A2. This
shows that any left universalizer is an embedding. Dually, any right universalizer is a
coembedding. Since by (iv) the form is orthogonal, to obtain (v) it remains to apply
Proposition 3.3.

(v)⇒(vi): Suppose (v) holds. Then the form is pre-exact and so by Proposition 3.3,
L↑
F is the class of thick morphisms andR↓

F is the class of thin morphisms. (v) implies

that every left universalizer is thin, and so R↓
F ⊇ LF which is the same as RF ↓

LF . The form F is therefore orthogonal. Consider a morphism f : X → Y . By
Theorem 3.4, it decomposes as f = lun( f 1)◦θ ◦ run(0 f ). We claim that θ ◦ run(0 f )
is thick. Indeed, on the one hand we have f 1 = lun( f 1) · 1 (Lemma 2.6), and on
the other hand, f 1 = (lun( f 1) ◦ θ ◦ run(0 f )) · 1 = lun( f 1) · ((θ ◦ run(0 f )) · 1)
(Lemma 2.1). Since lun( f 1) is an embedding, it follows that 1 � (θ ◦ run(0 f )) · 1,
and hence 1 = (θ ◦run(0 f )) ·1, showing that θ ◦run(0 f ) is thick. So anymorphism f
decomposes as a thick morphism followed by a left universalizer, which together with
Lemma 3.1 and the fact that L↑

F and LF contain identity morphisms and are closed

under composition with isomorphisms (Lemmas 2.4 and 2.5), show that (L↑
F ,LF ) is

a factorization system. Dually, (RF ,R↓
F ) is a factorization system.

(vi)⇒(i): When (L↑
F ,LF ) and (RF ,R↓

F ) are factorization systems we have LF =
L↑↓
F and RF = R↓↑

F . 	

Proof of Theorem 3.6 (i)⇒(ii): Any exact form is a closed orthogonal form. When
F is pre-exact, R↓

F ∩ L↑
F is the class of morphisms which are both thick and thin

(Proposition 3.3).When (RF ,LF ) is a prefactorization system,R↓
F ∩L↑

F = LF ∩RF

is the class of isomorphisms.
(ii)⇒(iii) follows from Theorem 3.5.
(iii)⇒(iv) by the same argument as the one used to prove (ii)⇒(iii) in Theorem 3.5,

with θ there to be taken as an identity morphism.
(iv)⇒(v): Suppose (iv) holds. ByTheorem3.5, F is a closed orthogonal form and so

it is pre-exact and we have LF = L↑↓
F andRF ⊆ L↑

F . The existence of factorizations
described in (iv) leaves to show that (RF ,LF ) is a pre-factorization system, and for
this it suffices to show thatL↑

F ⊆ RF . Recall from Proposition 3.3 thatL↑
F is the class

of thick morphisms. So we must show that any thick morphism is a right universalizer.
If a morphism f : X → Y is thick, then since f 1 = 1 the morphism m in the
factorization f = me given by (iv) is an isomorphism (Lemma 2.6). Since in the same
factorization e is a right universalizer, we get that f = me is a right universalizer
(Lemma 2.4).

(v)⇒(i) since any factorization system is a prefactorization system. 	


4 The binormal case

As defined in [9], a form is binormal when in each fibre every object is both normal
and conormal. In such a form, to say that every (co)normal object has a right (left)
universalizer, is the same as to say that any object (in a fibre) has a right (left) univer-
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salizer. In this case we also say that the form admits right (left) universalizers. Notice
that a binormal form is bounded if and only if it is locally bounded and is a bifibration.

According to Corollary 3.2 in [9], there is a bijection between the following struc-
tures on any given category C:

ideals N of null morphisms in C

admitting kernels and cokernels
≈ isomorphism classes of binormal

pre-exact forms F over C
(2)

Here, by an ideal N of null morphisms is meant a class N of morphisms which is
closed under composition with morphisms in C. This notion was first introduced and
studied in [2,12] (and its additive version, independently in [11]), and gives the basis
for the work of M. Grandis on categorical foundation of homological algebra (see
[4–6]). Kernels and cokernels relative to an ideal are defined in a similar way as in the
case of a pointed category (where the ideal has exactly one morphism from any object
X to any object Y ):

• A kernel (or more elaborately, an N -kernel) of a morphism g : B → C in C is a
morphism k : A → B such that gk ∈ N and k is terminal with this property, i.e. if
gk′ ∈ N for some morphism k′ : A′ → B then k′ = ku for a unique morphism
u : A′ → A.

