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Abstract Recall that Tamarkin’s construction (Hinich, Forum Math 15(4):591–614,
2003, arXiv:math.QA/0003052; Tamarkin, 1998, arXiv:math/9803025) gives us a
map from the set of Drinfeld associators to the set of homotopy classes of L∞
quasi-isomorphisms for Hochschild cochains of a polynomial algebra. Due to results
of Drinfeld (Algebra i Analiz 2(4):149–181, 1990) and Willwacher Invent Math
200(3):671–760, 2015 both the source and the target of this map are equipped with
natural actions of the Grothendieck–Teichmueller group GRT1. In this paper, we use
the result from Paljug (JHRS, 2015, arXiv:1305.4699) to prove that this map from the
set of Drinfeld associators to the set of homotopy classes of L∞ quasi-isomorphisms
for Hochschild cochains is GRT1-equivariant.
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1 Introduction

Let K be a field of characteristic zero, A = K[x1, x2, . . . , xd ] be the algebra of
functions on the affine space Kd , and VA be the algebra of polyvector fields on K

d .
Let us recall that Tamarkin’s construction [15,24] gives us a map from the set of
Drinfeld associators to the set of homotopy classes of L∞ quasi-isomorphisms from
VA to the Hochschild cochain complex C•(A) := C•(A, A) of A.

In paper [27], among proving many other things, ThomasWillwacher constructed a
natural action of the Grothendieck–Teichmueller groupGRT1 from [11] on the set of
homotopy classes of L∞ quasi-isomorphisms from VA to C•(A). On the other hand,
it is known [11] that the group GRT1 acts simply transitively on the set of Drinfeld
associators.

The goal of this paper is to prove GRT1-equivariance of the map resulting from
Tamarkin’s construction using Theorem 4.3 from [22]. We should remark that the
statement about GRT1-equivariance of Tamarkin’s construction was made in [27]
(see the last sentence of Sect. 10.2 in [27, Version 3]) in which the author stated that
“it is easy to see”. The modest goal of this paper is to convince the reader that this
statement can indeed be proved easily. However, the proof requires an additional tool
developed in [22].

In this paper, we also prove various statements related to Tamarkin’s construction
[15,24] which are “known to specialists” but not proved in the literature in the desired
generality. In fact, even the formulation of the problem of GRT1-equivariance of
Tamarkin’s construction requires some additional work.

In this paper, Tamarkin’s construction is presented in the slightly more general
setting of graded affine space versus the particular case of the usual affine space. Thus,
A is always the free (graded) commutative algebra overK in variables x1, x2, . . . , xd of
(not necessarily zero) degrees t1, t2, . . . , td , respectively. Furthermore, VA denotes the
Gerstenhaber algebra of polyvector fields on the correspondinggraded affine space, i.e.

VA := SA (sDerK(A)) ,

where DerK(A) denotes the A-module of derivations of A, s is the operator which
shifts the degree up by 1, and SA(M) denotes the free (graded) commutative algebra
on the A-module M .
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The paper is organized as follows. In Sect. 2, we briefly review the main part of
Tamarkin’s construction and prove that it gives us a map T [see Eq. (2.20)] from the
set of homotopy classes of certain quasi-isomorphisms of dg operads to the set of
homotopy classes of L∞ quasi-isomorphisms for Hochschild cochains of A.

In Sect. 3, we introduce a (prounipotent) group which is isomorphic (due to
Willwacher’s theorem [27, Theorem 1.2]) to the prounipotent part GRT1 of the
Grothendieck–Teichmueller group GRT introduced in [11] by Drinfeld. We recall
from [27] the actions of the group (isomorphic to GRT1) both on the source and the
target of themapT (2.20). Finally, we prove themain result of this paper (see Theorem
3.3) which says that Tamarkin’s map T [see Eq. (2.20)] is GRT1-equivariant.

In Sect. 4, we recall how to use the map T [see Eq. (2.20) from Sect. 2], a specific
solution of Deligne’s conjecture on the Hochschild complex, and the formality of the
operad of little discs [25] to construct a map from the set of Drinfeld associators to
the set of homotopy classes of L∞ quasi-isomorphisms for Hochschild cochains of A.
Finally, we deduce, from Theorem 3.3,GRT1-equivariance of the resulting map from
the set of Drinfeld associators. The latter statement (see Corollary 4.1 in Sect. 4) can
be deduced from what is written in [27] and Theorem 3.3 given in Sect. 3. However,
we decided to add Sect. 4 just to make the story more complete.

Appendices, at the end of the paper, are devoted to proofs of various technical
statements used in the body of the paper.

Remark 1.1 While this paper was in preparation, the 4-th version of preprint [27]
appeared on arXiv.org. In Remark 10.1 of [27, Version 4], Willwacher gave a sketch
of admittedly more economic proof of equivariance of Tamarkin’s construction with
respect to the action of GRT1.

1.1 Notation and conventions

The ground fieldK has characteristic zero. For most of algebraic structures considered
here, the underlying symmetric monoidal category is the categoryChK of unbounded
cochain complexes of K-vector spaces. We will frequently use the ubiquitous combi-
nation “dg” (differential graded) to refer to algebraic objects in ChK. For a cochain
complex V we denote by sV (resp. by s−1V ) the suspension (resp. the desuspension)
of V . In other words,

(sV )• = V •−1,
(
s−1V

)• = V •+1.

Any Z-graded vector space V is tacitly considered as the cochain complex with the
zero differential. For a homogeneous vector v in a cochain complex or a graded vector
space the notation |v| is reserved for its degree.

The notation Sn is reserved for the symmetric group on n letters and Shp1,...,pk

denotes the subset of (p1, . . . , pk)-shuffles in Sn , i.e. Shp1,...,pk consists of elements
σ ∈ Sn , n = p1 + p2 + · · · + pk such that

σ(1) < σ(2) < · · · < σ(p1),
σ (p1 + 1) < σ(p1 + 2) < · · · < σ(p1 + p2),

. . .

σ (n − pk + 1) < σ(n − pk + 2) < · · · < σ(n).
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We tacitly assume the Koszul sign rule. In particular,

(−1)ε(σ ;v1,...,vm )

will always denote the sign factor corresponding to the permutation σ ∈ Sm of homo-
geneous vectors v1, v2, . . . , vm . Namely,

(−1)ε(σ ;v1,...,vm ) :=
∏

(i< j)

(−1)|vi ||v j |, (1.1)

where the product is taken over all inversions (i < j) of σ ∈ Sm .
For a pair V , W of Z-graded vector spaces we denote by

Hom(V, W )

the corresponding inner-hom object in the category of Z-graded vector spaces, i.e.

Hom(V, W ) :=
⊕

m

Homm
K

(V, W ), (1.2)

where Homm
K

(V, W ) consists of K-linear maps f : V → W such that

f (V •) ⊂ W •+m .

For a commutative algebra B and a B-module M , the notation SB(M) (resp. SB(M))
is reserved for the symmetric B-algebra (resp. the truncated symmetric B-algebra) on
M , i.e.

SB(M) := B ⊕ M ⊕ S2
B(M) ⊕ S3

B(M) ⊕ · · · ,

and

SB(M) := M ⊕ S2
B(M) ⊕ S3

B(M) ⊕ · · · .

For an A∞-algebra A, the notation C•(A) is reserved for the Hochschild cochain
complex of A with coefficients in A.

We denote by Com (resp. Lie,Ger) the operad governing commutative (and asso-
ciative) algebras without unit (resp. the operad governing Lie algebras, Gerstenhaber
algebras1 without unit). Furthermore, we denote by coCom the cooperad which is
obtained fromCom by taking the linear dual. The coalgebras over coCom are cocom-
mutative (and coassociative) coalgebras without counit.

The notation Cobar is reserved for the cobar construction [5, Section 3.7].
For an operad (resp. a cooperad) P and a cochain complex V we denote by P(V )

the free P-algebra (resp. the cofree2 P-coalgebra) generated by V :

1 See, for example, Appendix A in [9].
2 We tacitly assume that all coalgebras are nilpotent.
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P(V ) :=
⊕

n≥0

(
P(n) ⊗ V ⊗ n)

Sn
. (1.3)

For example,

Com(V ) = coCom(V ) = S(V ).

We denote by � the underlying collection of the endomorphism operad

EndsK

of the one-dimensional space sK placed in degree 1. The n-the space of � is

�(n) = sgnn ⊗ s1−n,

where sgnn denotes the sign representation of the symmetric group Sn . Recall that �
is naturally an operad and a cooperad.

For a (co)operad P , we denote by �P the (co)operad which is obtained from P by
tensoring with �:

�P := � ⊗ P.

It is clear that tensoring with

�−1 := Ends−1 K

gives us the inverse of the operation P 
→ �P .
For example, the dg operad Cobar(�coCom) governs L∞-algebras and the dg

operad

Cobar(�2coCom) (1.4)

governs �Lie∞-algebras.

1.1.1 Ger∞-algebras and a basis in Ger∨(n)

Let us recall that Ger∞-algebras (or homotopy Gerstenhaber algebras) are governed
by the dg operad

Cobar(Ger∨), (1.5)

where Ger∨ is the cooperad which is obtained by taking the linear dual of �−2Ger.
For our purposes, it is convenient to introduce the free �−2Ger-algebra

�−2Ger(b1, b2, . . . , bn) in n auxiliary variables b1, b2, . . . , bn of degree 0 and iden-
tify the n-th space �−2Ger(n) of �−2Ger with the subspace of �−2Ger(b1, b2, . . . ,
bn) spanned by �−2Ger-monomials in which each variable b j appears exactly once.
For example, �−2Ger(2) is spanned by the monomials b1b2 and {b1, b2} of degrees
2 and 1, respectively.
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Let us consider the ordered partitions of the set {1, 2, . . . , n}
{i11, i12, . . . , i1p1} � {i21, i22, . . . , i2p2} � · · · � {it1, it2, . . . , itpt } (1.6)

satisfying the following properties:

• for each 1 ≤ β ≤ t the index iβpβ is the biggest among iβ1, . . . , iβpβ

• i1p1 < i2p2 < · · · < itpt (in particular, itpt = n).

It is clear that the monomials

{bi11 , . . . , {bi1(p1−1) , bi1p1
}..} . . . {bit1 , . . . , {bit (pt −1) , bitpt

}..} (1.7)

corresponding to all ordered partitions (1.6) satisfying the above properties form a
basis of the space �−2Ger(n).

In this paper, we use the notation
(
{bi11 , . . . , {bi1(p1−1) , bi1p1

}..} . . . {bit1, . . . , {bit (pt −1) , bitpt
}..}

)∗
(1.8)

for the elements of the dual basis in Ger∨(n) = (
�−2Ger(n)

)∗
.

1.1.2 The dg operad Braces

In this brief subsection, we recall the dg operad Braces from [9, Section 9] and [17].3

Following [9], we introduce, for every n ≥ 1, the auxiliary set T (n). An element
of T (n) is a planted4 planar tree T with the following data

• a partition of the set V (T ) of vertices

V (T ) = Vlab(T ) � Vν(T ) � Vroot (T )

into the singleton Vroot (T ) consisting of the root vertex, the set Vlab(T ) consisting
of n vertices which we call labeled, and the set Vν(T ) consisting of vertices which
we call neutral;

• a bijection between the set Vlab(T ) and the set {1, 2, . . . , n}.
We require that each element T of T (n) satisfies this condition.

Condition 1.2 Every neutral vertex of T has at least 2 incoming edges.

Elements of T (n) are called brace trees.
For n ≥ 1, the vector space Braces(n) consists of all finite linear combinations of

brace trees in T (n). To define a structure of a graded vector space on Braces(n), we
declare that each brace tree T ∈ T (n) carries degree

|T | = 2|Vν(T )| − |E(T )| + 1, (1.9)

where |Vν(T )| denotes the total number of neutral vertices of T and |E(T )| denotes
the total number of edges of T .

