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Abstract This work continues the study of a homotopy-theoretic construction of
the author inspired by the Bott–Taubes integrals. Bott and Taubes constructed knot
invariants by integrating differential forms along the fiber of a bundle over the space
of knots in R

3. Their techniques were later used by Cattaneo et al. to construct real
“Vassiliev-type” cohomology classes in the space of knots inRd , d ≥ 4. By doing this
integration via a Pontrjagin–Thom construction, we constructed cohomology classes
in the knot space with arbitrary coefficients. We later showed that a refinement of this
construction recovers the Milnor triple linking number for string links. We conjecture
that we can produce all Vassiliev-type classes in this manner. Here we extend our
homotopy-theoretic constructions to the stages of the Taylor tower for the embedding
space, which arises from theGoodwillie–Weiss embedding calculus.We use themodel
of “punctured knots and links” for the Taylor tower.

Keywords Spaces of knots and links · Configuration space integrals · Embedding
calculus · Pontrjagin–Thom constructions · Finite-type invariants of knots and links ·
Milnor triple linking number

1 Introduction

This paper concerns spaces of knots and links. More precisely, for d ≥ 3, let Ld
m :=

Emb(
∐m

i=1 R,Rd), the space ofm-component long links (a.k.a. string links) inRd , that
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is, the space of embeddings ofm disjoint copies ofR intoRd with prescribed behavior
outside of the intervals

∐m
i=1[−1, 1] ⊂ ∐m

i=1 R. This is an obvious generalization of
the spaceLd

1 = Emb(R,Rd) of long knots inRd , which we often denoteKd or justK.
For d = 3 and m = 1, the connected components of L3

1 correspond to isotopy classes
of long knots, which correspond (bijectively) to isotopy classes of closed knots. When
d ≥ 4, Emb(

∐
m R,Rd) is connected but is far from being topologically trivial. (For

example, see [6,16] for the case m = 1).
Webuild on our previouswork [13], inwhichwe produced cohomology classeswith

arbitrary coefficients in these spaces via a homotopy-theoretic construction inspired
by the configuration space integrals of Bott and Taubes. In [14], we showed that a “glu-
ing refinement” of this construction recovers the triple linking number μ123 for string
links. We conjecture that we can produce integral multiples of all the Vassiliev-type
classes of Cattaneo–Cotta-Ramusino–Longoni [6], thus showing that these classes are
rational. This conjectured statement is work in progress. (Our idea there is that graph
cocycles come from cancellations of terms in the graph complex; these cancellations
can be grouped into pairs; and these canceling pairs correspond to gluing pairs of con-
figuration spaces, a construction which should be amenable to singular (co)homology
and not just de Rham theory).

The core idea of this paper is to extend the methods of Volić from [23] to relate our
homotopy-theoretic integration to the embedding calculus of Goodwillie and Weiss.
The embedding calculus produces a Taylor tower of spaces

· · · → TnKd → Tn−1Kd → · · · → T0Kd = ∗

together with compatible maps Kd → TnKd . For d ≥ 4, its inverse limit is the knot
spaceKd itself, as shown in work of Goodwillie, Klein, andWeiss [9,10]. Volić’s main
result in [23] is that for d = 3, all finite-type invariants factor through the tower. For
the space Ld

m of m-component links in R
d , there is a similar multi-tower of spaces,

indexed by m nonnegative integers (n1, . . . , nm) rather than one nonnegative integer
n. For d ≥ 4, the work of Goodwillie, Klein, and Weiss also implies convergence of
this tower to the link space.

Our first main result is Theorem 3.4, which is a generalization from knots to links of
Volić’s result that finite-type invariants factor through the tower. The other main result
of this paper is that both the basic homotopy-theoretic construction of [13], as well as
the refined construction which yields μ123, extend to the Taylor tower. These results
appear as Proposition 3.6 and Theorem 3.7. While the core idea of this paper applies
to any d and m, we will at some point set d = 3,m = 3 to address the construction of
μ123. We use a “punctured links” model for the Taylor tower that has appeared in work
of other authors, e.g., [21,23,26]. Ultimately, we deduce that μ123 factors through the
stage T(2,2,2)L3

3 of the multi-tower.
We could deduce this latter result via integration of forms, using Theorem 3.4,

which produces all finite-type link invariants in the tower by integration. The advan-
tage of using a more homotopy-theoretic approach is that one may be able to
construct integer or mod p classes that cannot be realized by integration. Then sim-
ilar arguments to the ones in this paper would allow one to see those classes in the
tower.
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Finally, we point out that the triple linking number for closed links is seen at stage
(1, 1, 1) in the tower for the space of link maps both in work of Munson [17] and in
our recent work [7]. Thus μ123 should also appear in the (1,1,1) stage of the tower
for the embedding space L3

3. This would also match Conjecture 1.1 of [3], which says
that every type-n invariant factors through the (n+1)-th stage of the homotopy tower.
(The triple linking number for string links is a finite-type invariant of type 2, and
1 + 1 + 1 = 3). However, while stage (2,2,2) may not be the lowest stage at which
μ123 appears, it does seem to be the best result that one can prove using any method
based on configuration space integrals. This is related to the reason why [23] yields
type-n invariants at stage 2n, rather than n+1 as in Conjecture 1.1 of [3]: to construct
a type-n invariant via Bott–Taubes integrals, one needs n pairs of points, rather than
just n points.

1.1 Organization of the paper

In Sect. 2, we briefly review finite-type invariants of knots and links. We then review
the configuration space integrals of Bott and Taubes, including the generalization to
string links. We also review our previous results concerning the homotopy-theoretic
reformulation of these integrals.

In Sect. 3, we review the “punctured knots”model for the stages of the Taylor tower,
as well as Volić’s result extending the Bott–Taubes integrals to the stages of the tower
in this model. We then show that this result generalizes to the setting of string links
by proving Theorem 3.4. Thus finite-type invariants of string links factor through the
Taylor tower, just as in the case of knots. Finally, we show that the constructions of
[13,14] extend to the Taylor tower, proving the main results, namely Proposition 3.6
and Theorem 3.7.

In Sect. 4, we discuss an alternative method for obtaining the main results. The
alternative is to use a variant of the aligned maps model rather than the punctured
knots model. The advantage of the alignedmapsmodel is that it has amonoid structure
compatible with connect-sum, whereas we do not know of such a structure on the
punctured knots model.With the appropriate alignedmaps model, it is straightforward
to carry out the main constructions in this paper (including the original result of Volić
in [23]). Thus this model yields alternative proofs for all of these results about the
tower. We keep this last Section brief: the results we outline there are equivalent to
those in the previous Section, and the potential benefits of combining them with the
monoid structure remains to be explored.

2 Finite-type invariants, Bott–Taubes integrals, and generalizations

2.1 Finite-type invariants of knots and links

The configuration space integrals of Bott and Taubes are closely related to finite-type
invariants of knots and links, which can be defined in elementary terms. We review
the main ideas here, but refer the reader to, for example, Bar-Natan’s paper [4] for
details. When we say “links” in this Subsection, we include knots as a special case.
We also use “links” to mean either long links or closed links.
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To give the definition, we first note that any R-valued (or abelian-group-valued)
invariant of oriented links can be extended to links with finitely many transversely
self-intersections by inductively applying the “Vassiliev skein relation”:

V = V − V

An invariant v is then called finite-type or Vassiliev of type n if v vanishes on all knots
with > n self-intersections. If we let Vn denote the R-vector space (or Z-module) of
type-n invariants, we have an increasing filtration V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · . The
conjecture of Vassiliev that any two knots can be distinguished by some finite-type
invariant is still open.