• A cokernel (or more elaborately, anN -cokernel) of a morphism f : A → B in C

is a morphism c : B → C such that c f ∈ N and c is initial with this property, i.e. if
c′ f ∈ N for some morphism c′ : B → C ′ then c′ = uc for a unique morphism
u : C → C ′.

The bijection above is given by assigning to an isomorphism class of a binormal
bounded form F admitting left and right universalizers, the classN = F∗ of F-trivial
morphisms, i.e. those morphisms n : X → Y for which n · 1X = 0Y (or, equivalently,
1X = 0Y · n). It then turns out that a kernel k of a morphism f is the same as a left
universalizer of 0 f , and dually, a cokernel c of f is the same as a right universalizer
of f 1. Moreover, since any object in a fibre is both normal and conormal, it follows
that the class of left universalizers coincides with the class of kernels, and the class of
right universalizers coincides with the class of cokernels.

In [9], the bijection (2) is obtained as a restriction of a bijection

ideals N of null morphisms in C

admitting “enough exact sequences”
≈ isomorphism classes of binormal

bounded forms F over C

defined in the same way as (2): it assigns to an isomorphism class of a binormal
bounded form F the class N = F∗ of F-trivial morphisms. As remarked in [9],
in this case still the class of left/right universilzers coincides with the class of F∗-
kernels/-cokernels. The property of admitting “enough exact sequences” on an ideal
in the bijection above asks that each morphism g : B → C is part of a sequence

A
f

B
g

C
h

D
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which is exact at B and at C (in the sense of [4]). Recall that exactness of the above
sequence at, say B, means that g f ∈ N and for any two morphisms f ′ : A′ → B and
g′ : B → C ′, if g f ′ ∈ N and g′ f ∈ N then g′ f ′ ∈ N . For instance, the sequence
above is exact as soon as f is an N -kernel and h is an N -cokernel of g.

Lemma 4.1 In a category C equipped with a binormal pre-exact form F, a morphism
f : X → Y is thin if and only if it is F∗-mono in the sense of [6], i.e. f has a kernel
which belongs to F∗. Dually, f is thick if and only if f is F∗-epi in the sense of [6],
i.e. f has a cokernel which belongs to F∗.

Proof Suppose f is thin. Then its kernel k is a left universalizer of 0 f = 0. This
implies that k1 = 0, i.e. k ∈ F∗. Conversely, if k ∈ F∗ then, since 0 f is conormal (as
F is binormal), 0 = k1 = 0 f and so f is thin. 	


Recall that a semiexact category or ex1-category in the sense of Grandis [4,6]
is a pair (C,N ) where C is a category, and N is an ideal of null morphisms in C

admitting kernels and cokernels, such thatN is a closed ideal, i.e. any morphism from
N factors through an isomorphism which belongs to N . By Theorem 1.5.4 in [6],
this latter additional requirement is equivalent to every kernel being N -mono, and is
also equivalent to every cokernel beingN -epi. So in view of the above lemma, in our
language this is stating that a binormal pre-exact form defines a closed ideal if and only
if every left universalizer is thin, and if and only if every right universalizer is thick.
Thanks to Proposition 3.3, we know that for a pre-exact form the last two conditions
are equivalent to orthogonality, and so we obtain:

Theorem 4.2 A binormal bounded form F over a category C is an orthogonal form
if and only if the pair (C, F∗) is a Grandis semiexact category (which is the same as
a Grandis ex1-category).

After this theorem, the implication (i)⇒(ii) of Theorem 3.4 in the binormal case
becomes the basic known result that in a semiexact category any morphism has a
normal factorization—see Section 1.5.5 in [6].

An ex2-category in the sense of Grandis [4,6] is an ex1-category in which the class
of kernels and the class of cokernels are both closed under composition. So, from
Theorem 3.5 we reobtain the following result included in Corollary 3.2 of [9]:

Theorem 4.3 A binormal bounded form F over a category C is a closed orthogonal
form if and only if the pair (C, F∗) is a Grandis ex2-category.

