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Abstract We introduce BV-algebra structures on the homology of the space of framed
long knots in R

n in two ways. The first one is given in a similar fashion to Chas–
Sullivan’s string topology. The second one is defined on the Hochschild homology
associated with a cyclic, multiplicative operad of graded modules. The latter can be
applied to Bousfield–Salvatore spectral sequence converging to the homology of the
space of framed long knots. Conjecturally these two structures coincide with each
other.
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1 Introduction

The space of framed long embeddings is known to be acted on by the little disks operad
[2]. A natural question is whether this action extends to any action of the framed little
disks operad. The answer seems affirmative, in view of [3,6,14–16].
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426 K. Sakai

In the first result of this paper (Theorem 3.5) we imitate Chas-Sullivan’s string
topology [5] to realize Salvatore’s homotopy-theoretical action in a geometric and
homological way. Namely we define a BV-algebra structure on the homology of the
space of framed long knots. Our BV-structure is outlined as follows. The bracket
(called Poisson bracket) is induced by an action of little 2-disks operad [2]. The BV-
operation (usually denoted by �) is derived from Hatcher’s cycle [8, p. 3], which in
a sense “pushes the base point through long knots”. As a corollary we obtain a Lie
algebra structure on the S1-equivariant homology.We also show that our BV-operation
� is not trivial (Proposition 3.8 below).

Our second result (Theorem 4.6) is an algebraic one. Based on [1,15], a homology
spectral sequence, converging to the homology of the space of framed long knots
(at least in higher-codimension cases), is constructed. Its E2-term is the Hochschild
homology HH∗(H∗( f C)) associated with the homology operad H∗( f C) of the framed
little disks operad, which is cyclic [3] and multiplicative. Motivated by these facts, in
Sect. 4 we provide a BV-algebra structure on HH∗(O) of any cyclic andmultiplicative
operadO of gradedmodules. A bracket has already been defined in [17], and our BV-
operation is given by a graded version of Connes’ boundary operator (see [9]). Our
proof is a direct analogue to that for non-graded cases [11]. Presumably Salvatore’s
framed little disks action would deduce the same formula as ours.

The paper is organized as follows. In Sect. 2 three spaces of framed embeddings
are defined and proved to be homotopy equivalent to each other. We describe our
geometric BV-algebra structure explicitly in Sect. 3; the Poisson bracket in Sects. 3.1
and 3.2, and the �-operation in Sect. 3.3. The definition of HH∗(O) is reviewed in
Sect. 4.1, and the BV-algebra structure on HH∗(O) is defined in Sect. 4.2.

2 The spaces of framed long knots

We denote by Bn := {x ∈ R
n | |x | ≤ 1} the n-ball, and Sn := ∂Bn+1 ⊂ R

n+1.
We often write ∞ := (0, . . . , 0, 1) ∈ Sn . S1 is always identified with R/Z and let
0 = 1 ∈ S1 serve as the basepoint.

We define three spaces of framed long knots, Ẽmb∗(S1, Sn), Ẽmb′∗(S1, Sn) and
EC(1, Bn−1). Eventually they turn out to be homotopy equivalent to each other. A
convenient one will be used to construct each homology operation.

First we define EC(1, Bn−1), originally introduced in [2]. The homotopy type of
this space can be nicely described through an action of the little disks operad, and
hence its homology is equipped with a Poisson algebra structure (see Sect. 3.1).

Definition 2.1 [2] For a manifold M , define the space EC(k, M) by

EC(k, M) := { f : R
k × M ↪→ R

k × M | f (t; x) = (t; x) if t /∈ [0, 1]k}.

We consider the case of framed long knots, namely M = Bn−1 and k = 1. The
space EC(1, Bn−1) is related to the space of long knots

Kn := { f : R
1 ↪→ R

1 × Bn−1 | f (t) = (t, 0, . . . , 0) if t /∈ [0, 1]}
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BV-structures on the homology of the framed long knot space 427

via the restriction map

res : EC(1, Bn−1) → Kn, f 	→ f |R1×{0}

which is a fibration with fiber �SO(n − 1).