We next mention some of the simplest examples of finite-type invariants. The space
V0 is easily seen to be the space of constant functions. The pairwise linking number
(of either long links or closed links) is a type-1 invariant. The triple linking number
for long links, which we write as μ123, is a type-2 invariant. This invariant will feature
prominently in Sect. 3.6.

Our work in that Section relies on a connection between these invariants and cer-
tain combinatorial diagrams. First, it is not difficult to construct a canonical, injective
map from Vn/Vn−1 to a space (CDn)

∗, which is the dual of a vector space of chord
diagrams with n chords. Below is an element in CD5 in the setting of closed knots.
In the setting of long knots, the circle is replaced by an interval, and in the set-
ting of closed (respectively long) m-component links, one has m circles (respectively
intervals).

Amuchmore difficult theorem is that this canonical map to (CDn)
∗ is an isomorphism

onto a certain subspace of (CDn)
∗:

W : Vn/Vn−1
∼=

(CDn/(1T, 4T ))∗

Above, 1T and 4T are the one-term and four-term relations imposed on chord dia-
grams in CDn ; their definitions can be found in [4]. The fact that this map W is an
isomorphism is deduced by constructing an inverse. This inverse map can be con-
structed via either the Kontsevich integral or the Bott–Taubes integrals, the latter of
which we discuss below. We first review compactifications of configuration spaces,
which are needed for Bott–Taubes integrals.
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2.2 Configuration spaces and their compactifications

The configuration space Cn(M) is defined as the complement of the “fat diagonal” in
Mn :

Cn(M) := {(x1, . . . , xn) ∈ Mn|xi �= x j ∀i �= j}.

It is not compact, even ifM is compact. For a compactmanifoldM , there is a compacti-
fication ofAxelrod–Singer/Fulton–MacPherson (also sometimes called the “canonical
compactification”), which we denote Cn[M]. This space keeps track of directions of
collision and relative rates of approach of points in the configuration. It is homotopy
equivalent to the original configuration space Cn(M). It also has the important feature
of being a smooth manifold with corners [1,8]. This is crucial for the Bott–Taubes
integrals, as well as for neat embeddings in our homotopy-theoretic reformulation.
For M = R

d we define Cn[Rd ] as a subspace of Cn+1[Sd ] with the last point at ∞.
For M = R, Cn[R] has n! homeomorphic connected components; from now on, we
will consider just the component where the n points are in order.

The compactification Cn[M] can be defined via blowups. Specifically, Cn[M] is
the closure of the image of

Cn(M) ↪→
∏

S⊂{1,...,n}
|S|≥2

Bl(Mn,�S)

where Bl(Mn,�S) denotes the blowup of Mn along the diagonal where the points
indexed by S are equal. This endows Cn[M] with a stratification, where each stratum
is indexed by a collection {S1, . . . , Sk} of (distinct) subsets Si ⊂ {1, . . . , n}. The sets
{S1, . . . , Sk} indexing strata are precisely those which are either nested or disjoint:
Si ∩ S j �= ∅ implies either Si ⊂ S j or S j ⊂ Si . Intuitively, each subset Si indicates a
collision of all the points whose indices are in Si . If Si ⊂ S j , then the points indexed
by Si have collided faster than the remaining points indexed by S j . We note that a
stratum indexed by {S1, . . . , Sk} has codimension k. Finally, notice that taking Cn[R]
to be just the component where the points are in order puts further restrictions on
which Si can appear in a collection {S1, . . . , Sk} indexing a stratum of Cn[R].

There is another compactification of Cn(M) called the simplicial compactification
Cn〈M〉. This compactification is not smooth, but it is needed for the cosimplicial
models for spaces of knots and links. It keeps track of directions of collisions, but not
relative rates of approach. Thus Cn〈M〉 is a quotient of Cn[M]. (The reader may com-
pare the definitions of the two compactifications in [21, Definition 4.1]). The quotient
map is a homotopy equivalence [19, Corollary 5.9]. Define Cn〈Rd〉 as the subspace
of Cn+1〈Sd〉 where the last point is at ∞. As defined, Cn〈R〉 has n! homeomorphic
connected components; from now on, we will useCn〈R〉 to denote just the component
where the n points are in order. Then Cn〈R〉 ∼= �n . For us this is the only important
point: there is a quotient map Cn[R] → �n that just forgets relative rates of approach.

Finally, we will need one more slightly different compactification. Let Cn[I d ]
and Cn〈I d〉 respectively denote the subspaces of Cn+2[Rd ] and Cn+2〈Rd〉 where all
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the points are in the cube I d = [−1, 1]d and the first and last points are fixed at
(±1, 0, . . . , 0). (These spaces are denoted Cn[I d , d] and Cn〈I d , ∂〉 in the papers of
Sinha and [2,3]). Then Cn〈I 〉 ∼= Cn〈R〉 ∼= �n . The space Cn[I ] is the n-dimensional
associahedron Kn+2, which is a quotient of Cn[R], since, as defined above, the latter
space records relative rates of approach to ∞ and not just relative rates of approach
to +∞ and −∞ separately. It is well known that the strata of Kn+2 can be indexed
by (partial) parenthetizations of n + 2 letters. We can see that this corresponds to the
Fulton–Macpherson indexing of strata ofCn[I ] by sets of subsets. In fact, call a subset
S of an ordered set T consecutive if for every i, j, k ∈ T with i < j < k and i, k ∈ S,
we have that j ∈ S. Then each stratum of Cn[R] is indexed precisely by collections
{S1, . . . , Sk} of consecutive proper subsets of {−∞, 1, 2, . . . , n,+∞}which are either
nested or disjoint. Such a collection is easily seen to correspond to a parenthetization.

2.3 Bott–Taubes integrals

In [5], Bott and Taubes constructed knot invariants by considering a bundle

F[q; t] E[q; t]

Emb
(
S1,R3

)

over the space of knots in R3. The fiber F[q; t] over a knot K is a compactification of
a configuration space of q + t points in R3, q of which lie in the image of K . Another
way of saying this is that the total space E = E[q; t] is the pullback in the square
below:

E[q; t] Cq+t
[
R
3
]

Emb
(
S1,R3

)× Cq
[
S1
]

Cq
[
R
3
]

(1)

Here the right-hand map is projection to the first q points. The bottom map is given
by evaluating the embedding on the q points in S1. Explicitly, this bottom map sends
a point (K , t1, . . . , tq) to (K (t1), . . . , K (tq)).

The cohomology of the configuration space Cq+t [R3] is generated by certain
“spherical forms” θi j ; each θi j is the pullback of the volume form on S2 via the
map ϕi j which records the unit vector between xi and x j . Bott and Taubes then con-
sidered the pullbacks of these θi j to E[q; t], which by abuse of notation we will also
call θi j . They integrated certain sums of products of these θi j along the fiber F[q; t] of
the bundle E[q; t] → Emb(S1,R3). Since F[q; t] has nonempty boundary, Stokes’
Theorem implies that

d
∫

F[q;t]
α =
∫

∂F[q;t]
α|∂F[q;t].
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Thus, to show that a fiberwise integral produces a closed form, it suffices to show
that the integral along the boundary of the fiber vanishes. Bott and Taubes showed
that the integrals along certain types of boundary faces vanish, while for appropriate
choices of α, the contributions along the remaining faces cancel each other. The latter
type of face, along which the integrals do not vanish, is a principal face, which is
defined as any (codimension-one) stratum of Cn[M] involving a collision of only two
points,1 i.e., any stratum indexed by {S} with S ⊂ {1, . . . , n}, |S| = 2. The fact that
principal face contributions do not vanish is important for recasting this construction in
homotopy-theoretic terms. Ultimately, Bott and Taubes produced a zero-dimensional
closed form on Emb(S1,R3), which represents a knot invariant.