The equivalences (iii)⇔(iv)⇔(v) of Theorem 3.5 are established in Section 2.1.3
of [6], in the context of semiexact categories.

An exact category or an ex4-category in the sense of Grandis [4,6] is a semiexact
category in which any morphism f factories as f = me where m is a kernel of a
cokernel of f and e is a cokernel of a kernel of f . In the language of the underlying
binormal form, this is the same as to say that m is a left universalizer of f 1 and e is a
right universalizer of 0 f . So, Theorem 3.6 gives:

Theorem 4.4 A binormal bounded form F over a category C is an exact form if and
only if the pair (C, F∗) is a Grandis exact category (which is the same as a Grandis
ex4-category).
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In the context of semiexact categories, the equivalence (iv)⇔(ii) of Theorem 3.6 is
made explicit in Section 2.2.6 of [6].

Thus we have the following hierarchy of bijections:

ideals of null morphisms
admitting enough exact sequences ≈ isomorphism classes of

binormal bounded forms

ideals of null morphisms
admitting kernels and cokernels

∪

≈ isomorphism classes of
binormal pre-exact forms

∪

ex1-category structures
(= semiexact category structures)

∪

≈ isomorphism classes of
binormal orthogonal forms

∪

ex2-category structures

∪

≈ isomorphism classes of
binormal closed orthogonal forms

∪

ex4-category structures
(= exact category structures)

∪

≈ isomorphism classes of
binormal exact forms

∪

(3)

5 Grandis exact categories via Isbell bicategories

As we saw in Theorem 3.6, any exact form gives rise to a proper factorization system,
i.e. a factorization system (E,M) where E is a class of epimorphisms and M is a
class ofmonomorphisms [3].We nowanswer the question:which proper factorizations
systems arise from binormal exact forms?

Theorem 5.1 For any category C there is a bijection

proper factorization systems
(E,M) such that the form
of E-quotients is isomorphic
to the form of M-subobjects

≈ isomorphism classes of
binormal exact forms F over C

given by assigning to an isomorphism class of a binormal exact form F the factoriza-
tion system (E,M) where E is the class of right universalizers for F and M is the
class of left universalizers for F.

Here, the form of M-subobjects is the usual opfibration of M-subobjects and the
form of E-quotients is the usual fibration of E-quotients (see [9]). Since these two
constructions are dual to each other, we only recall explicitly one of them. In the
form F ofM-subobjects, the fibre F−1(X) at an object X is given by the ordered set
(class) ofM-subobjects, and for any morphism f : X → Y and object A ∈ F−1(X),
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a subobject of X represented say by a morphism m ∈ M, the subobject f · A of Y is
the one given by the M-part m′ of the (E,M)-factorization f m = m′e of f .

Proof It was shown in [9] that an isomorphism class of binormal exact forms is
uniquely determined both by the class M of left universalizers and the class E of
right universalizers for any (and hence all) forms in the class. In detail, such F can
be recovered back, up to an isomorphism of forms, as the form of M-subobjects
and at the same time, as the form of E-quotients. Moreover, by Theorem 3.6 these
classes E and M form a proper factorization system (E,M). Since the form of
M-subobjects and the form of E-quotients are both isomorphic to F , they are also
isomorphic to each other. To prove the theorem it remains to show that any proper
factorization system (E,M) where the form of E-quotients is isomorphic to the form
ofM-subobjects, arises in this way from a binormal exact form F . So let (E,M) be
such factorization system. Then, as shown in [9], E is the class of right universalizers
for the form F of E-quotients, which is normal, locally bounded below (i.e. each fibre
has a bottom element), is a fibration and admits right universalizers. Now, since the
form of E-quotients is isomorphic to the form of M-subobjects, the same form F is
conormal, locally bounded above, is an opfibration and admits left universalizers—
the class of left universalizers being the class M. Thus F is binormal, and exact by
Theorem 3.6. 	