Definition 2.2 Define ι : S1 ↪→ Sn and ι̃ : S1 × Bn−1 ↪→ Sn by

ι(t) := (sin 2π t, 0, . . . , 0, cos 2π t) ∈ Sn ⊂ R
n+1, and

ι̃(t; x) := ι(t) + ε0(0, x, 0)

|ι(t) + ε0(0, x, 0)| ,

where ε0 > 0 is some fixed small number. Define Ẽmb′∗(S1, Sn) to be the space of
embeddings ϕ̃ : S1 × Bn−1 ↪→ Sn such that ϕ̃(0; x) = ι̃(0; x) and all the partial
derivatives of ϕ̃ at (0; x) ∈ S1 × Bn−1 of all orders are equal to those of ι̃. Similarly
define Emb′∗(S1, Sn) to be the space of all embeddings ϕ : S1 ↪→ Sn such that
ϕ(0) = ι(0) = ∞ and all of its derivatives at t = 0 are equal to those of ι.

The restriction map

res : Ẽmb′∗(S1, Sn) → Emb′∗(S1, Sn), ϕ̃ 	→ ϕ̃|S1×{0},

is also a fibration with fiber �SO(n − 1).
There is another embedding space on which S1 acts (Lemma 3.4):

Definition 2.3 Define Emb∗(S1, Sn) to be the space of embeddings ϕ : S1 ↪→ Sn

satisfying

ϕ(0) = ∞, ϕ′(0)/|ϕ′(0)| = (1, 0, . . . , 0).

Define Ẽmb∗(S1, Sn) to be the space of pairs (ϕ;w), where ϕ ∈ Emb∗(S1, Sn) and
w = (w0, . . . , wn) : S1 → SO(n + 1) (wi : S1 → Sn) satisfying

• w0(t) = ϕ′(t)/|ϕ′(t)| and wn(t) = ϕ(t) for any t ∈ S1,
• w(0) = In+1 (the identity matrix).

Denote by π : Ẽmb∗(S1, Sn) → Emb∗(S1, Sn) the natural projection.

Define c̃l : EC(1, Bn−1) → Ẽmb′∗(S1, Sn) (“closure” of long embeddings) by
c̃l( f ) := ι̃ ◦ f . This is smooth at t = 0 and has the same partial derivatives at
(0; x) ∈ S1 × Bn−1 as ι̃ because f ∈ EC(1, Bn−1) extends to idR1×Bn−1 outside
[0, 1]. Similarly define the map cl : Kn → Emb′∗(S1, Sn) by cl( f ) := ι̃ ◦ f .

Define h̃ : Ẽmb′∗(S1, Sn) → Ẽmb∗(S1, Sn) by

h̃(ϕ̃)(t) :=
(

ϕ̃(t; 0);GS

(
∂ϕ̃

∂t
(t; 0), ∂ϕ̃

∂x1
(t; 0), . . . , ∂ϕ̃

∂xn−1
(t; 0), ϕ̃(t; 0)

))
,
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428 K. Sakai

where GS : GL+
n+1(R)

�−→ SO(n + 1) is the Gram–Schmidt orthonormalization, and
define h : Emb′∗(S1, Sn) → Emb∗(S1, Sn) as the natural inclusion. Note that we have
maps of fibration sequences;

�SO(n − 1) EC(1, Bn−1)

c̃l

res Kn

cl

�SO(n − 1) Ẽmb′∗(S1, Sn)
res

h̃

Emb′∗(S1, Sn)

h

�SO(n − 1) Ẽmb∗(S1, Sn)
π

Emb∗(S1, Sn)

(2.1)

Proposition 2.4 The maps c̃l and cl are homotopy equivalences.

Proof Because the embedding spaces have homotopy types of CW-complexes, it suf-
fices to show that the maps c̃l and cl are weak homotopy equivalences. By (2.1), it is
enough to show that cl is a (weak) homotopy equivalence.