Theirmethodswere then used byD. Thurston to obtain all finite-type knot invariants
[22,25] by constructing (for each n) an inverse to the map

W : Vn/Vn−1 → (CDn/(1T, 4T ))∗ (2)

mentioned in Sect. 2.1. This requires enlarging the space CDn of chord diagrams on
2n vertices to a space T Dn of trivalent diagrams on 2n vertices. The picture below
shows an element in T D5 in the setting of closed knots.

To a diagram D ∈ T Dn one associates the configuration space bundle ED = E[q; t]
with fiber FD , where q is the number of vertices on strands and t is the number of
remaining vertices. One also associates to D a differential form θD = ∧(i, j)∈D θi j ,
where this wedge product is taken over all edges (i, j) in D. Thus a diagram D pro-
duces a fiberwise integral

∫
FD

θD . Counting the dimensions of θD and FD using the

trivalence of D shows that the result is a 0-dimensional form on Emb(S1,R3). If one
imposes a relation on T Dk called the STU relation, one finds that T Dk/(1T, STU ) ∼=
CDk/(1T, 4T ) [4]. Thus an element w ∈ CDk/(1T, 4T ) corresponds to an element
w ∈ T Dk/(1T, STU ), and the inverse to the map W in (2) is essentially given by2

BT : w �→ BT (w) =
∑

D∈T Dn

w(D)

∫

FD

θD. (3)

1 Note that because of the blowups performed in constructing Cn [M], any stratum indexed by a single set
{S} has codimension one, regardless of the cardinality of S.
2 We have omitted the so-called anomaly term in our formula for BT . This (possibly nonzero) anomaly
term is needed to construct finite-type knot invariants, but it vanishes in the case of finite-type link-homotopy
invariants, such as μ123.
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Theorem 2.1 ([22,25]) Given any R-valued type-n knot invariant

v : π0

(
Emb
(
S1,R3

))
→ R

there is an element w ∈ T Dk/(1T, STU ) such that v is given by the sum of configu-
ration space integrals BT (w):

v = BT (w) : π0

(
Emb
(
S1,R3

))
→ R.

Explicitly, BT (w) is given by (3), and since BT is inverse to the canonical map W,
w = W (v).

The square (1) above can be generalized in several ways. First, it is completely
straightforward to replace closed knots by long knots: one just replaces S1 by R

in (1). Second, one can generalize from knots to links (long or closed). The obvi-
ous analogue of Theorem 2.1 holds in all of these cases too. The generalization for
long links, which is slightly less straightforward than that for closed links, is [12,
Theorem 5.6]. The square (1) also makes sense if one replaces R3 by Rd , d ≥ 4. Cat-
taneo, Cotta-Ramusino, and Longoni constructed nontrivial real cohomology classes
in Emb(S1,Rd) in this way [6].

The generalization to long links requires one to keep track of relative rates of
approach to infinity of configuration points in the domain. In this most general setting
of Ld

m , one considers the pullback

E[q1, . . . , qm; t] Cq1+···+qm+t
[
R
d
]

Ld
m × Cq1+···+qm

[∐m
i=1 R
]

Cq1+···+qm

[
R
d
]

(4)

where the compactified configuration space lower-left corner is defined as follows:

Definition 2.2 Let Cq1+···+qm [∐m
i=1 R] be the closure of the image of the map

Cq1 [R] × · · · × Cqm [R] → Cq1+···+qm

[
R
d
]

(5)

induced by any m-component string link.

This space was shown to be a manifold with corners in [12, Lemma 4.4] and [14,
Sect. 2.3.2].

We now give another description ofCq1+···+qm [∐m
i=1 R] via blowups. This descrip-

tion will be useful in Sect. 3.4. First recall that the product Cq1[R] × · · · × Cqm [R]
is a manifold with corners. Recall also that a stratum in any factor Cqi [R] is indexed
by a collection of subsets of {1, . . . , qi ,∞}, which indicates collisions of points. The
strata in this product are of course just all possible products of strata in the factors.
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Proposition 2.3 The space Cq1+···+qm [∐m
i=1 R] can be obtained from Cq1[R]× · · ·×

Cqm [R] by blowing up every stratum that involves collisions with ∞ on at least two
of the m strands.

Proof First notice that if any two strata satisfy this property, then so does their intersec-
tion, so this blowup is well-defined, by first blowing up the lowest-dimensional strata.
Next, in Definition 2.2, the map (5) is injective away from configurations in which
some point is at∞. So away from∞,Cq1+···+qm [∐m

i=1 R] andCq1[R]×· · ·×Cqm [R]
agree via a stratum-preserving diffeomorphism.

Near ∞, Cq1+···+qm [∐m
i=1 R] acquires the stratification on Cq1+···+qm [Rd ]. In par-

ticular, each codimension-k stratum is given by a set of nested or disjoint sets

{S1, . . . , Sk} (6)

with each Si ⊂ {1, . . . , q1 + · · · + qm,∞}.

(The only difference between the two stratifications is that points in a configuration in
Cq1+···+qm [∐m

i=1 R]must lie in order on the string link strands, so not every stratum in
Cq1+···+qm [Rd ] occurs as a stratum inCq1+···+qm [∐m

i=1 R]. Alternatively, we can think
of such strata as empty in Cq1+···+qm [∐m

i=1 R]. Note also there are two directions of
approach to infinity along a string link, so each stratum at infinity inCq1+···+qm [∐m

1 R]
is not connected, whereas each stratum at infinity in Cq1+···+qm [Rd ] is connected).

On the other hand, a codimension-k stratum at ∞ in Cq1[R] × · · · × Cqm [R] is
given by

({
S11 , . . . , S

1
k1

}
, . . . ,
{
Sm1 , . . . , Smkm

}) ∼=
{
S11 , . . . , S

1
k1 , . . . , S

m
1 , . . . , Smkm

}
(7)

with each S j
i ⊂
⎧
⎨

⎩
1 +

j−1∑

	=1

q	, . . . ,

j∑

	=1

q	,∞
⎫
⎬

⎭
and with k1 + · · · + km = k.

The difference between (6) and (7) is that in (6), an Si may contain points fromdifferent
strands. Thus in the new stratification at∞ (6), we record relative rates of approach to
∞ of points on different strands (rather than just relative rates of approach of points on
the same strand). But the relative rates of approach of each such collection of points
{x1, . . . , xp,∞} are recorded precisely by blowing up the stratum where the points
x1, . . . , xp,∞ have collided. ��

2.4 A related homotopy-theoretic construction

In previous work, we considered the Bott–Taubes bundle described above, and carried
out “integration along the fiber” homotopy-theoretically, whichwe briefly review now.
See our work [13, Sect. 3] for details. First, take a neat embedding of the total space
E = E[q; t] into a trivial bundle of a Euclidean space with corners:

eN : E ↪→ K × R
N−M × [0,∞)M .
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Then collapse by the complement of a tubular neighborhood of E . Quotienting by
boundary subspaces gives a map

τ : �NK+ → EνN /(∂EνN )

from the N -fold suspension of the base space K (union a disjoint basepoint) to the
Thom space of the normal bundle νN of eN , modulo its boundary. In cohomology, this
gives a map corresponding to integration along the fiber [13, Corollary 3.7].

By letting N in eN approach ∞, we then get a map from the suspension spectrum
of K to the Thom spectrum of the normal bundle to the total space, which induces in
cohomology a map similar to the Bott–Taubes integration along the fiber. Using the
Thom isomorphism, this induces an “integration along the fiber” map in cohomology
with arbitrary coefficients, producing classes in H∗K.