Recall that an Isbell bicategory [7] is a category equipped with a class E of mor-
phisms called projections and a classM of morphisms called injections, such that the
pair (E,M) is a proper factorization system on C. The above theorem together with
Theorem 4.4 lead to the following conclusion:

Corollary 5.2 A Grandis exact category is the same as an Isbell bicategory in which
the form of E-quotients is isomorphic to the form ofM-subobjects, where E is the class
of projections andM is the class of injections of an Isbell bicategory (which become
the classes of cokernels and kernels, respectively, of the Grandis exact category).

After this, one may ask: which proper factorization systems arise from exact forms
that are not necessarily binormal? The answer is all, as we now show:

Proposition 5.3 For any proper factorization system (E,M) on a category C there
exists an exact form F over C such that E is the class of right universalizers and M
is the class of left universalizers for F.

Proof First, we construct the domainB of F . Objects ofB are triples (X, E, M)where

• X is an object of C,
• E is a class of morphisms of C having the following property: either E = ∅ or
there exists a morphism e ∈ E (which we will call a generator of E) such that the
domain of e is X , and E is the class E = 〈e] of all composites ue where u is any
morphism in C,

• M is a class of morphisms of C having the following property: either M = ∅ or
there exists a morphism m ∈ M (which we will call a generator of M) such that
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the codomain of m is X , and M is the class M = [m〉 of all composites mv where
v is any morphism in C,

• Exactly one of E and M is the empty set.

A morphism f : (X, E, M) → (X ′, E ′, M ′) in B is a morphism f : X → X ′ in C

such that the following conditions hold:

• for any morphism m ∈ M we have f m ∈ M ′,
• for any morphism e ∈ E ′ we have e f ∈ E ,
• if M = ∅ and E ′ = ∅ then f ∈ M ′ or f ∈ E .

It is a routine to verify that composition and identity morphisms can be defined in
B via composition and identity morphisms in C. Then, mapping a morphism f :
(X, E, M) → (X ′, E ′, M ′) to the morphism f : X → X ′ defines a faithful functor
F : B → C. In fact, F is even amnestic, and hence it is a form. In each fibre F−1(X),
the top element 1X is given by the triple (X, ∅, [1X 〉), while the bottom element is
given by the triple (X, 〈1X ], ∅). So, F is locally bounded. It is not difficult to show
that F is in fact a bounded form where for each morphism f : X → Y we have
f · 1X = (Y, ∅, [m〉) and and 0Y · f = (X, 〈e], ∅) where m and e constitute an
(E,M)-factorization f = me of f . Then, it is again not difficult to show that m is
a left universalizer of f · 1X and e is a right universalizer of 0Y · f , and hence F is
an exact form. We also get at once that every morphism in M is a left universalizer
and every morphism in E is a right universalizer. Moreover, we get thatM is the class
of left universalizers of conormal objects and E is the class of right universalizers of
normal objects. Via Lemma 2.6 this implies thatM is the class of all left universalizers
and E is the class of all right universalizers. 	


6 Exactness up to a class of morphisms and Grandis ex3-categories

In analogy with the terminology used in [4,6], we call a morphism f in a category
equipped with a bounded form exact up to �, where � is a class of morphisms in the
category, if f admits a factorization f = mθe where m is a left universalizer of f 1,
e is a right universalizer of 0 f , and θ ∈ �.

By Theorems 3.4, 3.5 and 3.6, a bounded form over a category is

• orthogonal, if and only if any morphism in the category is exact up to the class of
all morphisms;

• closed orthogonal, if and only if any morphism in the category is exact up to the
class of morphisms which are both thick and thin;

• exact, if and only if anymorphism in the category is exact up to the class of identity
morphisms, or equivalently, up to the class of isomorphisms.

In view of the fourth bijection in the table (3), the ex3-categories or homological
categories in the sense of Grandis [4,6] are precisely those categories equipped with
a binormal closed orthogonal form in which any morphism f which decomposes as
f = em wherem is a left universalizer and e is a right universalizer such that 0e � m1,
is exact up to the class of identity morphisms.
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7 Some examples

We begin by recalling some examples from [6]. The forms of normal subobjects
over the following pointed categories are binormal and orthogonal, but not closed
orthogonal:

• the category of groups, where normal subobjects are given by normal subgroups;
• the category of rings without unit, where normal subobjects are given by ideals.