3 In paper [17], the dg operad Braces is called the “minimal operad”.
4 Recall that a planted tree is a rooted tree whose root vertex has valency 1.
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Fig. 1 A brace tree T ∈ T (2)

1

2

Fig. 2 A brace tree T21 ∈ T (2)

2

1

Fig. 3 A brace tree T∪ ∈ T (2) 1 2

Fig. 4 A brace tree
T∪opp ∈ T (2)

2 1

Fig. 5 The brace tree
Tid ∈ T (1)

1

Examples of brace trees in T (2) (and hence vectors in Braces(2)) are shown on
Figs. 1, 2, 3 and 4.

According to (1.9), the brace trees T and T21 on Figs. 1 and 2, respectively, carry
degree −1 and the brace trees T∪, T∪opp on Figs. 3 and 4, respectively, carry degree 0.

Condition 1.2 implies that T (1) consists of exactly one brace tree Tid shown on
Fig. 5.

Hence we have Braces(1) = K.

Finally, we set Braces(0) = 0.
For the definition of the operadic multiplications on Braces, we refer the reader

to5 [9, Section 8] and, in particular, Example 8.2. For the definition of the differential
on Braces, we refer the reader to [9, Section 8.1] and, in particular, Example 8.4.

Let us also recall that the dg operadBraces acts naturally on theHochschild cochain
complex C•(A) of any A∞-algebra A. For example, if T (resp. T21) is the brace tree
shown on Fig. 1 (resp. Fig. 2), then the expression

T (P1, P2) + T21(P1, P2), P1, P2 ∈ C•(A)

coincides (up to a sign factor) with the Gerstenhaber bracket of P1 and P2. Similarly,
if T∪ is the brace tree shown on Fig. 3, then the expression

5 Strictly speaking Braces is a suboperad of the dg operad defined in [9, Section 8].
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T∪(P1, P2), P1, P2 ∈ C•(A)

coincides (up to a sign factor) with the cup product of P1 and P2.
For the precise construction of the action of Braces on C•(A), we refer the reader

to [9, Appendix B].

2 Tamarkin’s construction in a nutshell

Various solutions of Deligne’s conjecture on the Hochschild cochain complex [3,4,8,
17,21,23,26] imply that the dg operad Braces is quasi-isomorphic to the dg operad

C−•(E2,K)

of singular chains for the little disc operad E2.
Combining this statement with the formality [18,25] for the dg operadC−•(E2,K),

we conclude that the dg operad Braces is quasi-isomorphic to the operadGer. Hence
there exists a quasi-isomorphism of dg operads

	 : Ger∞ → Braces (2.1)

for which the vector6 	(s(b1b2)∗) is cohomologous to the sum T +T21 and the vector
	(s{b1, b2}∗) is cohomologous to

1

2
(T∪ + T∪opp ),

where T (resp. T21, T∪, T∪opp ) is the brace tree depicted on Fig. 1 (resp. Figs. 2, 3, 4).
Replacing 	 by a homotopy equivalent map we may assume, without loss of gen-

erality, that

	(s(b1b2)
∗) = T + T21, 	(s{b1, b2}∗) = 1

2
(T∪ + T∪opp ). (2.2)

So from now on we will assume that the map 	 (2.1) satisfies conditions (2.2).
Since the dg operad Braces acts on the Hochschild cochain complex C•(A) of

an A∞-algebra A, the map 	 equips the Hochschild cochain complex C•(A) with a
structure of aGer∞-algebra.Wewill call itTamarkin’sGer∞-structure and denote by

C•(A)	

the Hochschild cochain complex of A with the Ger∞-structure coming from 	.
The choice of the homotopy class of 	 (2.1) (and hence the choice of Tamarkin’s

Ger∞-structure) is far from unique. In fact, it follows from [27, Theorem 1.2] that,
the set of homotopy classes of maps (2.1) satisfying conditions (2.2) form a torsor for
an infinite dimensional pro-algebraic group.

6 Here, we use basis (1.8) in Ger∨(n).
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A simple degree bookkeeping in Braces shows that for every n ≥ 3

	(s(b1b2 · · · bn)∗) = 0. (2.3)

Combining this observation with (2.2) we see that any Tamarkin’sGer∞-structure on
C•(A) satisfies the following remarkable property:

Property 2.1 The �Lie∞ part of Tamarkin’s Ger∞-structure on C•(A) coincides
with the �Lie-structure given by the Gerstenhaber bracket on C•(A).

From now on, we only consider the case when A = A, i.e. the free (graded)
commutative algebra over K in variables x1, x2, . . . , xd of (not necessarily zero)
degrees t1, t2, . . . , td , respectively. Furthermore, VA denotes the Gerstenhaber algebra
of polyvector fields on the corresponding graded affine space, i.e.

VA := SA (sDerK(A)) .

It is known7 [16] that the canonical embedding

VA ↪→ C•(A) (2.4)

is a quasi-isomorphism of cochain complexes, where VA is considered with the zero
differential. In this paper, we refer to (2.4) as the Hochschild–Kostant–Rosenberg
embedding.

Let us now consider the Ger∞-algebra C•(A)	 for a chosen map 	 (2.1). By the
first claim of Corollary 6.4 fromAppendix B, there exists aGer∞-quasi-isomorphism

UGer : VA � C•(A)	 (2.5)

whose linear term coincides with the Hochschild–Kostant–Rosenberg embedding.
Restricting UGer to the �2coCom-coalgebra

�2coCom(VA)

and taking into account Property 2.1 we get a �Lie∞-quasi-isomorphism

ULie : VA � C•(A) (2.6)

of (dg) �Lie-algebras.
Thus we deduced the main statement of Tamarkin’s construction [24] which can

be summarized as

7 Paper [16] treats only the case of usual (not graded) affine algebras. However, the proof of [16] can be
generalized to the graded setting in a straightforward manner.
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Theorem 2.2 (Tamarkin [24]) Let A (resp. VA) be the algebra of functions (resp. the
algebra of polyvector fields) on a graded affine space. Let us consider the Hochschild
cochain complex C•(A) with the standard �Lie-algebra structure. Then, for every
map of dg operads 	 (2.1), there exists a �Lie∞ quasi-isomorphism

ULie : VA � C•(A) (2.7)

which can be extended to a Ger∞ quasi-isomorphism

UGer : VA � C•(A)	

where VA carries the standard Gerstenhaber algebra structure. ��
Remark 2.3 In this paper we tacitly assume that the linear part of every �Lie∞
(resp. Ger∞) quasi-isomorphism from VA to C•(A) (resp. C•(A)	 ) coincides with
the Hochschild–Kostant–Rosenberg embedding of polyvector fields into Hochschild
cochains.

Since the above construction involves several choices it leaves the following two
obvious questions:

Question A Is it possible to construct two homotopy inequivalent �Lie∞-quasi-
isomorphisms (2.6) corresponding to the same map 	 (2.1)? And if no then

Question B Are �Lie∞-quasi-isomorphisms ULie and ŨLie (2.6) homotopy equiva-
lent if so are the corresponding maps of dg operads 	 and 	̃ (2.1)?

The (expected) answer (NO) to Question A is given in the following proposition:

Proposition 2.4 Let 	 a map of dg operads (2.1) satisfying (2.2) and

ULie, ŨLie : VA � C•(A) (2.8)

be �Lie∞ quasi-morphisms which extend to Ger∞ quasi-isomorphisms

UGer, ŨGer : VA � C•(A)	 (2.9)

respectively. Then ULie is homotopy equivalent to ŨLie.

Proof This statement is essentially a consequence of general Corollary 6.4 from
Appendix B.2.

Indeed, the second claim of Corollary 6.4 implies that Ger∞-morphisms (2.9) are
homotopy equivalent. Hence so are their restrictions to the �2coCom-coalgebra

�2coCom(VA)

which coincide with ULie and ŨLie, respectively. ��
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The expected answer (YES) to Question B is given in the following addition to
Theorem 2.2:

Theorem 2.5 The homotopy type of ULie (2.6) depends only on the homotopy type of
the map 	 (2.1).

Proof Let 	 and 	̃ be maps of dg operads (2.1) satisfying (2.2) and let

ULie : VA � C•(A) (2.10)

ŨLie : VA � C•(A) (2.11)

be �Lie∞ quasi-morphisms which extend to Ger∞ quasi-isomorphisms

UGer : VA � C•(A)	, and ŨGer : VA � C•(A)	̃ (2.12)

respectively. Our goal is to show that if 	 is homotopy equivalent to 	̃ then ULie is
homotopy equivalent to ŨLie.

Let us denote by �•(K) the dg commutative algebra of polynomial forms on the
affine line with the canonical coordinate t .

Since quasi-isomorphisms 	, 	̃ : Ger∞ → Braces are homotopy equivalent, we
have8 a map of dg operads

H : Ger∞ → Braces ⊗ �•(K) (2.13)

such that

	 = p0 ◦ H, and 	̃ = p1 ◦ H,

where p0 and p1 are the canonical maps (of dg operads)

p0, p1 : Braces ⊗ �•(K) → Braces,

p0(v) := v
∣∣dt=0, t=0 , p1(v) := v

∣∣dt=0, t=1 .

The map H induces a Ger∞-structure on C•(A) ⊗ �•(K) such that the evaluation
maps (which we denote by the same letters)

p0 : C•(A) ⊗ �•(K) → C•(A)	, p0(v) := v
∣∣
dt=0, t=0,

p1 : C•(A) ⊗ �•(K) → C•(A)	̃ , p1(v) := v
∣∣
dt=0, t=1.

(2.14)

are strict quasi-isomorphisms of the corresponding Ger∞-algebras.
So, in this proof, we consider the cochain complexC•(A)⊗�•(K)with theGer∞-

structure coming from H (2.13). The same degree bookkeeping argument in Braces
shows that9

8 For justification of this step see, for example, [5, Section 5.1].
9 Here, we use basis (1.8) in Ger∨(n).
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H(s(b1b2 · · · bn)∗) = 0. (2.15)

Hence, the �Lie∞ part of the Ger∞-structure on C•(A) ⊗ �•(K) coincides with the
�Lie-structure given by the Gerstenhaber bracket extended from C•(A) to C•(A) ⊗
�•(K) to by �•(K)-linearity.

Since the canonical embedding

P 
→ P ⊗ 1 : C•(A) ↪→ C•(A) ⊗ �•(K)

is a quasi-isomorphism of cochain complexes, Corollary 6.4 from Appendix B.2
implies that there exists a Ger∞ quasi-isomorphism

UH
Ger : VA � C•(A) ⊗ �•(K), (2.16)

where VA is considered with the standard Gerstenhaber structure.
Since the �Lie∞ part of the Ger∞-structure on C•(A) ⊗ �•(K) coincides with

the standard �Lie-structure, the restriction of UH
Ger to the �2coCom-coalgebra

�2coCom(VA) gives us a homotopy connecting the �Lie∞ quasi-isomorphism

p0 ◦ UH
Ger

∣∣∣
�2coCom(VA)

: VA � C•(A) (2.17)

to the �Lie∞ quasi-isomorphism

p1 ◦ UH
Ger

∣∣∣
�2coCom(VA)

: VA � C•(A), (2.18)

where p0 and p1 are evaluation maps (2.14).
Let us now observe that �Lie∞ quasi-isomorphisms (2.17) and (2.18) extend to

Ger∞ quasi-isomorphisms

p0 ◦ UH
Ger : VA � C•(A)	, and p1 ◦ UH

Ger : VA � C•(A)	̃ (2.19)

respectively. Hence, by Proposition 2.4, �Lie∞ quasi-isomorphism (2.17) is homo-
topy equivalent to (2.10) and�Lie∞ quasi-isomorphism (2.18) is homotopy equivalent
to (2.11).