2.5 Recovering the triple linking number for string links

In [14], we showed that a modification of the construction in [13] recovers μ123, the
triple linking number for string links. This modified construction is based on the fact
that this invariant can be expressed as a sum of configuration space integrals [12]. In
[14], we identified the specific integrals in this sum, which correspond to four trivalent
diagrams L , M, R, T , shown Fig. 1. A diagram gives rise to a configuration space
integral, as explained in the case of knots in Sect. 2.3. In the case of links, a diagram D
gives rise to the configuration space bundle ED = E[q1, . . . , qm; t] → L3

m , where qi
is the number of vertices on the i-th strand and t is the number of vertices not on any
strand, such as the one in the diagram T in Fig. 1. The four bundles EL × S2, EM × S2,
ER × S2, and ET thus all have 6-dimensional fibers. We glued these bundles fiberwise
along principal faces, according to the principal face cancellations in the integrals.

The resulting bundle is denoted Eg → L3
3. The remaining boundary ∂Eg consists

of faces at infinity. By gluing together neat embeddings of each bundle into L3
3 ×

R
M × [0,∞)N , we obtained a neat embedding of Eg into a trivial bundle of glued

Euclidean spaces with corners:

e : Eg ↪→ L3 ×
(
R

M × [0,∞)N
)

/ ∼ .

We then took the Pontrjagin–Thom collapse and quotiented the remaining boundary
to get a map in cohomology τ ∗ : H∗(Eg, ∂Eg) → H∗−6(L3

3).
To recover the triple linking number μ123, we used a map

Eg → S2 × S2 × S2.

On ET ⊂ Eg , each of the three maps to S2 corresponds to an edge in T , i.e., the
map is the unit vector between the endpoints of the edge. On each remaining piece
ED × S2 ⊂ Eg , two of the three maps to S2 are similar “unit vector maps” ED → S2,
while the third is given by projection to the S2 factor. The above map descends to a
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map of pairs

(
Eg, ∂Eg

)→
(
S2 × S2 × S2,D

)

where D is a subspace containing the image of ∂Eg (the faces at infinity). We then
considered a certain cohomology class [α] ∈ H6(S2 × S2 × S2,D) which maps to a
generator of H6(S2 × S2 × S2). Let [β] ∈ H6(Eg, ∂Eg) denote the pullback of [α]
to (Eg, ∂Eg). One main result in [14] is that the image of [β] ∈ H∗(Eg, ∂Eg) under
τ ∗ is μ123 ∈ H0(L3

3). This result requires choosing the correct lift [α] of a generator
in H6(S2 × S2 × S2) to H6(S2 × S2 × S2,D). This choice is specified and justified
in Sects. 3.4 and 3.5 of our paper [14].

3 Integration and its homotopy-theoretic analogue on the Taylor tower

In [23], Volić showed that the Bott–Taubes integrals can be done on the stages of the
Taylor tower for the knot space K = Emb(R,Rd). In this section we first observe
that Volić’s extension applies equally well to Ld

m . We then show that our homotopy-
theoretic constructions can also be carried out on these spaces.

3.1 The “punctured knots” model for the Taylor tower for the knot space

We begin by briefly reviewing the Taylor tower for the knot space, which is also
described in papers of Volić [23,24] and Sinha [20,21]. It consists of spaces TnK
with maps TnK → Tn−1K and compatible maps K → TnK. In a certain “mapping
space” model of TnK, the map K → TnK is essentially an evaluation map. In this
paper, we focus instead on the “punctured knots” model (used by Volić in [23]), but
by slight abuse of terminology, we will still call this map the “evaluation map”. To
describe the latter model of TnK, fix some closed disjoint subintervals A0, . . . , An

of I . These are the “punctures”. Let P[n] be the category whose objects are subsets
of [n] = {0, 1, . . . , n} and whose morphisms are inclusions. Let P0[n] be the full
subcategory of P[n] consisting of nonempty subsets.

Definition 3.1 Let ECn be the functor from P[n] to spaces which on objects is given
by

S �→ ES := Emb

(

R −
⋃

i∈S
Ai ,R

d

)

.

On morphisms, an inclusion S ⊂ T is sent to the restriction map ES → ET . Thus
ECn is an (n+1)-cubical diagram of embedding spaces. Define TnK as the homotopy
limit of the restriction of ECn to P0[n]. In other words, TnK is the homotopy limit of
the associated punctured cubical diagram.

123



454 R. Koytcheff

More concretely, this homotopy limit TnK can be identified as the subspace

TnK ⊂
∏

∅�=S⊂{0,...,n}
Map
(
�|S|−1, ES

)
(8)

such that all squares constructed from these maps and inclusions S ↪→ T of subsets of
{0, 1, . . . , n} commute. Since K is the initial object in ECn (and hence the homotopy
limit of that diagram), the map K → TnK is just the map from the homotopy limit of
the whole cube to the homotopy limit of the restriction to P0[n]. (Also note that for
n ≥ 2,K is the limit of the diagram ECn|P0[n]). In concrete terms,K sits inside TnK
as constant families of punctured knots. The maps TnK → Tn−1K are the restrictions
of homotopy limits induced by an inclusion [n − 1] ↪→ [n]. (Any two choices of this
inclusion induce homotopic maps).

3.2 The “punctured links” model for the multi-tower for spaces of links

For the space Ld
m , the embedding calculus gives rise to a multi-tower with stages

indexed bym-tuples of natural numbers, rather than by natural numbers. In this Subsec-
tion,we follow thework ofMunson andVolić [18, Sect. 4].WeviewEmb(

∐m
i=1 R,Rd)

as the value of the functor Emb(−,Rd) from O(
∐m

i=1 R) = ∏m
i=1O(R). Thus we

have a multivariable functor of m variables.
Define each stage in the tower as follows. Given a multi-index �n = (n1, . . . , nm),

fix ni + 1 closed disjoint subintervals Ai
0, . . . , A

i
ni ⊂ I in the i-th copy of R. Now let

EC�n be the functor from P[n1] × · · · × P[nm] to spaces given by

(S1, . . . , Sm) �→ ES1,...,Sm := Emb

⎛

⎝
m∐

i=1

⎛

⎝R −
⋃

j∈Si
Ai
j

⎞

⎠ ,Rd

⎞

⎠

Thus EC�n is a multi-cubical diagram. Define T�nLd
m as the homotopy limit of the

restriction of EC�n to P0[n1] × · · · × P0[nm]. Thus T�nLd
m is a subspace of

∏

(S1,...,Sm )∈P0[n1]×···×P0[nm ]
Map
(
�|S1|−1 × · · · × �|Sm |−1, ES1,...,Sm

)
.

3.3 Bott–Taubes integrals over the Taylor tower for the space of knots

As in (8), TnK is a subspace of
∏

S Map(�|S|−1, ES), a product of spaces of con-
tinuous maps. One can put a smooth structure on the embedding spaces ES and
replace Map(�|S|−1, ES) by the space of smooth maps3 �|S|−1 → ES . The resulting

3 The space �|S|−1 can be given a smooth structure via charts from Euclidean spaces with corners.
A smooth map on �|S|−1 just corresponds to a map which extends to an open subset of Euclidean space.
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subspace of TnK is weakly homotopy equivalent to TnK, roughly because (fam-
ilies of) continuous maps are homotopic to (families of) smooth maps. Cf. [23,
Definition 2.3]. From now on, we will take Map(�|S|−1, ES) and TnK to mean
spaces of smooth maps. This allows us to put the structure of a smooth infinite-
dimensional manifold TnK, much like one can for an embedding space such as ES . We
similarly take T�nLd

m to be a space of smooth maps, which thus admits a smooth struc-
ture. This is needed for constructing differential forms in these spaces via fiberwise
integration.