The forms of normal subobjects in the following pointed categories are binormal
closed orthogonal, with the corresponding ex2-category being homological, but not
exact:

• the category of lattices and Galois connections, where normal subobjects are given
by principal down-closed sets;

• the category of commutative monoids, where normal subobjects are given by
submonoids H that satisfy [a + h ∈ H ∧ h ∈ H ] ⇒ [a ∈ H ];

• the category of topological vector spaces (over a given topological field), where
normal subobjects are given by closed linear subspaces;

• the category of Banach spaces (over the field of reals or complex numbers) and
bounded linear mappings, where normal subobjects are given by closed linear
subspaces;

• the category of pointed sets, where normal subobjects are given by subsets con-
taining the base point.

In any abelian category, the form of normal subobjects (which are the same as subob-
jects) is binormal exact. The form of subobjects in any normal category in the sense
of [10] is exact, but in general is not binormal; in fact, to ask binormality would be
equivalent to ask that the normal category is abelian. A principal example of a non-
abelian normal category is the category of groups (where subobjects are given by
subgroups). In these cases, any object in a fibre is still conormal. A natural example
of an exact form where this is no longer the case is the form of additive subgroups
of unitary rings, over the category of unitary rings. In this form, for a unitary ring R,
the fibre F−1(R) consists of additive subgroups of R, and a left/right action by a ring
homomorphism is given by taking the inverse/direct image of an additive subgroup
along the homomorphism. Then, conormal objects are subrings, while normal objects
are ideals. But in fact, non-binormal examples of exact forms abound, as witnessed
by Proposition 5.3.

We conclude by exploring a class of examples of forms, where bounded forms are
automatically binormal and closed orthogonal forms, and a form is exact only in the
trivial cases.

Consider an ordered set O = (O,�). By an interval in O we mean a nonempty
subset I of O which satisfies one of the following conditions:

• There exists a ∈ O such that I = {x ∈ O | a � x}.
• There exist a, b ∈ O such that I = {x ∈ O | a � x � b}.
• There exists b ∈ O such that I = {x ∈ O | x � b}.

Given two intervals I and J we write I � J when for any x ∈ I there exists y ∈ J
such that x � y, and at the same time, for any y ∈ J there exists x ∈ I such that
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x � y. It is easy to verify that this gives an order relation on the set of all intervals in
O . We denote this ordered set, regarded as a category, by O ′. Next we define a form
F over O ′. The domain of F is also an ordered set. Its objects are pairs (I, x) where
I ∈ O ′ and x ∈ I , where (I, x) � (J, y) when I � J and x � y. Then, F maps a
pair (I, x) to its first component I . We call F the form of intervals of O . Thus, in this
form, the fibre F−1(I ) at an interval I is the interval I with the order induced from
O .

Theorem 7.1 (i) The form of intervals of an ordered set O is locally bounded if and
only if each connected component of O has top and bottom elements.

(ii) The form of intervals of an ordered set O is bounded if and only if each con-
nected component of O is a bounded lattice. Such form is always a binormal
closed orthogonal form, and moreover, the corresponding Grandis ex2-category
is homological.

(iii) The form of intervals of an ordered set O is bounded and has every morphism
(in the codomain of the form) exact up to the class of those morphisms which are
at the same time embeddings and coembeddings, if and only if each connected
component of O is a bounded modular lattice.

(iv) The form of intervals of an ordered set O is bounded and has every nontrivial
morphism (in the codomain of the form) exact up to the class of identity mor-
phisms, if and only if each connected component of O is a bounded linearly
ordered set.

(v) The form of intervals of an ordered set O is exact if and only if O is discrete,
i.e. each connected component of O is a singleton.

Proof (i) Local boundedness means that each interval has top and bottom elements.
Any interval in O lies in one of its connected components, and so if that connected
component C has top and bottom elements, then so will the interval. To prove the
converse, consider a connected component C and an element a in C . We claim that
the top element u of the interval {x | a � x} is the top element of C . Take any other
element b in C . Then we can form a zigzag in C that connects a and b, which can be
displayed using a Hasse diagram as follows:

c1 c3 · · · cn

a = c0 c2 · · ·
···

cn+1 = b

Notice that the top element in each interval {x | ci � x} must be the same as the top
element of the interval {x | ci+1 � x}. This will yield b � u, proving that u is the top
element in C . Dually, each C has a lower bound.