Thus �Lie∞ quasi-isomorphisms (2.10) and (2.11) are indeed homotopy equiva-
lent. ��

The general conclusion of this section is that Tamarkin’s construction [15,24] gives
us a map

T : π0 (Ger∞ → Braces) → π0
(
VA � C•(A)

)
(2.20)

from the set π0 (Ger∞ → Braces) of homotopy classes of operad morphisms (2.1)
satisfying conditions (2.2) to the set π0 (VA � C•(A)) of homotopy classes of
�Lie∞-morphisms from VA to C•(A) whose linear term is the Hochschild–Kostant–
Rosenberg embedding.
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3 Actions of GRT1

Let C be a coaugmented cooperad in the category of graded vector spaces and C◦ be
the cokernel of the coaugmentation. We assume that C(0) = 0 and C(1) = K.

Let us denote by

Der′ (Cobar(C)) (3.1)

the dg Lie algebra of derivation D of Cobar(C) satisfying the condition

psC◦ ◦ D = 0, (3.2)

where psC◦ is the canonical projectionCobar(C) → s C◦. ConditionsC(0) = 0,C(1) =
K and (3.2) imply that Der′ (Cobar(C))0 and H0

(
Der′(Cobar(C))

)
are pronilpotent

Lie algebras.
In this paper, we are mostly interested in the case when C = �2coCom and

C = Ger∨. The corresponding dg operads�Lie∞ = Cobar(�2coCom) andGer∞ =
Cobar(Ger∨) govern �Lie∞ and Ger∞ algebras, respectively.

A simple degree bookkeeping shows that

Der′(�Lie∞)≤0 = 0, (3.3)

i.e. the dg Lie algebra Der′(�Lie∞) does not have non-zero elements in degrees ≤ 0.
In particular, the Lie algebra H0

(
Der′(�Lie∞)

)
is zero.

On the other hand, the Lie algebra

g = H0 (
Der′(Ger∞)

)
(3.4)

is much more interesting. According to Willwacher’s theorem [27, Theorem 1.2],
this Lie algebra is isomorphic to the pro-nilpotent part grt1 of the Grothendieck–
Teichmueller Lie algebra grt [1, Section 4.2]. Hence, the group exp(g) is isomorphic
to the group GRT1 = exp(grt1).

Let us now describe how the group exp(g) ∼= GRT1 acts both on the source and
the target of Tamarkin’s map T (2.20).

3.1 The action of GRT1 on π0 (Ger∞ → Braces)

Let v be a vector of g represented by a (degree zero) cocycleD ∈ Der′(Ger∞). Since
the Lie algebra Der′(Ger∞)0 is pro-nilpotent, D gives us an automorphism

exp(D) (3.5)

of the operad Ger∞.
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Let 	 be a quasi-isomorphism of dg operads (2.1). Due to Proposition B.2 in [22],
the homotopy type of the composition

	 ◦ exp(D)

does not dependon the choice of the cocycleD in the cohomology classv. Furthermore,
for every pair of (degree zero) cocycles D, D̃ ∈ Der′(Ger∞) we have

	 ◦ exp(D) ◦ exp(D̃) = 	 ◦ exp
(
CH(D, D̃)

)
,

where CH(x, y) denotes the Campbell–Hausdorff series in symbols x, y.
Thus the assignment

	 → 	 ◦ exp(D)

induces a right action of the group exp(g) on the set π0 (Ger∞ → Braces) of homo-
topy classes of operad morphisms (2.1).

3.2 The action of GRT1 on π0 (VA � C•(A))

Let us now show that exp(g) ∼= GRT1 also acts on the set π0 (VA � C•(A)) of
homotopy classes of �Lie∞-morphisms from VA to C•(A).

For this purpose, we denote by

Actstan : Ger∞ → EndVA (3.6)

the operad map corresponding to the standard Gerstenhaber structure on VA.
Then, given a cocycle D ∈ Der′(Ger∞) representing v ∈ g, we may precompose

map (3.6) with automorphism (3.5). This way, we equip the graded vector space
VA with a new Ger∞-structure Qexp(D) whose binary operations are the standard
ones. Therefore, by Corollary 6.3 from Appendix B.1, there exists a Ger∞ quasi-
isomorphism

Ucorr : VA → V Qexp(D)

A (3.7)

from VA with the standard Gerstenhaber structure to VA with the Ger∞-structure
Qexp(D).

Due to observation (3.3), the restriction ofD onto the suboperadCobar(�2coCom)

⊂ Cobar(Ger∨) is zero. Hence, for every degree zero cocycle D ∈ Der′(Ger∞), we
have

exp(D)

∣∣∣
Cobar(�2coCom)

= Id : Cobar(�2coCom) → Cobar(�2coCom). (3.8)

Therefore the�Lie∞-part of theGer∞-structure Qexp(D) coincides with the standard
�Lie-structure on VA given by the Schouten bracket. Hence the restriction of the
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Ger∞ quasi-isomorphism Ucorr onto the �2coCom-coalgebra �2coCom(VA) gives
us a �Lie∞-automorphism

UD : VA � VA. (3.9)

Note that, for a fixed Ger∞-structure Qexp(D), Ger∞ quasi-isomorphism (3.7) is
far from unique. However, the second statement of Corollary 6.4 implies that the
homotopy class of (3.7) is unique. Therefore, the assignment

D 
→
[
UD

]

is a well definedmap from the set of degree zero cocycles of Der′(Ger∞) to homotopy
classes of �Lie∞-automorphisms of VA.

This statement can be strengthened further:

Proposition 3.1 The homotopy type of UD does not depend on the choice of the
representative D of the cohomology class v. Furthermore, for any pair of degree zero
cocycles D1,D2 ∈ Der′(Ger∞), the composition UD1 ◦ UD2 is homotopy equivalent
to UCH(D1,D2), where CH(x, y) denotes the Campbell–Hausdorff series in symbols
x, y.

Let us postpone the technical Proof of Proposition 3.1 to Sect. 3.4 and observe that
this proposition implies the following statement:

Corollary 3.2 Let D be a degree zero cocycle in Der′(Ger∞) representing a coho-
mology class v ∈ g and let ULie be a �Lie∞ quasi-isomorphism from VA to C•(A).
The assignment

ULie 
→ ULie ◦ UD (3.10)

induces a right action of the group exp(g) on the set π0 (VA � C•(A)) of homotopy
classes of �Lie∞-morphisms from VA to C•(A). ��

From now on, by abuse of notation, we denote by UD any representative in the
homotopy class of �Lie∞-automorphism (3.9).

3.3 The theorem on GRT1-equivariance

The following theorem is the main result of this paper:

Theorem 3.3 Let π0 (Ger∞ → Braces) be the set of homotopy classes of operad
maps (2.1) from the dg operad Ger∞ governing homotopy Gerstenhaber algebras to
the dg operad Braces of brace trees. Let π0 (VA � C•(A)) be the set of homotopy
classes of �Lie∞ quasi-isomorphisms10 from the algebra VA of polyvector fields to

10 We tacitly assume that operad maps (2.1) satisfies conditions (2.2) and �Lie∞ quasi-isomorphisms
VA � C•(A) extend the Hochschild–Kostant–Rosenberg embedding.
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the algebra C•(A) of Hochschild cochains of a graded affine space. Then Tamarkin’s
map T (2.20) commutes with the action of the group exp(g) which corresponds to Lie
algebra (3.4).

Proof Following [22, Section 3], [13], we will denote by Cyl(Ger∨) the 2-colored dg
operad whose algebras are pairs (V, W ) with the data

1. a Ger∞-structure on V ,
2. a Ger∞-structure on W , and
3. a Ger∞-morphism F from V to W , i.e. a homomorphism of corresponding dg

Ger∨-coalgebras Ger∨(V ) → Ger∨(W ).

In fact, if we forget about the differential, then the operad Cyl(Ger∨) is a free
operad on a certain 2-colored collection M(Ger∨) naturally associated to Ger∨.

Let us denote by

Der′(Cyl(Ger∨)) (3.11)

the dg Lie algebra of derivations D of Cyl(Ger∨) subject to the condition11

p ◦ D = 0, (3.12)

where p is the canonical projection from Cyl(Ger∨) onto M(Ger∨).
The restrictions to the first color part and the second color part of Cyl(Ger∨),

respectively, give us natural maps of dg Lie algebras

res1, res2 : Der′(Cyl(Ger∨)) → Der′(Ger∞), (3.13)

and, due to [22, Theorem 4.3], res1 and res2 are chain homotopic quasi-isomorphisms.
Therefore, for every v ∈ g there exists a degree zero cocycle

D ∈ Der′(Cyl(Ger∨)) (3.14)

such that both res1(D) and res2(D) represent the cohomology class v.
Let

UGer : VA � C•(A)	 (3.15)

be a Ger∞-morphism from VA to C•(A) which restricts to a �Lie∞-morphism

ULie : VA → C•(A). (3.16)

The triple consisting of

• the standard Gerstenhaber structure on VA,

11 It is condition (3.12) which guarantees that any degree zero cocycle in Der′(Cyl(Ger∨)) can be expo-
nentiated to an automorphism of Cyl(Ger∨).
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• the Ger∞-structure on C•(A) coming from a map 	, and
• Ger∞-morphism (3.15)

gives us a map of dg operads

UCyl : Cyl(Ger∨) → EndVA,C•(A) (3.17)

from Cyl(Ger∨) to the 2-colored endomorphism operad EndVA,C•(A) of the pair
(VA, C•(A)).

Precomposing UCyl with the endomorphism

exp(D) : Cyl(Ger∨) → Cyl(Ger∨)

we get another operad map

UCyl ◦ exp(D) : Cyl(Ger∨) → EndVA,C•(A) (3.18)

which corresponds to the triple consisting of

• the new Ger∞-structure Qexp(res1(D)) on VA,
• the Ger∞-structure on C•(A) corresponding to 	 ◦ exp(res2(D)), and
• a Ger∞ quasi-isomorphism

ŨGer : V Qexp(res1(D))

A � C•(A)	 ◦ exp(res2(D)) (3.19)

Due to technical Proposition 7.1 proved in Appendix C below, the restriction of the
Ger∞ quasi-isomorphism ŨGer (3.19) to �2coCom(VA) gives us the same �Lie∞-
morphism (3.16).

On the other hand, by Corollary 6.3 from Appendix B.1, there exists a Ger∞
quasi-isomorphism

Ucorr : VA → V Qexp(res1(D))

A (3.20)

from VA with the standard Gerstenhaber structure to VA with the newGer∞-structure
Qexp(res1(D)).

Thus, composing Ucorr with ŨGer (3.19), we get a Ger∞ quasi-isomorphism

U exp(D)

Ger : VA � C•(A)	 ◦ exp(res2(D)) (3.21)

from VA with the standard Gerstenhaber structure to C•(A) with the Ger∞-structure
coming from 	 ◦ exp(res2(D)).

The restriction of this Ger∞-morphism U exp(D)

Ger to �2coCom(VA) gives us the
�Lie∞-morphism

ULie ◦ U res1(D) (3.22)
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where U res1(D) is the �Lie∞-automorphism of VA obtained by restricting (3.20) to
�2coCom(VA).