Now one would like to define a bundle over TnK by replacing the space of knots
K by TnK in the original Bott–Taubes pullback square (1). Recall that the quotient
Cn〈I 〉 ofCn[I ] is diffeomorphic as amanifoldwith corners to�n . Thuswe can include
Cn[I ] ↪→ Cn[I ] × �n as the graph of the quotient map. Using the inclusion (8), we
then almost have the composition

TnK × Cn[I ]
(∏

S⊂{0,...,n} Map
(
�|S|−1, ES

)×�n
)
×Cn[I ] Cn

[
R
d
]

The problem is that each ES is a space of knots with |S| punctures, and a point in a
configuration in Cn[I ] may lie in one of the punctures. Volić resolves this difficulty in
[23] by following the canonical quotient mapCn[I ] → Cn〈I 〉 ∼= �n by a smooth map
γ : Cn〈I 〉 → �n , which depends on the punctures A0, . . . , An . Roughly, this map
γ sends a configuration with points lying in certain punctures to a certain boundary
point �t ; this point �t is in turn sent by an element of holim(ECn) to a punctured knot
which has all of those punctures filled in.

More precisely, write the target of γ in barycentric coordinates:�n = {(t0, . . . , tn)|
t0 + · · · + tn = 1}. Each codimension-one face of �n can be written as ∂i�

n :=
{(t0, . . . , tn)|ti = 0} for i = 0, .., n. Fix a configuration c in Cn[I ] with points located
at (x1, . . . , xn). Let T := {i ∈ {0, . . . , n}| some x j ∈ Ai } and let S = [n]\T . Then γ

has the property that

γ (c) ∈
⋂

i∈T
∂i�

n . (9)

Now an element of TnK is a collection of maps, one of which is a map from �|S|−1 ∼=
�n−|T | ∼= ⋂i∈T ∂i�

n to ES = Emb(R − �i /∈T Ai ,R
d). Thus property (9) ensures

that for every configuration in Cn[I ] with points located at (x1, . . . , xn), we get a
point in some �|S|−1 which when plugged into an element of Map(�|S|−1, ES) gives
a punctured knot eS ∈ ES such that no x j lies in any of its punctures.

Another key feature of γ is that its restrictions to any two faces are the same
map from an (n − 1)-simplex (and the restrictions of that map agree on all the
(n − 2)-dimensional faces, etc.). Thus for every q ≤ n, we have the restriction
γq : Cq〈I 〉 → �n .

Themap γ is constructed inductively on n and via partitions of unity on the simplex,
which ensure smoothness. We refer the reader to Proposition 4.1 and its proof in [23]
for all the details.
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Volić then defines the space �[q] as the graph of the compositeCq [I ] → Cq〈I 〉 →
�n . The properties of γ allow the bottom arrow in the square below to be defined for
any q ≤ n, and �[q; t] is then defined as the pullback in this square.

�[q; t] Cq+t
[
R
d
]

�[q] × TnK Cq
[
R
d
]

(10)

Projecting toTnK gives a bundle�[q; t] → TnK for anyn ≥ q,whosefiber is a smooth
manifoldwith corners. This allows one to integrate along the fiber just as in the original
Bott–Taubes construction and produce invariants TnK → R by configuration space
integrals. On the image of K, this map agrees with the usual Bott–Taubes integrals.
This leads to part (1) of Theorem 3.2 below.

Part (2) of Theorem 3.2 concerns the stage of the tower at which one sees type-n
invariants and is deduced as follows. As in Theorem 2.1, a universal type-n invariant
requires configurations of 2n points, i.e., q+ t = 2n. Moreover, one needs to consider
configurations with all q + t points on the knot, i.e., t = 0 and q = 2n (which
corresponds to chord diagrams). Thus the lowest stage of the tower where one sees
type-n invariants is stage 2n.

Theorem 3.2 (Theorem 1.1 of [23]) (1) Finite-type invariants of long knots over R
factor through the Taylor tower {TnK}n. (2) More specifically, any type-n invariant
factors through T2nK. In other words, given a type-n invariant v : π0K → R, there is
a configuration space integral which gives the dashed arrow shown below and makes
the diagram commute:

π0(T2nK)

π0K

π0(ev2n)

v

R

Remark 3.3 (Configurations on knots in a box vs. configurations on long knots)
Although Volić seems to work entirely with configurations in I in [23], it seems
preferable, or perhaps even necessary, to use configurations in R, since one needs the
vanishing of boundary integrals along faces at infinity in the Bott–Taubes construc-
tion. Thus we replace Cn[I ] by Cn[R]. We again start with the canonical quotient
Cn[R] → Cn〈R〉 by forgetting relative rates of approach. We then follow this by the
map Cn〈R〉 → Cn〈I 〉 given by sending points outside of I to the nearest endpoint of
I . Finally, applying γ gives a map γ̃ : Cn[R] → �n , defined as the composition

γ̃ : Cn[R] Cn〈R〉 Cn〈I 〉 γ
�n .
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This map can easily be made smooth by smoothing out γ near the boundary of Cn〈I 〉.
Again, there are restrictions γ̃q : Cq [R] → �n . Thus from now on, we will take �[q]
to be the graph of γ̃ and�[q; t] to be the pullback in square (10) using this replacement
of �[q].

3.4 Generalizing to link spaces

In this section, we will show that Volić’s Theorem 3.2 generalizes from long knots to
long links.

Theorem 3.4 Finite-type invariants of string links over R factor through the Taylor
tower T�•L3

m for any m ≥ 1. In general, an invariant of type n factors through all
stages at least as low as (2n, 2n, . . . , 2n). In other words given a type-n invariant
v : π0L3

m → R, there is a configuration space integral which gives the map shown by
the dotted arrow below and makes the diagram commute:

π0(T(2n,2n,...,2n))L3
m

π0L3
m

π0(ev(2n,2n,...,2n))

v

R

Proof Fix �n = (n1, . . . , nm). We want to evaluate an element of T�nLd
m on a con-

figuration in Cq1+···+qm [∐m
i=1 R] where qi ≤ ni for all i . For each i , find a map

γ̃ ni : Cni [R] → �ni like γ̃ in Remark 3.3 above, and for any qi ≤ ni , let γ̃
ni
qi denote

the restriction of γ̃ ni to Cqi [R]. By the construction of γ , this is the same map for any
inclusion {1, . . . , qi } ↪→ {1, . . . , ni }.

By Proposition 2.3, Cq1+···+qm

[∐m
i=1 R
]
is a blowup of Cq1 [R] × · · · × Cqm [R],

so there is a blow-down map

Cq1+···+qm

[
m∐

i=1

R

]

→ Cq1 [R] × · · · × Cqm [R]

given by forgetting relative rates of approach to ∞ of points on different strands.
Following this map by γ̃

n1
q1 × · · · × γ̃

nm
qm gives a map

γ̃ : Cq1+···+qm

[
m∐

i=1

R

]

→ �n1 × · · · × �nm . (11)

If we define �[q1, . . . , qm] as the graph of this map above, then the bottom horizontal
arrow in the square below is well defined, and we can define �[q1, . . . , qm; t] as the
pullback in this square. Note that �[q1, . . . , qm] ∼= Cq1+···+qm [∐m

i=1 R].
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�[q1, . . . , qm; t] Cq1+···+qm+t
[
R
d
]

�[q1, . . . , qm] × T�nLd
m Cq1+···+qm

[
R
d
]

(12)

Following the left-hand vertical map by the projection to T�nLd
m gives a map

�[q1, . . . , qm; t]

T�nLd
m

over the �n-th Taylor tower stage for any (q1, . . . , qm) with qi ≤ ni for all i .
This map is a composition of two fiber bundles, where all the spaces involved

are (possibly infinite-dimensional) manifolds with corners. Hence it is a fiber bundle.
(This can be shown using Theorem 9.8 in Chapter 4 of Husemoller’s book [11], since
all the spaces involved are paracompact and the base of the composite bundle is locally
contractible).