(ii) Suppose the form F of intervals of an ordered set O is bounded. Then, F is
locally bounded and so by (i), each connected component C of O has top and bottom
elements. Let us denote them by 1 and 0, respectively. Let a, b ∈ C . Consider the
morphism

f : [0, a] → [b, 1]
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in the codomain of F , where [i, j] denotes the interval [i, j] = {x | i � x � j}. By
the definition of the element f · 1[0,a] = f · a, this element is smallest among those
elements c ∈ [b, 1] for which a � c. Since [b, 1] contains all elements of O which
are greater or equal to b, we conclude f ·a = a∨b. Dually, b · f = a∧b. This shows
that C is a bounded lattice. Conversely, suppose each connected component C of O
is a bounded lattice. Then it is easy to see that each interval I has the form I = [i, j]
for some i, j,∈ O . Now, for a morphism

f : [i, j] → [i ′, j ′]

in the codomain of F , it is a simple routine to verify that j∨i ′ = f · j and j∧i ′ = i ′ · f .
Notice that the required meets and joins exist since the presence of the morphism f
above forces j and i ′ to be in the same connected component. Thus, F is bounded.

Now, assuming that each connected component O is a bounded lattice, we show
that the form of intervals of O is a binormal closed orthogonal form, and the corre-
sponding Grandis ex2-category is homological. Consider an element x ∈ [a, b]. For
the morphism f : [a, x] → [a, b], we have f · x = x ∨ a = x which shows that x is
conormal. Dually, for the morphism g : [a, b] → [x, b], we have x · g = b ∧ x = x
which shows that x is normal. So the form F is binormal. It is easy to see that the f and
the gwe obtained from x are in fact, respectively, the left and the right universalizers of
x . This makes it obvious that the left universalizers are thin embeddings, and the right
universalizers are thick coembeddings. So F is a binormal closed orthogonal form,
thanks to Theorem 3.5. It is easy to verify that the corresponding Grandis ex2-category
is homological.

(iii) Suppose the form of intervals of an ordered set O is bounded, or equivalently,
each connected component of O is a bounded lattice. The decomposition of a mor-
phism f : [i, j] → [i ′, j ′] as f = mθe where e is a right universalizer of 0 f and m
is a left universalizer of f 1 is given as follows:

[i, j] f

e

[i ′, j ′]

[ j ∧ i ′, j]
θ

[i ′, j ∨ i ′]
m

Left and right action by θ is defined as follows: θ ·x = x∨i ′ and y ·θ = j∧y. To require
that θ is an embedding and a coembedding is the same as to require that the Galois
connection induced by this left and right action is an isomorphism [ j∧ i ′, j] ≈ [i ′, j∨
i ′]. The requirement that these isomorphisms hold in a given connected component C
of O is precisely the requirement that the “diamond isomorphism theorem” holds in
C , which is well known to be equivalent to modularity of C .

(iv) In the above setting, f is trivial if and only if j∨i ′ = i ′, i.e. if and only if j � i ′.
On the other hand, to ask that θ is an identity morphism is to ask that i ′ � j . Thus,
saying that any nontrivial morphism is exact up to the class of identity morphisms is
equivalent to saying that in each connected component, whenever j � i ′ fails, i ′ � j
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must hold. Notice that we always have a canonical choice of i and j ′, for a given i ′ and
j—for instance, take i to be the bottom element of the given connected component,
and take j ′ to be the its biggest element, both of which exist due to (ii).

(v) Again in the setting of (iii), exactness asks that each θ is an isomorphism, or
equivalently, an identity morphism (note that any isomorphism in the codomain of
F is an identity morphism), and so it asks that for any two elements j and i ′ in the
same connected component of O , we have [ j ∧ i ′, j] = [i ′, j ∨ i ′] (since, similarly as
before, we can always find appropriate i and j ′ for a given i ′ and j). This is equivalent
to each connected component being a singleton. 	
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