Since both cocycles res1(D) and res2(D) of Der′(Ger∞) represent the same coho-
mology class v ∈ g, Theorem 3.3 follows. ��

3.4 The proof of Proposition 3.1

LetD and D̃ be two cohomologous cocycles in Der′(Ger∞) and let Qexp(D), Qexp(D̃)

be Ger∞-structures on VA corresponding to the operad maps

Actstan ◦ exp(D) : Ger∞ → EndVA , (3.23)

Actstan ◦ exp(D̃) : Ger∞ → EndVA , (3.24)

respectively. Here Actstan is the mapGer∞ → EndVA corresponding to the standard
Gerstenhaber structure on VA.

Due to Proposition B.2 in [22], operad maps (3.23) and (3.24) are homotopy equiv-
alent. Hence there exists aGer∞-structure Qt on VA ⊗�•(K) such that the evaluation
maps

p0 : VA ⊗ �•(K) → V Qexp(D)

A , p0(v) := v
∣∣
dt=0, t=0,

p1 : VA ⊗ �•(K) → V Qexp(D̃)

A , p1(v) := v
∣∣
dt=0, t=1.

(3.25)

are strict quasi-isomorphisms of the corresponding Ger∞-algebras.
Furthermore, observation (3.3) implies that the restriction of a homotopy connecting

the automorphisms exp(D) and exp(D̃) of Ger∞ to the suboperad �Lie∞ coincides
with the identity map on �Lie∞ for every t . Therefore, the �Lie∞-part of theGer∞-
structure Qt on VA ⊗ �•(K) coincides with the standard �Lie-structure given by the
Schouten bracket.

Since tensoring with �•(K) does not change cohomology, Corollary 6.4 from
Appendix B.2 implies that the canonical embedding VA ↪→ VA ⊗ �•(K) can be
extended to a Ger∞ quasi-isomorphism

UH
corr : VA � VA ⊗ �•(K) (3.26)

from VA with the standard Gerstenhaber structure to VA ⊗ �•(K) with the Ger∞-
structure Qt .

Since the�Lie∞-part of theGer∞-structure Qt on VA ⊗�•(K) coincides with the
standard �Lie-structure given by the Schouten bracket, the restriction of UH

corr onto
�2coCom(VA) gives us a homotopy connecting the �Lie∞-automorphisms

p0 ◦ UH
corr

∣∣
�2coCom(VA)

: VA � VA (3.27)

and

p1 ◦ UH
corr

∣∣
�2coCom(VA)

: VA � VA. (3.28)
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Due to the second part of Corollary 6.4, �Lie∞-automorphism (3.27) is homotopy
equivalent to UD and �Lie∞-automorphism (3.28) is homotopy equivalent to U D̃.

Thus the homotopy type of UD is indeed independent of the representative D of
the cohomology class.

To prove the second claim of Proposition 3.1, we will need to use the 2-colored dg
operad Cyl(Ger∨) recalled in the Proof of Theorem 3.3 above.Moreover, we need [22,
Theorem4.3]which implies that restrictions (3.13) are homotopic quasi-isomorphisms
of cochain complexes.

Let D1 and D2 be degree zero cocycles in Der′(Ger∞) and let Qexp(D1) be the
Ger∞-structure on VA which comes from the composition

Actstan ◦ exp(D1) : Ger∞ → EndVA , (3.29)

where Actstan denotes the map Ger∞ → EndVA corresponding to the standard Ger-
stenhaber structure on VA.

Let UGer,1 be a Ger∞-quasi-isomorphism

UGer,1 : VA � V Qexp(D1)

A , (3.30)

where the source is considered with the standard Gerstenhaber structure.
By construction, the �Lie∞-automorphism

UD1 : VA � VA

is the restriction of UGer,1 onto �2coCom(VA).
Let us denote by U VA

Cyl the operad map

U VA
Cyl : Cyl(Ger∨) → EndVA,VA

which corresponds to the triple:

• the standard Gerstenhaber structure on the first copy of VA,
• the Ger∞-structure Qexp(D1) on the second copy of VA, and
• the chosen Ger∞ quasi-isomorphism in (3.30).

Due to [22, Theorem 4.3], there exists a degree zero cocycle DCyl in Der′(
Cyl(Ger∨)

)
for which the cocycles

D := res1(DCyl), D′ := res2(DCyl) (3.31)

are both cohomologous to the given cocycle D2.
Precomposing the map U VA

Cyl with the automorphism exp(DCyl) we get a new

Cyl(Ger∨)-algebra structure on the pair (VA, VA) which corresponds to the triple

• the Ger∞-structure Qexp(D) on the first copy of VA,
• the Ger∞-structure Qexp(CH(D1,D′)) on the second copy of VA, and
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• a Ger∞ quasi-isomorphism

ŨGer : V Qexp(D)

A � V Qexp(CH(D1,D′))
A . (3.32)

Let us observe that, due to Proposition 7.1 fromAppendix C, the restriction of ŨGer
onto �2coCom(VA) coincides with the restriction of (3.30) onto �2coCom(VA).
Hence,

ŨGer

∣∣∣
�2coCom(VA)

= UD1, (3.33)

where UD1 is a �Lie∞-automorphism of VA corresponding12 to D1.
Recall that there exists a Ger∞ quasi-isomorphism

UGer : VA � V Qexp(D)

A . (3.34)

where the source is considered with the standard Gerstenhaber structure. Furthermore,
since D is cohomologous to D2, the first claim of Proposition 3.1 implies that the
restriction of UGer onto �2coCom(VA) gives us a �Lie∞-automorphism UD of VA

which is homotopy equivalent to UD2 .
Let us also observe that the composition ŨGer ◦ UGer gives us a Ger∞ quasi-

isomorphism

ŨGer ◦ UGer : VA � V Qexp(CH(D1,D′))
A (3.35)

Hence, the restriction of ŨGer ◦ UGer gives us a �Lie∞-automorphism of VA

corresponding to CH(D1,D′). Due to (3.33), this �Lie∞-automorphism coincides
with

UD1 ◦ UD.

SinceD andD′ are both cohomologous toD2, the second claim of Proposition 3.1
follows. ��

Remark 3.4 The second claim of Proposition 3.1 can probably be deduced from [27,
Proposition 5.4] and some other statements in [27]. However, this would require a
digression to “stable setting” which we avoid in this paper. For this reason, we decided
to present a complete proof of Proposition 3.1which is independent of any intermediate
steps in [27].

12 Strictly speaking, only the homotopy class of the �Lie∞-automorphism UD1 is uniquely determined
by D1.
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4 Final remarks: connecting Drinfeld associators to the set of homotopy
classes π0 (VA � C•(A))

In this section we recall how to construct a GRT1-equivariant map B from the set
DrAssoc1 of Drinfeld associators to the set

π0 (Ger∞ → Braces)

of homotopy classes of operad morphisms (2.1) satisfying conditions (2.2).
Composing B with the map T (2.20), we get the desired map

T ◦ B : DrAssoc1 → π0
(
VA � C•(A)

)
(4.1)

from the set DrAssoc1 to the set of homotopy classes of �Lie∞-morphisms from VA

to C•(A) whose linear term is the Hochschild–Kostant–Rosenberg embedding.
Theorem 3.3 will then imply that map (4.1) is GRT1-equivariant.

4.1 The sets DrAssocκ of Drinfeld associators

In this short subsection, we briefly recall Drinfeld’s associators and the Grothendieck–
Teichmueller group GRT1. For more details we refer the reader to [1,2], or [11].

Let m be an integer ≥ 2. We denote by tm the Lie algebra generated by symbols
{t i j = t j i }1≤i �= j≤m subject to the following relations:

[t i j , t ik + t jk] = 0 for any triple of distinct indices i, j, k,

[t i j , tkl ] = 0 for any quadruple of distinct indices i, j, k, l. (4.2)

The notation Apb
m is reserved for the associative algebra (over K) of formal power

series in noncommutative symbols {t i j = t j i }1≤i �= j≤m subject to the same relations

(4.2). Let us recall [25, Section 4] that the collection Apb := {Apb
m }m≥1 with A

pb
1 := K

forms an operad in the category of associative K-algebras.
Let lie(x, y) be the degree completion of the free Lie algebra in two symbols x and

y and let κ be any element of K.
The set DrAssocκ consists of elements � ∈ exp (lie(x, y)) which satisfy the equa-

tions

�(y, x)�(x, y) = 1, (4.3)

�(t12, t23 + t24) �(t13 + t23, t34) = �(t23, t34) �(t12 + t13, t24 + t34)�(t12, t23),

(4.4)

eκ(t13+t23)/2 = �(t13, t12)eκt13/2�(t13, t23)−1eκt23/2�(t12, t23),

(4.5)
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and

eκ(t12+t13)/2 = �(t23, t13)−1eκt13/2�(t12, t13)eκt12/2�(t12, t23)−1. (4.6)

For κ �= 0, elements � of DrAssocκ are called Drinfeld associators. However, for
our purposes, we only need the set DrAssoc1 and the set DrAssoc0.

According to [11, Section 5], the set

DrAssoc0 (4.7)

forms a prounipotent group and, by [11, Proposition 5.5], this group acts simply
transitively on the set of associators in DrAssoc1. Following [11], we denote the
group DrAssoc0 by GRT1.

4.2 A map B from DrAssoc1 to π0 (Ger∞ → Braces)

Let us recall [2,25] that collections of all braid groups can be assembled into the
operadPaB in the category ofK-linear categories. Similarly, the collection of algebras
{Apb

m }m≥1 can be “upgraded” to the operad PaCD also in the category of K-linear
categories. Every associator� ∈ DrAssoc1 gives us an isomorphism of these operads

I� : PaB ∼=−→ PaCD. (4.8)

The group GRT1 acts on the operad PaCD in such a way that, for every pair g ∈
GRT1, � ∈ DrAssoc1, the diagram

(4.9)

commutes.
Applying to PaB and PaCD the functor C−•( ,K), where C•( ,K) denotes the

Hochschild chain complex with coefficients in K, we get dg operads

C−•(PaB,K) (4.10)

and

C−•(PaCD,K). (4.11)
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By naturality of C−•( ,K), diagram (4.9) gives us the commutative diagram

(4.12)

where, for simplicity, the maps corresponding to I�, Ig(�) and g are denoted by the
same letters, respectively.

Recall that Eq. (5) from [25] gives us the canonical quasi-isomorphism from the
operad Ger to C−•(Apb,K). The latter operad, in turn, receives the natural map

C−•(PaCD,K) → C−•(Apb,K)

from C−•(PaCD,K) which is also known to be a quasi-isomorphism.
Thus, using the lifting property (see [5, Corollary 5.8]) for maps from the operad

Ger∞ = Cobar(Ger∨), we get the quasi-isomorphism13

Ger∞
∼−→ C−•(PaCD,K). (4.13)

Using this quasi-isomorphism and [5, Corollary 5.8], one can construct (see [27,
Section 6.3.1]) a group homomorphism

GRT1 → exp(g), (4.14)

where the Lie algebra g is defined in (3.4). By [27, Theorem 1.2], homomorphism
(4.14) is an isomorphism.

Any specific solution of Deligne’s conjecture on the Hochschild complex (see,
for example, [4,8], or [21]) combined with Fiedorowicz’s recognition principle [12]
provides us with a sequence of quasi-isomorphisms

Braces
∼← • ∼→ • ∼← • · · · • ∼→ C−•(PaB,K) (4.15)

which connects the dg operad Braces to C−•(PaB,K).
Hence, every associator � ∈ DrAssoc1 gives us a sequence of quasi-isomorphisms

Braces
∼← • ∼→ • ∼← • · · · • ∼→ C−•(PaB,K)

I�−→ C−•(PaCD,K)
∼←− Ger∞

(4.16)

connecting the dg operads Braces to Ger∞.