Since we want to integrate over its fiber, we now check that this fiber is a man-
ifold with corners. By viewing �[q1, . . . , qm; t] → T�nLd

m as a composition of two
bundles, we deduce that its fiber is the total space of a bundle with fiber and base
given by the fibers of the two bundles. That is, the fiber of �[q1, . . . , qm; t] → T�nLd

m
is the total space E of a bundle F → E → �[q1, . . . , qm]. Here F is the fiber of
the left-hand vertical map in (12), which is the fiber of the right-hand vertical map
in that square, which in turn is a manifold with corners. The space �[q1, . . . , qm] ∼=
Cq1+···+qm [∐m

i=1 R] is also a manifold with corners. Hence E is a manifold with
corners, and we conclude that the fiber of this “Bott–Taubes bundle over the Taylor
tower” is indeed a manifold with corners. (In fact, as we will see in the next Subsec-
tion, it is isomorphic to the fiber of the usual Bott–Taubes construction over the link
space).

Finally, it is not difficult to see that the fiberwise integration over this bundle agrees
with the usual Bott–Taubes integrals for long links on the image ofLd

m → T�nLd
m . This,

combined with the long link analogue [12, Theorem 5.6] of Theorem 2.1, completes
the proof. ��
Remark 3.5 For a given finite-type invariant, we may be able to deduce the factoring
at a lower stage than (2n, 2n, . . . , 2n). For example, by Theorem 3.2, a type-n knot
invariant of the first strand factors through the stage (2n, 0, 0, . . . , 0). But since an
arbitrary type-n invariant may require an integral over a configuration space with 2n
points on any strand, this seems to be the best general bound that we can put on the
multi-index (n1, . . . , nm).
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3.5 Pontrjagin–Thom construction on the bundles over the tower

We now extend the results of the previous Subsections to our homotopy-theoretic
constructions from [13,14]. To do this, we start by more carefully examining the
bundles over the stages of the tower.

We start with (12) and replace T�nLd
m by the image of the “evaluation map” Ld

m →
T�nLd

m :

�[q1, . . . , qm; t]|im(ev�n) Cq1+···+qm+t
[
R
d
]

�[q1, . . . , qm] × im(ev�n) Cq1+···+qm

[
R
d
]

(13)

The evaluationmap is injective, since it includes a link as a constant family of punctured
links. Thus its image can be identified with Ld

m , and the spaces and maps agree (up to
diffeomorphism) with the ones in the original Bott–Taubes pullback square for long
links (4). So if we consider the following commutative diagram of spaces, where the
horizontal arrows are induced by the evaluation map, we see that those horizontal
arrows are diffeomorphisms.

E[q1, . . . , qm; t] ∼=
�[q1, . . . , qm; t]|im(ev�n)

Cq1+···+qm

[∐m
i=1 R
]× Ld

m

∼=
�[q1, . . . , qm] × im(ev�n)

Ld
m

∼= im(ev�n)

Hence over im(ev�n), this newly defined Bott–Taubes bundle is isomorphic to the
original Bott–Taubes bundle. Since we deduced in the previous Subsection that
�[q1, . . . , qm; t] is a locally trivial fiber bundle, we see that every fiber is isomor-
phic to the fiber in the original Bott–Taubes bundle.

We nowwant to embed these bundles into trivial bundles whose fibers are Euclidean
spaces with corners. We want these embeddings to be neat, i.e., to preserve the corner
structure. In [13] and [14], we made this precise via work of Laures [15]. Specifically,
one considers manifolds with faces, which, when equipped with N codimension-one
strata satisfying certain conditions, are called 〈N 〉-manifolds. These are precisely the
manifolds with corners which for some M can be embedded neatly inRM ×[0,∞)N .
The main points for us are that compactified configuration spaces are 〈N 〉-manifolds
for some N and that a neat embedding has a well defined tubular neighborhood (dif-
feomorphic to the normal bundle). The reader may consult Sect. 2.1 (and especially
Proposition 2.1.7) of [15] or Sect. 3.1 of [13] for precise definitions and details.
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Now if we give the total space�[q1, . . . , qm; t] a corner structure from its fibers, we
get the same corner structure as on E[q1, . . . , qm; t]. Carrying out neat embeddings
�[q1, . . . , qm; t] ↪→ T�nLd

m × R
M × [0,∞)N and Thom collapse maps yields the

following result, which says that our basic construction from [13] extends to the stages
of the Taylor tower. Its proof is similar to that of Theorem 3.7 in the next Subsection
(which treats the construction with glued bundles in [14]). Since the construction in
[14] essentially supersedes the one in [13], Theorem 3.7 is stronger than Proposition
3.6. Thus we omit the proof of Proposition 3.6 below and leave the interested reader
to adapt the proof of Theorem 3.7.

Proposition 3.6 There is a commutative square of spectra as below on the left, where

• The superscript ν denotes the Thom space of the normal bundle of a certain
embedding,

• The vertical maps are “evaluation maps,” and
• The horizontal maps are Thom collapse maps.

Applying cohomology, together with suspension isomorphisms and Thom isomor-
phisms, induces a commutative square in cohomology with arbitrary coefficients, as
below on the right.

�∞K+ E[q; t]ν/∂E[q; t]ν H∗−dim F[q;t](K) H∗(E[q; t],∂E[q; t])

�∞(TnK)+ �[q; t]ν/∂�[q; t]ν H∗−dim F[q;t](TnK) H∗(�[q; t], ∂�[q; t])

3.6 Extending to the “gluing” refinement and the triple linking number

We now consider the refinement in [14] which recovers the triple linking number. So
fix m = 3, d = 3. Recall the trivalent diagrams L , M, R, T shown in Fig. 1, which
are needed to construct μ123. In [14], we built a glued space Eg out of the four spaces
EL := E[2, 1, 1; 0], EM := E[1, 2, 1; 0], ER := [1, 1, 2; 0], ET := E[1, 1, 1; 1].
More precisely, Eg = (EL × S2) � (EM × S2) � (ER × S2) � ET / ∼, where each
ED × S2 is glued to ET along a principal face.

Using similar notation, we consider spaces �D for D = L , M, R, T which fiber
over T�nL3

3. Considering the indices (q1, q2, q3) for these four diagrams D, the “small-
est” �n for which every �D defines a Bott–Taubes bundle over T�nL3

3 is (2, 2, 2). So for
the rest of this Section, we consider onlymulti-indices �n with ni ≥ 2 for all i = 1, 2, 3.

Fig. 1 The trivalent diagrams L , M (top row), R, and T (bottom row)
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We can then glue the spaces �L × S2, �M × S2, �R × S2, and �T to create a space �g

which fibers over T�nL3
3. This is straightforward because the gluings are done fiberwise

over a fixed base; the E-bundles and �-bundles have different bases, but isomorphic
fibers.

Theorem 3.7 For any �n = (n1, n2, n3) with each ni ≥ 2, there is a commutative
diagram in cohomology with arbitrary coefficients:

H∗−6
(
L3
3

)
H∗(Eg, ∂Eg) H∗ (S2 × S2 × S2,D

)

H∗−6
(
T�nL3

3

)
H∗ (�g, ∂�g

)

Recall the class [β] ∈ H6(Eg, ∂Eg) (see Sect. 2.5) whose image in H0(L3
3) is μ123.

This class [β] can be lifted to [β̃] ∈ H6(�g, ∂�g). Thus the homotopy-theoretic Bott–
Taubes integrals provide a way of factoring μ123 through the Taylor tower for any
stage as low as T(2,2,2)L3

3.

Proof We want to construct a neat embedding and Pontrjagin–Thom collapse map
for �g over the Taylor stage in such a way that these are compatible with the neat
embedding and collapse map for the bundle over the link space itself.