The homotopy inverse cl−1 is given by

cl(ϕ)(t) :=
{


(ϕ(t)) if t ∈ (0, 1),

(t, 0, . . . , 0) if t /∈ (0, 1),

where 
 : Sn\{∞} ∼=−→ (0, 1) × Int Bn−1 is the stereographic projection Sn\{∞} ∼=−→
R
n followed by a dilation R

n
∼=−→ (0, 1) × Int Bn−1 which is chosen so that 
(ι(t)) =

(t, 0, . . . , 0) for t ∈ (0, 1). �
Proposition 2.5 The maps h̃ and h are homotopy equivalences.

Proof Similarly to the proof of Proposition 2.4, it is enough to show that h is a weak
homotopy equivalence. The idea is to “straighten” the elements of Emb∗(S1, Sn)
around t = 0.

First we show that h∗ : πk(Emb′∗(S1, Sn), ι) → πk(Emb∗(S1, Sn), ι) is surjective
(the basepoint ι will be omitted below). Let ξ ∈ πk(Emb∗(S1, Sn)) be represented by
g : Sk → Emb∗(S1, Sn). For each z ∈ Sk , there exists ε > 0 such that the ε-ball
Bε ⊂ Sn (with respect to the standard metric on Sn) centered at ∞ ∈ Sn satisfies that

• g(z)(S1) ∩ Bε is connected, and
• if g(z)−1(Bε) = (−δ1, δ2), then g(z)1 (the first coordinate of g(z)) monotonely
increases on the interval (−δ1, δ2).

Such an ε > 0 as above can be taken uniformly for all z ∈ Sk . Indeed there is ε′ > 0
such that g(z)′1(t) > 0 for all (z, t) ∈ Sk × (−ε′, ε′), because the map Sk × S1 → R

given by (z, t) 	→ g(z)′1(t) is continuous and {g(z)′1(0) | z ∈ Sk} has the positive
minimum by the compactness of Sk . Then we can take ε > 0 so that Bε does not

123



BV-structures on the homology of the framed long knot space 429

Fig. 1 A modification of g to be
standard near ∞

intersect the compact set ĝ(Sk × (S1\(−ε′, ε′)), where ĝ(z, t) := g(z)(t). This ε

satisfies the above conditions. Note that δ1, δ2 > 0 depend continuously on z.
Consider a natural projection p : Bε → ι(S1) ∩ Bε and diffeomorphisms sz :

(−δ1, δ2) → (−δ′
1, δ

′
2) for some δ′

1, δ
′
2 > 0 such that p(g(z)(t)) = ι(sz(t)) (see

Fig. 1).
Putting δ := minz∈Sk {δ1, δ2}, define

ḡ(z)(t) := (1 − bδ(t))g(z)(t) + bδ(t)ι(sz(t))

|(1 − bδ(t))g(z)(t) + bδ(t)ι(sz(t))|
where bδ(t) := b(t/δ) and b : R → R≥0 is a fixed bump function with support |t | ≤ 1
satisfying b(t) ≡ 1 for |t | ≤ 1/2 (and hence bδ(t) ≡ 1 for |t | ≤ δ/2). By construction
ḡ is homotopic to g and ḡ(z)(t) = ι(sz(t)) on (−δ, δ). Define

g̃(z)(t) := ḡ(z)(bδ/2(t)t + (1 − bδ/2(t))sz(t))

then g ∼ g̃ and g̃(z) = ι on (−δ/4, δ/4), and hence g̃ represents an element of
πk(Emb′∗(S1, Sn)) which is mapped to ξ = [g]. Thus surjectivity follows.