13 By the same lifting property (see [5, Corollary 5.8]), we know that the homotopy type of the quasi-
isomorphism (4.13) is uniquely determined by the operad map Ger → C−•(Apb,K) from [25, Eq. (5)].
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Using [5, Corollary 5.8] once again, we conclude that the sequence of quasi-
isomorphisms (4.16) determines a unique homotopy class of quasi-isomorphisms (of
dg operads)

	 : Ger∞ → Braces. (4.17)

Thus we get a well defined map

B : DrAssoc1 → π0 (Ger∞ → Braces) . (4.18)

In view of isomorphism (4.14), the set of homotopy classes π0 (Ger∞ → Braces)
is equipped with a natural action of GRT1. Moreover, the commutativity of diagram
(4.12) implies that the map B is GRT1-equivariant.

Thus, combining this observation with Theorem 3.3 we deduce the following corol-
lary:

Corollary 4.1 Let π0 (VA � C•(A)) be the set of homotopy classes of �Lie∞
quasi-isomorphisms which extend the Hochschild–Kostant–Rosenberg embedding of
polyvector fields into Hochschild cochains. If we consider π0 (VA � C•(A)) as a set
with the GRT1-action induced by isomorphism (4.14) then the composition

T ◦ B : DrAssoc1 → π0
(
VA � C•(A)

)
(4.19)

is GRT1-equivariant. ��

Remark 4.2 Any sequence of quasi-isomorphisms of dg operads (4.15) gives us an
isomorphism between the objects corresponding to C−•(PaB,K) and Braces in the
homotopy category of dg operads. However, there is no reason to expect that different
solutions of the Deligne conjecture give the same isomorphisms from C−•(PaB,K)

to Braces in the homotopy category. Hence the resulting composition in (4.19) may
depend on the choice of a specific solution of Deligne’s conjecture on the Hochschild
complex.

Acknowledgments We would like to thank Thomas Willwacher for useful discussions. We acknowledge
the NSF Grant DMS-1161867 for a partial support. Finally, we would like to thank the anonymous referee
for useful suggestions.

Appendix A: Filtered �−1Lie∞-algebras

Let L be a cochain complex with the differential ∂ . Recall that a �−1Lie∞-structure
on L is a sequence of degree 1 multi-brackets

{ , , . . . , }m : Sm(L) → L , m ≥ 2 (5.1)
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satisfying the relations

∂{v1, v2, . . . , vm} +
m∑

i=1

(−1)|v1|+···+|vi−1|{v1, . . . , vi−1, ∂vi , vi+1, . . . , vm}

+
m−1∑

k=2

∑

σ∈Shk,m−k

(−1)ε(σ ;v1,...,vm ){{vσ(1), . . . , vσ(k)}, vσ(k+1), . . . , vσ(m)} = 0,

(5.2)

where (−1)ε(σ ;v1,...,vm ) is the Koszul sign factor [see Eq. (1.1)].
We say that a �−1Lie∞-algebra L is filtered if it is equipped with a complete

descending filtration

L = F1L ⊃ F2L ⊃ F3L ⊃ . . . . (5.3)

For such filtered �−1Lie∞-algebras we may define a Maurer–Cartan element as a
degree zero element α satisfying the equation

∂α +
∑

m≥2

1

m! {α, α, . . . , α}m = 0. (5.4)

Note that this equation makes sense for any degree 0 element α because L = F1L
and L is complete with respect to filtration (5.3). Let us denote by MC(L) the set of
Maurer–Cartan elements of a filtered �−1Lie∞-algebra L .

According to14 [14], the setMC(L) can be upgraded to an∞-groupoidMC(L) (i.e.
a simplicial set satisfying theKancondition). To introduce the∞-groupoidMC(L),we
denote by�•(�n) the dg commutativeK-algebra of polynomial forms [14, Section 3]
on then-th geometric simplex�n . Next,we declare that set ofn-simplices ofMC(L) is

MC
(
L ⊗̂ �•(�n)

)
, (5.5)

where L is considered with the topology coming from filtration (5.3) and �•(�n) is
considered with the discrete topology. The structure of the simplicial set is induced
from the structure of a simplicial set on the sequence {�•(�n)}n≥0.

For example, 0-cells of MC(L) are precisely Maurer–Cartan elements of L and
1-cells are sums

α′ + dt α′′, α′ ∈ L0 ⊗̂K[t], α′′ ∈ L−1 ⊗̂K[t] (5.6)

14 A version of the Deligne–Getzler–Hinich ∞-groupoid for pro-nilpotent �−1Lie∞-algebras is intro-
duced in [6, Section 4].
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satisfying the pair of equations

∂α′ +
∑

m≥2

1

m! {α
′, α′, . . . , α′}m = 0, (5.7)

d

dt
α′ = ∂α′′ +

∑

m≥1

1

m! {α
′, α′, . . . , α′, α′′}m+1. (5.8)

Thus, two 0-cells α0, α1 ofMC(L) (i.e. Maurer–Cartan elements of L) are isomor-
phic if there exists an element (5.6) satisfying (5.7) and (5.8) and such that

α0 = α′∣∣
t=0 and α1 = α′∣∣

t=1. (5.9)

We say that a 1-cell (5.6) connects α0 and α1.

A.1: A lemma on adjusting Maurer–Cartan elements

Let α be a Maurer–Cartan element of a filtered �−1Lie∞-algebra and ξ be a degree
−1 element in Fn L for some integer n ≥ 1.

Let us consider the following sequence {α′
k}k≥0 of degree zero elements in L ⊗̂K[t]

α′
0 := α, α′

k+1(t) := α +
∫ t

0
dt1

⎛

⎝∂ξ +
∑

m≥1

1

m! {α
′
k(t1), . . . , α

′
k(t1), ξ}m+1

⎞

⎠ .

(5.10)

Since L is complete with respect to filtration (5.3), the sequence {α′
k}k≥0 conver-

gences to a (degree 0) element α′ ∈ L ⊗̂K[t] which satisfies the integral equation

α′(t) = α +
∫ t

0
dt1

⎛

⎝∂ξ +
∑

m≥1

1

m! {α
′(t1), . . . , α′(t1), ξ}m+1

⎞

⎠ . (5.11)

We claim that

Lemma 5.1 If, as above, ξ is a degree −1 element in Fn L and α′ is an element of
L ⊗̂K[t] obtained by recursive procedure (5.10) then the sum

α′ + dt ξ (5.12)

is a 1-cell of MC(L) which connects α to another Maurer–Cartan element α̃ of L
such that

α′ − α ∈ Fn L ⊗̂K[t], (5.13)
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and

α̃ − α − ∂ξ ∈ Fn+1L . (5.14)

If the element ξ satisfies the additional condition

∂ξ ∈ Fn+1L (5.15)

then

α′ − α ∈ Fn+1L ⊗̂K[t], (5.16)

and

α̃ − α − ∂ξ − {α, ξ} ∈ Fn+2L . (5.17)

Proof Equation (5.11) implies that α′ satisfies the differential equation

d

dt
α′ = ∂ξ +

∑

m≥1

1

m! {α
′, . . . , α′, ξ}m+1 (5.18)

with the initial condition

α′
∣∣∣
t=0

= α. (5.19)

Let us denote by � the following degree 1 element of L ⊗̂K[t]

� := ∂α′ +
∑

m≥2

1

m! {α
′, α′, . . . , α′}m . (5.20)

A direct computation shows that � satisfies the following differential equation

d

dt
� = −

∑

m≥0

1

m! {α
′, . . . , α′, �, ξ}m+2. (5.21)

Furthermore, since α is a Maurer–Cartan element of L , the element � satisfies the
condition

�
∣∣
t=0 = 0

and hence � satisfies the integral equation

�(t) = −
∫ t

0
dt1

⎛

⎝
∑

m≥0

1

m! {α
′(t1), . . . , α′(t1),�(t1), ξ}m+2

⎞

⎠ . (5.22)
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Equation (5.22) implies that

� ∈
⋂

n≥1

Fn L ⊗̂K[t].

Therefore� = 0 and hence the limiting element α′ of sequence (5.10) is aMaurer–
Cartan element of L ⊗̂K[t].

Combining this observation with differential equation (5.18), we conclude that the
element α′ + dt ξ ∈ L ⊗̂ �•(�1) is indeed a 1-cell in MC(L) which connects the
Maurer–Cartan element α to the Maurer–Cartan element

α̃ := α +
∫ 1

0
dt

⎛

⎝∂ξ +
∑

m≥1

1

m! {α
′(t), . . . , α′(t), ξ}m+1

⎞

⎠ . (5.23)

Since ξ ∈ Fn L and L = F1L , equation (5.11) implies that

α′ − α ∈ Fn L ⊗̂K[t]

and equation (5.23) implies that

α̃ − α − ∂ξ ∈ Fn+1L .

Thus, the first part of Lemma 5.1 is proved.
If ξ ∈ Fn L and ∂ξ ∈ Fn+1L then, again, it is clear from (5.11) that inclusion

(5.16) holds.
Finally, using inclusion (5.16) and equation (5.23), it is easy to see that

α̃ − α − ∂ξ − {α, ξ} ∈ Fn+2L .

Lemma 5.1 is proved. ��

A.2: Convolution �−1Lie∞-algebra, ∞-morphisms and their homotopies

Let C be a coaugmented cooperad (in the category of graded vector spaces) satisfying
the additional condition

C(0) = 0 (5.24)

and V be a cochain complex. (In this paper, C is usually the cooperad Ger∨).
Following [7], we say that V is a homotopy algebra of type C if V carries Cobar(C)-

algebra structure or equivalently the C-coalgebra

C(V )
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has a degree 1 coderivation Q satisfying

Q
∣∣
∣
V

= 0

and the Maurer–Cartan equation

[dV , Q] + 1

2
[Q, Q] = 0

where dV is the differential on C(V ) induced from the one on V .
For two homotopy algebras (V, QV ) and (W, QW ) of type C, we consider the

graded vector space

Hom(C(V ), W ) (5.25)

with the differential ∂

∂( f ) := dW ◦ f − (−1)| f | f ◦ (dV + QV ) (5.26)

and the multi-brackets (of degree 1)

{ , , . . . , }m : Sm (Hom(C(V ), W )) → Hom(C(V ), W ), m ≥ 2

{ f1, . . . , fm}(X) = pW ◦ QW (1 ⊗ f1 ⊗ · · · ⊗ fm(�m(X))) , (5.27)

where �m is the m-th component of the comultiplication

�m : C(V ) → (
C(m) ⊗ C(V )⊗ m)Sm

and pW is the canonical projection

pW : C(W ) → W.

According to [7] or [10, Section 1.3], Eq. (5.27) define a�−1Lie∞-structure on the
cochain complexHom(C(V ), W )with the differential ∂ (5.26). The�−1Lie∞-algebra

Hom(C(V ), W ) (5.28)

is called the convolution �−1Lie∞-algebra of the pair V, W .
The convolution�−1Lie∞-algebra Hom(C(V ), W ) carries the obvious descending

filtration “by arity”

FnHom(C(V ), W ) =
{

f ∈ Hom(C(V ), W ) | f
∣∣
C(m)⊗Sm V ⊗ m = 0 ∀ m < n

}
.

(5.29)
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Hom(C(V ), W ) is obviously complete with respect to this filtration and

Hom(C(V ), W ) = F1Hom(C(V ), W ) (5.30)

due to condition (5.24). In other words, under our assumption on the cooperad C, the
convolution �−1Lie∞-algebra Hom(C(V ), W ) is pronilpotent.

According to [10, Proposition 3], ∞-morphisms from V to W are in bijection with
Maurer–Cartan elements ofHom(C(V ), W ) i.e. 0-cells of theDeligne–Getzler–Hinich
∞-groupoid corresponding to Hom(C(V ), W ). Furthermore, due to [10, Corollary 2],
two ∞-morphisms from V to W are homotopic if and only if the corresponding
Maurer–Cartan elements are isomorphic 0-cells in the Deligne–Getzler–Hinich ∞-
groupoid of Hom(C(V ), W ).