In [14, Lemma7.1], we showed that there is a neat embedding

Eg ↪→ L3
3 ×
(

4∐

1

(RM × [0,∞)N )/ ∼
)

for some M, N . The main idea there is to start with embeddings of the various ED into
L3
3 × C4[R3]; neatly embed copies of that space into copies of L3

3 ×R
M × [0,∞)N ;

glue those copies together; and then show that for D = L , M, R, for sufficiently
high-dimensional RM , the embedding of S2×(boundary face of ED) extends to an
embedding of all of S2 × ED . We now extend this argument to �g . Notice first that
any �[q1, . . . , qm; t] embeds neatly into T�nLd

m × Cq1+···+qm+t [Rd ]. So for any D ∈
{L , M, R, T }, we have an embedding �D ↪→ T�nL3

3 × C4[R3] such that the left-hand
square below commutes. The right-hand square, and its commutativity, come from
neatly embedding C4[R3] into RM × [0,∞)N .

ED L3
3 × C4

[
R
3
]

L3
3 × R

M × [0,∞)N

�D T�nL3
3 × C4

[
R
3
]

T�nL3
3 × R

M × [0,∞)N

(14)

Then for D = L , M, R, we claim that (just as for the ED) we can embed �D × S2 so
that on a collar of the principal face boundary of�D , this embedding can be glued to the
embedding of �T along the appropriate principal face of �T . Away from the principal
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face boundary of �D , the S2 factor is embedded in a standard way. We omit the details
of such an argument, since they are the same as for Eg in [14, Lemma 7.1]. As a

result, we get a neat embedding �g ↪→ T�nL3
3 ×
(∐4

1(R
M × [0,∞)N )/ ∼

)
. Since the

incorporation of the S2 factors away from the boundary of�T (respectively ET ) makes
no use of the punctured links (respectively links), the following square commutes:

Eg L3
3 ×
(∐4

1

(
R

M × [0,∞)N
)
/ ∼
)

�g T�nL3
3 ×
(∐4

1

(
R

M × [0,∞)N
)
/ ∼
)

(15)

We now want to collapse complements of tubular neighborhoods of the horizontal
embeddings above in a compatible way. For ε > 0, we will first define neighborhoods
ηε(ED) and ηε(�D) as follows. Note that ED and �D can be viewed as subspaces of
the products below

ED ⊂ L3
3 × Cq1+q2+q3

[
3∐

1

R

]

× C4

[
R
3
]
�D ⊂ T�nL3

3

×Cq1+q2+q3

[
3∐

1

R

]

× C4

[
R
3
]

where q1 + q2 + q3 is determined by D. Let π be the projection C4[R3] →
Cq1+q2+q3 [R3]. So π is the identity if D = L , M, or R, and π forgets the “free”
point if D = T . A point in ED is a point (L , t, x) ∈ L3

3 ×Cq1+q2+q3[
∐3

1 R]×C4[R3]
with L(t) = π(x). Consider the subspace of such points with |L(t) − π(x)| < ε,
where the distance is measured using a metric on Cq1+q2+q3[R3]. Let ηε(ED) be the
image of this subspace under the projection to L3

3 × C4[R3].
A point in �D is a point ((Ls)s∈�n1×···×�n3 , t, x) ∈ T�nL3

3 × Cq1+q2+q3 [
∐3

1 R] ×
C4[R3] satisfying L γ̃ (t)(t) = π(x), where γ̃ : Cq1+q2+q3[

∐3
1R] → �n1×· · ·×�n3 is

themap (11).Consider the subspaceof points ((Ls)s, t, x) such that |L γ̃ (t)(t)−π(x)| <

ε, where again the distance is measured in the compactified configuration space ofR3.
Define ηε(�D) as the image of this subspace under the projection to T�nL3

3 × C4[R3].
Clearly ηε(ED) and ηε(�D) are compatible in the sense that the middle vertical

map in (14) takes the complement of ηε(ED) to the complement of ηε(�D). Then
because the two horizontal embeddings in the right-hand square of (14) are given by
a product of the identity with the same embedding of C4[R3], we can find compatible
neighborhoods of ED and �D in the right-hand column of (14). For D = T , let η̃(ET )

and η̃(�T ) be such neighborhoods.
For D = L , M, R, we can find compatible neighborhoods of ED × S2 and �D × S2

near the principal faces using those of ET and�T near their principal faces. Away from
these faces, the extensions of the embeddings to the products with S2 are independent
of the (punctured) links, so we can find compatible neighborhoods using those of ED
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and �D . Thus we obtain compatible neighborhoods η̃(ED) and η̃(�D) of ED × S2 and
�D × S2 in the right-hand column of (14). Appropriately gluing together the η̃(ED)

(respecively η̃(�D)) for the various D gives compatible tubular neighborhoods of the
horizontal embeddings in (15).

Thus, for every sufficiently large N , we can collapse the complements of these
neighborhoods. This yields the rows in the commutative square

L3
3 ×
(∐4

1

(
R

M × [0,∞)N
)
/ ∼
)

EνN
g

TnL3
3 ×
(∐4

1

(
R

M × [0,∞)N
)
/ ∼
)

�
νN
D

where the subscript νN denotes the Thom spaces of the normal bundles4 of the horizon-
tal embeddings in (15). This commutative diagram clearly descends to the quotients
by boundaries. Furthermore the cube of squares incorporating the indices N and N +1
commutes. Hence for n ≥ q, there is a commutative square of spectra as below, on the
left. Applying cohomology (and suspension and Thom isomorphisms) and recalling
that the fiber is 6-dimensional, we get the square on the right.

�∞ (L3
3

)
+ Eν

g/∂E
ν
g H∗−6

(
L3
3

)
H∗ (Eg, ∂Eg

)

�∞ (T�nL3
3

)
+ �ν

g/∂�ν
g H∗−6

(
T�nL3

3

)
H∗ (�g, ∂�g

)

(16)
It remains to lift the class [β] ∈ H6(Eg, ∂Eg) to H6(�g, ∂�g). Recall that [β] was

pulled back from H6(S2 × S2 × S2,D) via a map (Eg, ∂Eg) → (S2 × S2 × S2,D),
where D is a subspace containing the image of the faces at infinity ∂Eg . We first
observe that there is a map �g → S2 × S2 × S2. In fact, each �D is a subspace of
T�nL3

3 × C4[R3], so we can use the same combination of “unit vector” and projection
maps as for the ED(×S2) (see [14, Sect. 5]) to map �L × S2, �M × S2, �R × S2, and
�T to S2 × S2 × S2. Thus the diagram below commutes.

Eg S2 × S2 × S2

�g

(17)

The boundary ∂�g consists of configurations where some points have escaped to infin-
ity. The behavior at infinity for elements in T�nL3

3 is fixed in the sameway as for links in

4 Here and below, the symbol νN itself abusively stands for two different bundles, but we only use it
together with the base space, so this should cause no confusion. The same applies to the symbol ν in the
next diagram.
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L3
3, so the image of ∂�g in S2×S2×S2 is the same as that of Eg . (In other words, even

though an element of T�nL3
3 is a family of punctured links, the variation of the links

within this family is only inside the fixed compact subset of R3). Thus (17) descends
to a diagram of pairs, relative to the boundaries of Eg and �g (faces at infinity) and
the subspace D ⊂ S2 × S2 × S2 (which contains the image of these faces at infinity).
Applying cohomology and combining this with the right-hand square in (16) yields
the diagram in the Theorem statement and hence completes the proof. ��

Asmentioned in the Introduction, we could also use integration of differential forms
to deduce this result. The advantage of our methods is the potential to yield integer or
mod p classes that cannot be realized via integration of forms. The particular stage at
whichwe seeμ123 would be the same ifwe instead deduced this result using integration
of differential forms. In either case, we need to use four different configuration points,
and on each strand, the maximum number of points over these four configuration
spaces is 2. Thus (2,2,2) seems to be the lowest stage at which one can obtain μ123
using configuration space integrals. While this matches Volić’s result that TnK factors
all rational type- n2 knot invariants, Conjecture 1.1 of [3] is that TnK factors all type-
(n − 1) knot invariants. (Our work in [2] provides some evidence for this conjecture).
We might similarly expect to see the type-2 link invariant μ123 at a stage (n1, n2, n3)
with n1 + n2 + n3 = 3. In fact, our work in [7] shows that link-homotopy classes of
string links are distinguished at stage (1, 1, . . . , 1) of the tower for link maps. (This
tower is defined similarly to T�nL3

m but with the space of embeddings replaced by the
space of link maps). This implies that stage (1, 1, 1) of that tower contains as much
information as μ123 and the pairwise linking numbers. A similar result is seen in the
work of Munson [17, Sect. 6.6].