Injectivity is proved in a similar way. Suppose η = [g] ∈ πk(Emb′∗(S1, Sn)) maps
to 0 ∈ πk(Emb∗(S1, Sn)), and choose a map G : Bk+1 → Emb∗(S1, Sn) bounded
by g. Since Bk+1 is compact, we can deform G to be standard near t = 0 in a similar
way to the above. Thus g bounds a ball in Emb′∗(S1, Sn) and hence η = 0. �
Remark 2.6 In fact the homotopy inverse c̃l−1 is given by composing an appropriate

diffeomorphism � : Sn\ι̃({0} × Bn−1)
∼=−→ (0, 1) × Int Bn−1 to the elements of

Ẽmb′∗(S1, Sn). The homotopy inverse h̃−1 is given by “straightening” the elements of
Ẽmb∗(S1, Sn) and “fattening” the knots by geodesics along the framings.

3 A geometric BV-structure

Definition 3.1 A k-Poisson (-Gerstenhaber) algebra A is a graded commutative alge-
bra equippedwith a graded Lie bracket [−,−]: A×A → A of degree k, calledPoisson
(-Gerstenhaber) bracket, satisfying the Leibniz rule

[x, yz] = [x, y]z + (−1)(x̃+k)ỹ y[x, z],

where x̃ denotes the degree of x , that is, x ∈ Ax̃ . A 1-Poisson algebra A is called a
BV-algebra if it is endowed with a degree one operation � : A → A satisfying
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Fig. 2 Connected-sums on EC(k, M) and Ẽmb∗(S1, Sn)

• � ◦ � = 0,
• �(xy) = �(x)y + (−1)x̃ x�(y) + (−1)x̃ [x, y].

The aim of this section is to define a BV-algebra structure on H∗(Ẽmb∗(S1, Sn)).
A Poisson algebra structure on H∗(EC(1, Bn−1)) has already been defined in [2].
First we describe this structure on H∗(Ẽmb′∗(S1, Sn)) (Sect. 3.2). Then we define the
�-operation using an S1-action on Ẽmb∗(S1, Sn).

3.1 Budney’s Poisson structure

Budney [2] constructed an action of the little (k + 1)-disks operad Ck+1 on EC(k, M).
The main idea of the action can be found in [2, Fig. 2]; start with the connected-sum
f �g (defined explicitly below; see Fig. 2), “push off” g through f as in the right-half
of [2, Fig. 2] until we arrive at g� f , and perform the same procedure with f and g
exchanged. As a corollary we have the following.

Theorem 3.2 [2] H∗(EC(k, M)) admits a k-Poisson algebra structure.

Here we describe Budney’s Poisson algebra structure on H∗(EC(1, Bn−1)) explic-
itly. The product (denoted by x · y, or simply xy) and the Poisson bracket (denoted by
λ) are induced by the “second stage” of the action of C2;

μ2 : C2(2) × EC(1, Bn−1)×2 → EC(1, Bn−1).

The product corresponds to the generator of H0(C2(2)) ∼= Z and is induced by the
connected-sum defined as follows. For 0 ≤ α ≤ 1, define two diffeomorphisms

lα : R
1 ∼=−→ R

1 by lα(t) := 2t − α,

sα : R
1 × Bn−1 ∼=−→ R

1 × Bn−1 by sα := lα × idBn−1 .

Then for f ∈ EC(1, Bn−1),

Lα f := s−1
α ◦ f ◦ sα ∈ EC(1, Bn−1)
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BV-structures on the homology of the framed long knot space 431

has the support [α
2 , α+1

2 ] × Bn−1 and satisfies

Lα f

([
α

2
,
α + 1

2

]
× Bn−1

)
⊂

[
α

2
,
α + 1

2

]
× Bn−1

(see [2, Fig. 4]). Then for f, g ∈ EC(1, Bn−1), define f �g ∈ EC(1, Bn−1) by

f �g(t; x) :=
{
L0 f (t; x) t ≤ 1

2 ,

L1g(t; x) t ≥ 1
2

(see Fig. 2).
We notice that the elements in EC(1, Bn−1) are maps R

1 × Bn−1 → R
1 × Bn−1

and we can compose them. Using the composition, we can write f �g as

f �g = (L0 f ) ◦ (L1g) = (L1g) ◦ (L0 f ).