Appendix B: Tamarkin’s rigidity

Let VA denote the Gerstenhaber algebra of polyvector fields on the graded affine space
corresponding to A = K[x1, x2, . . . , xd ] with

|xi | = ti .

As the graded commutative algebra over K, VA is freely generated by variables

x1, x2, . . . , xd , θ1, θ2, . . . , θd ,

where θi carries degree 1 − ti .

VA = K[x1, x2, . . . , xd , θ1, θ2, . . . , θd ]. (6.1)

Let us denote by μ∧ and μ{ , } the vectors in EndVA(2) corresponding to the multipli-
cation and the Schouten bracket { , } on VA, respectively.

The composition of the canonical quasi-isomorphism

Cobar(Ger∨) → Ger

and the map Ger → EndVA corresponds to the following Maurer–Cartan element

α := μ∧ ⊗ {b1, b2} + μ{ , } ⊗ b1b2 (6.2)

in the graded Lie algebra

Conv⊕(Ger∨,EndVA) :=
⊕

n≥1

HomSn

(
Ger∨(n),EndVA(n)

)
(6.3)
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for which we frequently use the obvious identification15

Conv⊕(Ger∨,EndVA ) ∼=
⊕

n≥1

(
EndVA(n) ⊗ �−2Ger(n)

)Sn
. (6.4)

In this section, we consider Conv⊕(Ger∨,EndVA ) as the cochain complex with the
following differential

∂ := [α, ]. (6.5)

We observe that Conv⊕(Ger∨,EndVA) carries the natural descending filtration “by
arity”:

Conv⊕(Ger∨,EndVA ) = F0Conv
⊕(Ger∨,EndVA ) ⊃ F1Conv

⊕(Ger∨,EndVA )⊃· · ·
FmConv

⊕(Ger∨,EndVA ) :=
⊕

n≥m+1

(
EndVA (n) ⊗ �−2Ger(n)

)Sn
. (6.6)

More precisely,

∂
(
EndVA (n) ⊗ �−2Ger(n)

)Sn ⊂
(
EndVA (n + 1) ⊗ �−2Ger(n + 1)

)Sn+1
.

(6.7)

In particular, every cocycle X ∈ Conv⊕(Ger∨,EndVA) is a finite sum

X =
∑

n≥1

Xn, Xn ∈
(
EndVA(n) ⊗ �−2Ger(n)

)Sn
(6.8)

where each individual term Xn is a cocycle.
In this paper, we need the following version of Tamarkin’s rigidity

Theorem 6.1 If n is an integer ≥ 2 then for every cocycle

X ∈
(
EndVA (n) ⊗ �−2Ger(n)

)Sn ⊂ Conv⊕(Ger∨,EndVA )

there exists a cochain Y ∈ (
EndVA(n − 1) ⊗ �−2Ger(n − 1)

)Sn−1 such that

X = ∂Y.

Remark 6.2 Note that the above statement is different from Tamarkin’s rigidity in the
“stable setting” [5, Section 12]. According to [5, Corollary 12.2], one may think that

15 Recall that the cooperad Ger∨ is the linear dual of the operad �−2Ger.
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the vector

μ{ , } ⊗ b1b2

is a non-trivial cocycle in (6.3). In fact,

μ{ , } ⊗ b1b2 = [α, P ⊗ b1],

where P is the following version of the “Euler derivation” of VA.

P(v) :=
d∑

i=1

θi
∂

∂θi
.

Proof of Theorem 6.1 Theorem 6.1 is only a slight generalization of the statement
proved in Section 5.4 of [15] and, in the proof given here, we pretty much follow the
same line of arguments as in [15, Section 5.4].

First, we introduce an additional set of auxiliary variables

x̌1, x̌2, . . . , x̌d , θ̌1, θ̌2, . . . , θ̌d (6.9)

of degrees

|x̌i | = 2 − ti , |θ̌ i | = ti + 1.

Second, we consider the de Rham complex of VA:

�•
K

VA := VA[x̌1, x̌2, . . . , x̌d , θ̌1, θ̌2, . . . , θ̌d ] (6.10)

with the differential

D =
d∑

i=1

x̌i
∂

∂θi
+

d∑

i=1

θ̌ i ∂

∂xi
(6.11)

and equip it with the following descending filtration:

Fm�•
K

VA :=
{

P ∈ VA[x̌1, x̌2, . . . , x̌d , θ̌1, θ̌2, . . . , θ̌d ]
∣
∣ the total degree of P in x̌1, . . . , x̌d , θ̌1, . . . , θ̌d is ≥ m + 1

}
. (6.12)

Next, we observe that every homogeneous vector16

P = Pi1i2...ik
j1 j2... jq

x̌i1 . . . x̌ik θ̌
j1 . . . θ̌ jq ∈ VA[x̌1, x̌2, . . . , x̌d , θ̌1, θ̌2, . . . , θ̌d ]

16 Summation over repeated indices is assumed.
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defines an element PEnd ∈ EndVA(k + q):

PEnd(v1, v2, . . . , vk+q) :=
∑

σ∈Sk+q

±Pi1i2...ik
j1 j2... jq

∂xi1 vσ(1) ∂xi2 vσ(2) . . . ∂xik vσ(k)

×∂θ j1
vσ(k+1) ∂θ j2

vσ(k+2) . . . ∂θ jq
vσ(k+q), (6.13)

where the sign factors ± are determined by the usual Koszul rule.
Finally, we claim that the formula

VH(P) := PEnd ⊗ b1b2 . . . bk+q (6.14)

defines a degree zero injective map

VH : s−2 F0�
•
K

VA → Conv⊕(Ger∨,EndVA ) (6.15)

which is compatible with filtrations (6.6) and (6.12).
A direct computation shows that VH intertwines differentials (6.5) and (6.11).
Let m be an integer and

GmConv⊕(Ger∨,EndVA) (6.16)

be the subspace of Conv⊕(Ger∨,EndVA ) of sums

∑

i

Mi ⊗ qi ∈
⊕

n≥1

(
EndVA(n) ⊗ �−2Ger(n)

)Sn
(6.17)

satisfying the condition

the number of Lie brackets in qi − | Mi ⊗ qi | ≤ m. (6.18)

It is easy to see that the sequence of subspaces (6.16)

. . . ⊂ G−1Conv⊕(Ger∨,EndVA ) ⊂ G0Conv⊕(Ger∨,EndVA)

⊂ G1Conv⊕(Ger∨,EndVA ) ⊂ . . .

form an ascending filtration on the cochain complex Conv⊕(Ger∨,EndVA ) and the
associated graded cochain complex

GrGConv
⊕(Ger∨,EndVA) (6.19)

is isomorphic to

⊕

n≥1

(
EndVA (n) ⊗ �−2Ger(n)

)Sn
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with the differential

∂Gr = [μ∧ ⊗ {b1, b2}, ], (6.20)

where μ∧ is the vector in EndVA (2) which corresponds to the multiplication on VA.
Let us observe that (6.19) is naturally a VA-module (where VA is viewed as the

graded commutative algebra), differential (6.20) is VA-linear, and since

Ger∨(VA) = �2coCom(�coLie(VA)),

cochain complex (6.19) is isomorphic to

HomVA

(
s2SVA

(s−1 VA ⊗K coLie(s−1 VA)), VA

)
(6.21)

with the differential coming from the one on the Harrison homological17 complex [19,
Section 4.2.10]

VA ⊗K coLie(s−1 VA) (6.22)

of the graded commutative algebra VA with coefficients in VA.
Since VA is freely generated by elements x1, . . . , xd , θ1, . . . , θd , Theorem 3.5.6

and Proposition 4.2.11 from [19] imply that the embedding

IHarr :
d⊕

i=1

VAei ⊕
d⊕

i=1

VA fi → VA ⊗ coLie(s−1 VA)

IHarr(e
i ) := 1 ⊗ s−1 xi , IHarr( fi ) := 1 ⊗ s−1 θi (6.23)

from the free VA-module

d⊕

i=1

VAei ⊕
d⊕

i=1

VA fi , |ei | := ti − 1, | fi | := −ti (6.24)

is a quasi-isomorphism of cochain complexes of VA-modules from (6.24) with the
zero differential to (6.22) with the Harrison differential.

Since (6.23) is a quasi-isomorphism of cochain complexes of free VA-modules, it
induces a quasi-isomorphism of cochain complexes of (free) VA-modules:

s2VA[s−1 e1, . . . , s−1 ed , s−1 f1, . . . , s−1 fd ] → s2SVA (s−1 VA ⊗K coLie(s−1 VA)),

(6.25)

where the source carries the zero differential.

17 The cochain complex in (6.22) is obtained from the conventional Harrison homological complex from
[19, Section 4.2.10] by reversing the grading.
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Therefore, map (6.15) induces a quasi-isomorphism of cochain complexes

s−2 F0�
•
K

VA → GrGConv
⊕(Ger∨,EndVA),

where the source is considered with the zero differential.
Thus, by Lemma A.3 from [5], map (6.15) is a quasi-isomorphism of cochain

complexes.
Let n ≥ 2 and

X ∈
(
EndVA (n) ⊗ �−2Ger(n)

)Sn ⊂ Conv⊕(Ger∨,EndVA ) (6.26)

be a cocycle.
Since (6.15) is a quasi-isomorphism of cochain complexes, there exists a cocycle

X̃ ∈ s−2 F0�
•
K

VA (6.27)

such that X is cohomologous to VH(X̃).
Let us observe that de Rham differential D (6.11) satisfies the property

D
(
F0�

•
K

VA
) ⊂ F1�

•
K

VA.

Hence, since VH is injective, we conclude that

X̃ ∈ s−2 F1�
•
K

VA. (6.28)

It is obvious that every cocycle in F1�
•
K

VA is exact in F0�
•
K

VA. Therefore X̃ is
exact and so is cocycle (6.26).

Combining this statement with property (6.7) we easily deduce Theorem 6.1. ��

B.1: The standard Gerstenhaber structure on VA is “rigid”

The first consequence of Theorem 6.1 is the following corollary:

Corollary 6.3 Let VA be, as above, the algebra of polyvector fields on a graded affine
space and Q be a Ger∞-structure on VA whose binary operations are the Schouten
bracket and the usual multiplication. Then the identity map id : VA → VA can be
extended to a Ger∞ morphism

Ucorr : VA � V Q
A (6.29)

from VA with the standard Gerstenhaber structure to VA with the Ger∞-structure Q.

Proof To prove this statement, we consider the graded space

Hom(Ger∨(VA), VA) (6.30)
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with two different algebraic structures. First, (6.30) is identified with the convolution
Lie algebra18

Conv(Ger∨,EndVA ) (6.31)

with the Lie bracket [ , ] defined in terms of the binary (degree zero) operation • from
[5, Section 4, Eq. (4.2)].

To introduce the second algebraic structure on (6.30), we recall that a Ger∞-
structure on VA is precisely a degree 1 element

Q = Q2 +
∑

n≥3

Qn Qn ∈ HomSn (Ger∨(n) ⊗ V ⊗ n
A , VA) (6.32)

in (6.31) satisfying the Maurer–Cartan equation

[Q, Q] = 0 (6.33)

and the above condition on the binary operations is equivalent to the requirement

Q2 = α, (6.34)

where α is Maurer–Cartan element (6.2) of (6.31).
Given such aGer∞-structure Q on VA, we get the convolution �−1Lie∞-algebra

Hom(Ger∨(VA), V Q
A ) (6.35)

corresponding to the pair (VA, V Q
A ), where the first entry VA is considered with the

standard Gerstenhaber structure and the second entry is considered with the above
Ger∞-structure Q.