4 The aligned maps model

In this section, we outline a possible alternative to the constructions above. This alter-
native approach uses a differentmodel for theTaylor tower, namely amodel of “aligned
maps,” which is denoted AMn in the case of knots. This is the main point:

The model AMn has a monoid structure compatible with stacking of long knots,
while no such structure on the “punctured knots model” is known.

Thus AMn would be a more fruitful setting for studying in future work how our results
interact with the monoid structure of stacking knots. This alternative model still yields
essentially the same main results via essentially the same proofs. So we keep this
Section brief, providing only an outline of the arguments.

4.1 The monoid structure on the aligned maps model

We showed in [2] that each stage of the Taylor tower for the space of long knots is
an H-space with an operation compatible with connect-sum of long knots. There we
used a variant of the aligned maps model where the n-th stage is roughly a space
of maps of �n ∼= Cn〈I 〉 to the simplicial compactification Cn〈I d〉 of configuration
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space. (Here we are thinking of long knots as embeddings I ↪→ I d with fixed behavior
at the endpoints; recall from Sect. 2.2 that a configuration in Cn〈I d〉 has two fixed
boundary points). However, for defining the monoid structure, we could have instead
used the aligned maps model of [3,21], where the n-th stage AMn consists of maps
from the associahedron Kn+2 ∼= Cn[I ] to the canonical compactification Cn[I d ] of
configuration space. This latter option is needed for configuration space integrals
because Cn[M], unlike Cn〈M〉, is a smooth manifold with corners.5

In more detail, replacing strands of punctured knots by configurations requires us
to record not only points in a configuration, but also a unit tangent vector at each point.
So let C ′

n[I d ] := Cn[I d ]× (Sd−1)n , thought of as a subspace of n + 2 points and unit
tangent vectors, with two fixed boundary points (±1, 0, . . . , 0) and the fixed tangent
vector (1, 0, . . . , 0) at each of the two boundary points. Then AMn is the space ofmaps
Cn[I ] → Cn[I d ] that are aligned and stratum-preserving, terms which we will now
define. Recall the stratifications on Cn[I ] and Cn[I d ] by sets of subsets of {1, . . . , n}
from Sect. 2.2. Note that every set indexing a stratum inCn[I ] also indexes a stratum in
Cn[I d ] (though not conversely, since the points in a configuration in Cn[I ] lie in order
on the interval). Then stratum-preservingmeans that the image of a configuration in a
given stratum inCn[I ]must lie in the closure of the corresponding stratum in inCn[I d ].
The aligned condition means that at a collision of points, the tangent vectors at all of
the points involvedmust be equal. There is a canonicalmapK → Map(Cn[I ],C ′

n[I d ])
given by evaluating a knot (and its derivative) on the n points in a configuration in
Cn[I ]. The resulting image is aligned and stratum-preserving, so this evaluation is a
map K → AMn . See[21, Definitions 5.3, 5.6; Lemma 5.7] or [3, Definition2.16] for
more details.

4.2 Bott–Taubes constructions on aligned maps models for knots and links

To extend configuration space integral constructions to this aligned maps model AMn ,
we make some slight adjustments to it. First, we take only smooth maps, rather than
continuous maps. This allows the possibility of giving the mapping space a smooth
structure (cf. the beginning of Sect. 3.3). Also, we need to replace I by R to ensure
the vanishing of integrals over faces at infinity (cf. Remark 3.3):

Definition 4.1 Let AMn(R) be the subspace ofmapsϕ inMap(Cn[R],C ′
n[Rd ])which

are aligned and stratum-preserving (as above) and also satisfy the following condition:

if a point xi in a configuration c is located outside of (−1, 1), then pi (ϕ(c)) =
((xi , 0, . . . , 0), (1, 0, . . . , 0)),where pi : C ′

n[Rd ] → R
d×Sd−1 is the projection

to the i-th factor.

One can show that AMn(R) is a model for TnK, just like AMn is, as in [21, Sect. 6].
One can also define an H-space structure as in [2, Sect. 4] on AMn(R). We have

AMn(R) × Cn[R] ⊂ Map
(
Cn[R],Cn

′ [
R
d
])

× Cn[R] → Cn

[
R
d
]

5 Note that [2] and [3,21] use the same notation AMn for these two slightly different variants.
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where the right-hand map above is the obvious canonical map followed by forgetting
the tangent vectors. So we can write

�AM [q; t] Cq+t
[
R
d
]

AMq(R) × Cq [R] Cq
[
R
d
]

where �AM [q; t] is defined as the pullback in this square. We could also replace
AMq(R) by AMn(R) for any n ≥ q using the projection map AMn(R) → AMq(R)

in the tower. Hence, there is a map �AM [q; t] → AMn(R), and as in Sect. 3.4, we
can show that this map is a bundle whose fibers are smooth manifolds with corners,
isomorphic to those of the usual Bott–Taubes bundle over the space of long knots. Thus
we can integrate differential forms along the fiber. This seems to give an alternative
proof to Theorem 3.2, thus bypassing the need for the somewhat technical construction
of γ in Volić’s [23, Proposition4.1], a map which we also used in Sect. 3.4.

We can carry out neat embeddings and Pontrjagin–Thom collapse maps over
AMn(R), as we did in Sect. 3.5 over the punctured knots model. The collapse maps
for AMn(R) will be compatible (via the evaluation map) with the ones for the space
of knots itself. Thus the classes constructed in [13] factor through this model AMn(R)

for sufficiently large n.
Similar aligned maps models can be constructed in the case of long links. To

model the stage T�nLd
m = T(n1,...,nm )Ld

m , define AM�n ⊂ Map(Cn1[R] × · · · ×
Cnm [R],Cn1+···+nm [Rd ]) as the subspace of aligned, stratum-preserving smooth maps
with prescribed behavior outside of (−1, 1), as in Definition 4.1. Then for any
�q = (q1, . . . , qm) with �q ≤ �n (meaning every qi ≤ ni ), there is a projection
AM�n → AM�q . So we can write the square

�AM [q1, . . . , qm; t] Cq1+···+qm+t
[
R
d
]

AM�n(R) × Cq1+···+qm

[∐m
i=1 R
]

Cq1+···+qm

[
R
d
]

where �AM [q1 + · · · + qm; t] is defined as the pullback. Thus we get bundles
�AM [q1, . . . , qm; t] → AM�n(R) for any �q ≤ �n. The fibers are isomorphic to those in
the original Bott–Taubes bundle. Then the arguments in Sects. 3.4 and 3.6 show that
Theorems 3.4 and 3.7 also hold if one replaces the punctured knots model for T�nLd

m
by the aligned maps model AM�n(R).
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23. Volić, I.: Configuration space integrals and the Taylor tower for spaces of knots. Topol. Appl. 153(15),

2893–2904 (2006)
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