As a graded vector space,�−1Lie∞-algebra (6.35) coincides with (6.30). However,
it carries a non-zero differential dα given by the formula

dα(P) = −(−1)|P| P • α, (6.36)

and the corresponding (degree 1) brackets

{ , , . . . , }k : Sk
(
Hom(Ger∨(VA), V Q

A )
)

→ Hom(Ger∨(VA), V Q
A )

are defined by general formula (5.27) in terms of the Ger∨-coalgebra structure on
Ger∨(VA) and the Ger∞-structure Q on VA.

18 In our case, Lie algebra (6.31) carries the zero differential.
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Let us recall [7,10] that Ger∞-morphisms from VA to V Q
A are in bijection with

Maurer–Cartan elements19

β =
∑

n≥1

βn, βn ∈ HomSn (Ger∨(n) ⊗ V ⊗ n
A , VA) (6.37)

of �−1Lie∞-algebra (6.35) such that β1 corresponds to the linear term of the corre-
sponding Ger∞-morphism.

Thus our goal is to prove that, for every Maurer–Cartan element Q (6.32) of Lie
algebra (6.31) satisfying condition (6.34), there exists a Maurer–Cartan element β

(see (6.37)) of �−1Lie∞-algebra (6.35) such that

β1 = id : VA → VA. (6.38)

Condition (6.34) implies that the element

β(1) := id ∈ Hom(Ger∨(VA), V Q
A )

satisfies the equation (in the �−1Lie∞-algebra Hom(Ger∨(VA), V Q
A ))

⎛

⎝ dα(β(1)) +
∑

k≥2

1

k! {β
(1), . . . , β(1)}k

⎞

⎠ (X) = 0 (6.39)

for every X ∈ (Ger∨(m) ⊗ V ⊗ m
A )Sm with m ≤ 2.

Let us assume that we constructed (by induction) a degree zero element

β(n−1) = id + β2 + β3 + · · · + βn−1, β j ∈ HomS j (Ger∨( j) ⊗ V ⊗ j
A , VA)

(6.40)

such that
⎛

⎝dα(β(n−1)) +
∑

k≥2

1

k! {β
(n−1), . . . , β(n−1)}k

⎞

⎠ (X) = 0 (6.41)

for every X ∈ (Ger∨(m) ⊗ V ⊗ m
A )Sm with m ≤ n.

We will try to find an element

βn ∈ HomSn (Ger∨(n) ⊗ V ⊗ n
A , VA) (6.42)

such that the sum

β(n) := id + β2 + β3 + · · · + βn−1 + βn (6.43)

19 Recall that Maurer–Cartan elements of a �−1Lie∞-algebra have degree 0.
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satisfies the equation

⎛

⎝dα(β(n)) +
∑

k≥2

1

k! {β
(n), . . . , β(n)}k

⎞

⎠ (X) = 0 (6.44)

for every X ∈ (Ger∨(m) ⊗ V ⊗ m
A )Sm with m ≤ n + 1.

Since βn ∈ HomSn (Ger∨(n) ⊗ V ⊗ n
A , VA) and (6.41) is satisfied for every X ∈

(Ger∨(m) ⊗ V ⊗ m
A )Sm with m ≤ n, equation (6.44) is also satisfied for every X ∈

(Ger∨(m) ⊗ V ⊗ m
A )Sm with m ≤ n.

For X ∈ (Ger∨(n + 1) ⊗ V ⊗ (n+1)
A )Sn+1 , Eq. (6.44) can be rewritten as

− βn • α(X) + α • βn(X) = −
∑

k≥2

1

k! {β
(n−1), . . . , β(n−1)}k(X). (6.45)

Let us denote by γ the element in HomSn+1(Ger∨(n + 1) ⊗ V ⊗ (n+1)
A , VA) defined

as

γ :=
∑

k≥2

1

k! {β
(n−1), . . . , β(n−1)}k

∣
∣∣
Ger∨(n+1)⊗V ⊗ (n+1)

A

(6.46)

Evaluating the Bianchi type identity [14, Lemma 4.5]

∑

k≥2

1

k!dα{β(n−1), . . . , β(n−1)}k +
∑

k≥1

1

k! {β
(n−1), . . . , β(n−1),

dαβ(n−1)}k+1 +
∑

k≥2
t≥1

1

k!t ! {β
(n−1), . . . , β(n−1), {β(n−1), . . . , β(n−1)}k}t+1 = 0

(6.47)

on an arbitrary element

Y ∈ (Ger∨(n + 2) ⊗ V ⊗ (n+2)
A )Sn+2

and using the fact that

β(n−1)(X) = 0, ∀ X ∈ (Ger∨(m) ⊗ V ⊗ m
A )Sm with m ≥ n

we deduce that element γ (6.46) is a cocycle in cochain complex (6.3) with differential
(6.5).

Thus Theorem 6.1 implies that Eq. (6.45) can always be solved for βn .
This inductive argument concludes the proof of Corollary 6.3. ��
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B.2 The Gerstenhaber algebra VA is intrinsically formal

Let (C•, d) be an arbitrary cochain complex whose cohomology is isomorphic to VA

H•(C•) ∼= VA. (6.48)

Let us consider VA as the cochain complex with the zero differential and choose20

a quasi-isomorphism of cochain complexes

I : VA → C•. (6.49)

Let us assume that C• carries a Ger∞-structure such that the map I induces an
isomorphism of Gerstenhaber algebras VA ∼= H•(C•).

Then Theorem 6.1 gives us the following remarkable corollary:

Corollary 6.4 There exists a Ger∞-morphism

U : VA � C• (6.50)

whose linear term coincides with I (6.49). Moreover, any two such Ger∞-morphisms

U, Ũ : VA � C• (6.51)

are homotopy equivalent.

Remark 6.5 The above statement is a slight refinement of one proved in [15, Section 5].
Following Hinich, we say that the Gerstenhaber algebra VA is intrinsically formal.

Proof of Corollary 6.4 By the Homotopy Transfer Theorem [7, Section 5], [20, Sec-
tion 10.3], there exists a Ger∞-structure Q on VA and a Ger∞-quasi-isomorphism

U ′ : V Q
A � C•, (6.52)

such that

• the binary operations of the Ger∞-structure Q on VA are the Schouten bracket
and the usual multiplication of polyvector fields,

• the linear term of U ′ coincides with I .

Corollary 6.3 implies that there exists a Ger∞-morphism

Ucorr : VA � V Q
A , (6.53)

whose linear term is the identity map id : VA → VA.

20 Such a quasi-isomorphism exists since we are dealing with cochain complexes of vector spaces over a
field.

123



542 V. Dolgushev, B. Paljug

Hence the composition

U = U ′ ◦ Ucorr : VA � C• (6.54)

is a desired Ger∞-morphism.
To prove the second claim, we need the �−1Lie∞-algebra

Hom(Ger∨(VA), C•) (6.55)

corresponding to the Gerstenhaber algebra VA and the Ger∞-algebra C•. The differ-
ential D on (6.55) is given by the formula

D(	) := d ◦ 	 − (−1)|	|	 ◦ Q∧,{ , } , 	 ∈ Hom(Ger∨(VA), C•), (6.56)

where d is the differential on C• and Q∧,{ , } is the differential on theGer∨-coalgebra
Ger∨(VA) corresponding to the standard Gerstenhaber structure on VA.

The multi-brackets { , , . . . , }m are defined by the general formula [see Eq. (5.27)]
in terms of the Ger∨-coalgebra structure on Ger∨(VA) and the Ger∞-structure on
C•.

Let us recall (see Appendix A.2 for more details) that Ger∞-morphisms from VA

to C• are in bijection with Maurer–Cartan elements of �−1Lie∞-algebra (6.55) and
Ger∞-morphisms (6.51) are homotopy equivalent if and only if the corresponding
Maurer–Cartan elements P and P̃ in (6.55) are isomorphic 0-cells in the Deligne–
Getzler–Hinich ∞-groupoid [14] of (6.55).

So our goal is to prove that any two Maurer–Cartan elements P and P̃ in (6.55)
satisfying

P
∣∣∣
VA

= P̃
∣∣∣
VA

= I : VA → C• (6.57)

are isomorphic.
Condition (6.57) implies that

P̃ − P ∈ F2Hom(Ger∨(VA), C•),

where F•Hom(Ger∨(VA), C•) is the arity filtration (5.29) on Hom(Ger∨(VA), C•).
Let us assume that we constructed a sequence of Maurer–Cartan elements

P = P2, P3, P4, . . . , Pn+1 (6.58)

such that for every 2 ≤ m ≤ n + 1

P̃ − Pm ∈ FmHom(Ger∨(VA), C•) (6.59)

and for every 2 ≤ m ≤ n there exists 1-cell

P ′
m(t) + dt ξm−1 ∈ Hom(Ger∨(VA), C•) ⊗̂ �•(�1)
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which connects Pm to Pm+1 and such that

ξm−1 ∈ Fm−1Hom(Ger∨(VA), C•), (6.60)

and

P ′
m(t) − Pm ∈ FmHom(Ger∨(VA), C•) ⊗̂K[t]. (6.61)

Let us now prove that one can construct a 1-cell

P ′
n+1(t) + dt ξn ∈ Hom(Ger∨(VA), C•) ⊗̂ �•(�1) (6.62)

such that

P ′
n+1(t)

∣∣
t=0 = Pn+1,

ξn ∈ FnHom(Ger∨(VA), C•), (6.63)

P ′
n+1(t) − Pn+1 ∈ Fn+1Hom(Ger∨(VA), C•) ⊗̂K[t], (6.64)

and the Maurer–Cartan element

Pn+2 := P ′
n+1(t)

∣∣∣
t=1

(6.65)

satisfies the condition

P̃ − Pn+2 ∈ Fn+2Hom(Ger∨(VA), C•). (6.66)

Let us denote the difference P̃ − Pn+1 by K . Since P̃ − Pn+1 ∈ Fn+1Hom
(Ger∨(VA), C•),

K =
∑

m≥n+1

Km, Km ∈ HomSm (Ger∨(m) ⊗ V ⊗ m
A , C•). (6.67)

Subtracting the left hand side of the Maurer–Cartan equation

D(Pn+1) +
∑

m≥2

1

m! {Pn+1, Pn+1, . . . , Pn+1}m = 0 (6.68)

from the left hand side of the Maurer–Cartan equation

D(P̃) +
∑

m≥2

1

m! {P̃, P̃, . . . , P̃}m = 0 (6.69)
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we see that element (6.67) satisfies the equation

D(K ) +
∑

m≥1

1

m! {Pn+1, . . . , Pn+1, K }m+1 +
∑

m≥2

1

m! {K , K , . . . , K }Pn+1
m = 0,

(6.70)

where the multi-bracket {K , K , . . . , K }Pn+1
m is defined by the formula

{X1, X2, . . . , Xm}Pn+1
m :=

∑

q≥0

1

q! {Pn+1, . . . , Pn+1, X1, X2, . . . , Xm}q+m

(6.71)

Evaluating (6.70) on Ger∨(n + 1) ⊗ V ⊗ (n+1)
A and using the fact that

K ∈ Fn+1Hom(Ger∨(VA), C•), (6.72)

we conclude that

d ◦ Kn+1 = 0, (6.73)

where d is the differential on C•.
Hence there exist elements

K VA
n+1 ∈ HomSn+1(Ger∨(n + 1) ⊗ V ⊗ (n+1)

A , VA)

and

K ′
n+1 ∈ HomSn+1(Ger∨(n + 1) ⊗ V ⊗ (n+1)

A , C•)

such that

Kn+1 = I ◦ K VA
n+1 + d ◦ K ′

n+1. (6.74)

Next, evaluating (6.70) on Y ∈ Ger∨(n +2)⊗ V ⊗ (n+2)
A and using inclusion (6.72)

again, we get the following identity

d ◦ Kn+2(Y ) − Kn+1 ◦ Q∧,{ , }(Y ) + {Pn+1, Kn+1}2(Y ) = 0. (6.75)

Unfolding {Pn+1, Kn+1}2(Y ) we get

{Pn+1, Kn+1}2(Y ) =
n+2∑

i=1

QC•
(
(idGer∨(2) ⊗ Kn+1 ⊗ I ) ◦

(
�ti ⊗ id⊗ (n+2)

)
(Y )

)
,

(6.76)
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Fig. 6 The (n + 2)-labeled
planar tree ti

where QC• is the Ger∞-structure on C•, ti is the (n + 2)-labeled planar tree shown
on Fig. 6, and �ti is the corresponding component of the comultiplication

�ti : Ger∨(n + 2) → Ger∨(2) ⊗ Ger∨(n + 1). (6.77)

Now using (6.74) and (6.76), we rewrite (6.75) as follows

d ◦ Kn+2(Y ) − I ◦ (K VA
n+1 • α)(Y )

+
n+2∑

i=1

QC•
(
(idGer∨(2) ⊗ (d ◦ K ′

n+1) ⊗ I ) ◦
(
�ti ⊗ id⊗ (n+2)

)
(Y )

)

+
n+2∑

i=1

QC•
(
(idGer∨(2) ⊗ (I ◦ K VA

n+1) ⊗ I ) ◦
(
�ti ⊗ id⊗ (n+2)

)
(Y )

)
= 0,

(6.78)

where α is defined in (6.2).
Since the last two sums in (6.78) involve only binary Ger∞-operations on C• and

these binary operations induce the usual multiplication and the Schouten bracket on
VA, we conclude that each term in the first sum in (6.78) is d-exact and the second
sum in (6.78) is cohomologous to

I ◦ (α • K VA
n+1)(Y )

Therefore, identity (6.78) implies that for every Y ∈ Ger∨(n + 2) ⊗ V ⊗ (n+2)
A the

expression

I ◦ (α • K VA
n+1 − K VA

n+1 • α)(Y )

is d-exact. Thus

α • K VA
n+1 − K VA

n+1 • α = 0
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or, in other words, the element K VA
n+1 is a cocycle in complex (6.3) with differential

(6.5).
Hence, by Theorem 6.1, there exists a degree −1 element

K̃ VA
n ∈ HomSn (Ger∨(n) ⊗ V ⊗ (n)

A , VA) (6.79)

such that

K VA
n+1 = [α, K̃ VA

n ]. (6.80)

Let us now consider the degree −1 element

ξn = I ◦ K̃ VA
n + K ′′

n+1 ∈ FnHom(Ger∨(VA), C•), (6.81)

where K̃ VA
n is element (6.79) entering Eq. (6.80) and K ′′

n+1 is an element in

HomSn+1

(
Ger∨(n + 1) ⊗ V ⊗ (n+1)

A , C•)

which will be determined later.
Using ξn , we define P ′

n+1(t) ∈ Hom(Ger∨(VA), C•) ⊗̂K[t] as the limiting element
of the recursive procedure

(P ′)(0) := Pn+1,

(P ′)(k+1)(t) := Pn+1 +
∫ t

0
dt1

⎛

⎝D(ξn) +
∑

m≥1

1

m! {(P ′)(k)(t1), . . . , (P ′)(k)(t1), ξn}m+1

⎞

⎠ .

(6.82)

Since

d

(
I ◦ K̃ VA

n

)
= 0

the element ξn satisfies the condition

D(ξn) ∈ Fn+1Hom(Ger∨(VA), C•).

Hence, by Lemma 5.1, the sum

P ′
n+1(t) + dtξn ∈ Hom(Ger∨(VA), C•) ⊗̂ �•(�1) (6.83)

is a 1-cell in the∞-groupoid corresponding to Hom(Ger∨(VA), C•) satisfying (6.64)
and such that the Maurer–Cartan element Pn+2 (6.65) satisfies the condition

Pn+2 − Pn+1 − D(ξn) − {Pn+1, ξn}2 ∈ Fn+2Hom(Ger∨(VA), C•). (6.84)
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Fig. 7 The (n + 1)-labeled
planar tree t′i

Let us now show that, by choosing the element K ′′
n+1 in (6.81) appropriately, we

can get desired inclusion (6.66).
For this purpose we unfold {Pn+1, ξn}2(Y ) for an arbitrary Y ∈ Ger∨(n + 1) ⊗

V ⊗ (n+1)
A and get

{Pn+1, ξn}2(Y )=
n+1∑

i=1

QC•
(
(idGer∨(2) ⊗ (I ◦ K̃ VA

n ) ⊗ I ) ◦
(
�t′i ⊗ id⊗ (n+1)

)
(Y )

)
,

(6.85)

where QC• is the Ger∞-structure on C•, t′i is the (n + 1)-labeled planar tree shown
on Fig. 7, and �t′i is the corresponding component of the comultiplication

�t′i : Ger∨(n + 1) → Ger∨(2) ⊗ Ger∨(n). (6.86)

Since the right hand side of (6.85) involves only binary Ger∞-operations on C•
and these binary operations induce the usual multiplication and the Schouten bracket
on VA, we conclude that {Pn+1, ξn}2(Y ) is cohomologous (in C•) to

I ◦ (α • K̃ VA
n )(Y ),

where α is defined in (6.2).
In other words, there exists an element

φ ∈ HomSn+1

(
Ger∨(n + 1) ⊗ V ⊗ (n+1)

A , C•) (6.87)

such that

{Pn+1, ξn}2(Y ) = I ◦ (α • K̃ VA
n )(Y ) + d ◦ φ(Y ).

Hence the expression (D(ξn) + {Pn+1, ξn}2) (Y ) can be rewritten as

(D(ξn) + {Pn+1, ξn}2) (Y ) = d ◦ K ′′
n+1(Y ) + d ◦ φ(Y ) + I ◦ [α, K̃ VA

n ](Y ).

(6.88)
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Thus if

K ′′
n+1 = K ′

n+1 − φ

then Eqs. (6.74), (6.80), and inclusion (6.84) imply that (6.66) holds, as desired.
Thus we showed that one can construct an infinite sequence of Maurer–Cartan

elements

P = P2, P3, P4, . . .

and an infinite sequence of 1-cells (m ≥ 2)

P ′
m(t) + dt ξm−1 ∈ Hom(Ger∨(VA), C•) ⊗̂ �•(�1) (6.89)

such that for every m ≥ 2

P̃ − Pm ∈ FmHom(Ger∨(VA), C•),

the 1-cell P ′
m(t) + dt ξm−1 connects Pm to Pm+1

ξm−1 ∈ Fm−1Hom(Ger∨(VA), C•), (6.90)

and

P ′
m(t) − Pm ∈ FmHom(Ger∨(VA), C•) ⊗̂K[t]. (6.91)

Since the �−1Lie∞-algebra Hom(Ger∨(VA), C•) is complete with respect to
“arity” filtration (5.29), inclusions (6.90) and (6.91) imply that we can form the infinite
composition21 of all 1-cells (6.89) and get a 1-cell which connects the Maurer–Cartan
element P = P2 to the Maurer–Cartan element P̃ .

Corollary 6.4 is proved. ��

Appendix C: On derivations of Cyl(�2coCom)

Let C be a coaugmented cooperad in the category of graded vector spaces and C◦ be the
cokernel of the coaugmentation. As above, we assume that C(0) = 0 and C(1) = K.

Following [22, Section 3], [13], we will denote by Cyl(C) the 2-colored dg operad
whose algebras are pairs (V, W ) with the data

1. a Cobar(C)-algebra structure on V ,
2. a Cobar(C)-algebra structure on W , and
3. an ∞-morphism F from V to W , i.e. a homomorphism of corresponding dg C-

coalgebras C(V ) → C(W ).

21 Note that the composition of 1-cells in an infinity groupoid is not unique but this does not create a
problem.
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In fact, if we forget about the differential, then Cyl(C) is a free operad on a certain
2-colored collection M(C) naturally associated to C.

Following the conventions of Sect. 3, we denote by

Der′ (Cyl(C)) (7.1)

the dg Lie algebra of derivations D of Cyl(C) subject to the condition

p ◦ D = 0, (7.2)

where p is the canonical projection from Cyl(C) onto M(C).
We have the following generalization of (3.3):

Proposition 7.1 The dg Lie algebra Der′
(
Cyl(�2coCom)

)
does not have non-zero

elements in degrees ≤ 0, i.e.

Der′
(
Cyl(�2coCom)

)≤0 = 0.

Proof Let us denote by α and β, respectively, the first and the second color for the
collection M(�2coCom) and the operad Cyl(�2coCom).

Recall from [22] that Cyl(�2coCom) is generated by the collection M =
M(�2coCom) with

M(n, 0;α) = s�2coCom◦(n) = s3−2n
K,

M(0, n;β) = s�2coCom◦(n) = s3−2n
K,

M(n, 0;β) = �2coCom(n) = s2−2n
K,

and with all the remaining spaces being zero. LetD be a derivation of Cyl(�2coCom)

of degree ≤ 0.
Since

Cyl
(
�2coCom

)
(n, 0, α) = �Lie∞(n) and Cyl

(
�2coCom

)
(0, n, β)

= �Lie∞(n),

observation (3.3) implies that

D
∣∣∣
M(n,0;α)

= D
∣∣∣
M(0,n;β)

= 0.

Hence, it suffices to show that

D
∣∣∣
M(n,0;β)

= 0. (7.3)

Let us denote by π0(Treek(n)) the set of isomorphism classes of labeled 2-colored
planar trees corresponding to corolla (n, 0;β) with k internal vertices. Figure 8 show
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3 1 4

52

4 3 1 5 2

Fig. 8 Solid edges carry the color α and dashed edges carry the color β; internal vertices are denoted by
small white circles; leaves and the root vertex are denoted by small black circles

two examples of such trees with n = 5 leaves. The left tree has k = 2 internal vertices
and the right tree has k = 3 internal vertices.

For a generator X ∈ M(n, 0;β) = s2−2n
K, the elementD(X) ∈ Cyl(�2coCom)

takes the form

D(X) =
∑

k≥2

∑

z∈π0(Treek (n))

(tz; X1, . . . , Xk) (7.4)

where tz is a representative of an isomorphism class z ∈ π0(Treek(n)) and Xi are the
corresponding elements of M.

For every term in sum (7.4), we have k1 Xi ’s in s�2coCom◦ (call them Xia ), and
k2 Xi ’s in �2coCom (call them X jb ).

We obviously have that k = k1 + k2 and

|D| =
k1∑

a=1

|Xia | +
k2∑

b=1

|X jb | − |X | (7.5)

or equivalently

|D| = 2(n − 1) +
k1∑

a=1

(3 − 2nia ) +
k2∑

b=1

(2 − 2n jb ),

where nia (resp. n jb ) is the number of incoming edges of the vertex corresponding to
Xia (resp. X jb ).

On the other hand, a simple combinatorics of trees shows that

n − 1 =
k1∑

a=1

(nia − 1) +
k2∑

b=1

(n jb − 1)

and hence

|D| = k1.
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Since |D| ≤ 0 the latter is possible only if k1 = 0 = |D|, i.e. every tree in the sum
D(X) is assembled exclusively from mixed colored corollas. That would force every
tree t to have only one internal vertex which contradicts to the fact that the summation
in (7.4) starts at k = 2.

Therefore (7.3) holds and the proposition follows. ��
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