Poisson bracket λ corresponds to the generator of H1(C2(2)) ∼= Z and can be
described as follows. For 0 ≤ α ≤ 1 and f, g ∈ EC(1, Bn−1), define f ∗α g ∈
EC(1, Bn−1) by

f ∗α g := (Lα f ) ◦ (L1−αg).

This defines the ∗-operation

∗ : I × EC(1, Bn−1)×2 → EC(1, Bn−1), (α, f, g) 	→ f ∗α g.

Remark 3.3 The ∗-operation gives a homotopy between f ∗0 g = f �g and f ∗1 g =
g� f , and hence � is homotopy commutative. In particular for homology classes x, y,
we have x ∗α y = xy for any 0 ≤ α ≤ 1.

The map S1 × EC(1, Bn−1)×2 → EC(1, Bn−1) defined by

(α, f, g) 	→
{
f ∗2α g 0 ≤ α ≤ 1

2 ,

g ∗2α−1 f 1
2 ≤ α ≤ 1

corresponds to the map μ2 appearing in Budney’s C2-action, and the Poisson bracket
λ is induced by this map and a fixed generator of H1(S1) ∼= Z.

For any cubical chains ξ : I p → EC(1, Bn−1) and η : I q → EC(1, Bn−1), define
cubical (p + q + 1)-chains ξ ∗ η and η ∗′ ξ by

ξ ∗ η : I × I p × I q � (α, u, v) 	→ ξ(u) ∗α η(v),

η ∗′ ξ : I × I p × I q � (α, u, v) 	→ η(v) ∗α ξ(u),

and extend them linearly on the cubical chain complex.We also define cubical (p+q)-
chains ξ ∗α η := ξ ∗ η|{α}×I p+q and η ∗′

α ξ := η ∗′ ξ |{α}×I p+q . If x and y are cubical

123



432 K. Sakai

p- and q-cycles, then ∂(x ∗ y) = x ∗1 y − x ∗0 y and ∂(y ∗′ x) = y ∗′
1 x − y ∗′

0 x .
Since y ∗′

1 x = x ∗0 y and y ∗′
0 x = x ∗1 y,

(−1)p−1(x ∗ y + y ∗′ x) (3.1)

is a cubical (p + q + 1)-cycle. The cycle (3.1) represents λ(x, y).

3.2 Poisson structure for Ẽmb′∗(S1, Sn)

Wecan transfer the abovePoisson structure onH∗(EC(1, Bn−1)) toH∗(Ẽmb′∗(S1, Sn))
via the homotopy equivalence c̃l defined in Proposition 2.4. We illustrate this structure
from a geometric view.

Figure 2 explains the idea of connected-sum on Ẽmb′∗(S1, Sn). For ϕ̃ ∈
Ẽmb′∗(S1, Sn) and 0 ≤ α ≤ 1, define

Lαϕ̃ := c̃l(Lα c̃l
−1(ϕ̃)).

Roughly speaking Lαϕ̃ is ι̃with the cylinder ι̃([α
2 , α+1

2 ]×Bn−1) ∼= I ×Bn−1 replaced

by c̃l−1(ϕ̃). Then for ϕ̃1, ϕ̃2 ∈ Ẽmb′∗(S1, Sn),

ϕ̃1�ϕ̃2 := (L0ϕ̃1) ◦ (L1ϕ̃2) =
{
L0ϕ̃1 on

[
0, 1

2

] × Bn−1,

L1ϕ̃2 on
[ 1
2 , 1

] × Bn−1.
(3.2)

The ∗-operation for Ẽmb′∗(S1, Sn)

∗ : I × Ẽmb′∗(S1, Sn)×2 → Ẽmb′∗(S1, Sn)

is defined by using that for EC(1, Bn−1);

(α, ϕ̃1, ϕ̃2) 	→ ϕ̃1 ∗α ϕ̃2 := c̃l(c̃l−1(ϕ̃1) ∗α c̃l−1(ϕ̃2))

= (Lαϕ̃1) ◦ (L1−α c̃l
−1(ϕ̃2)). (3.3)

Roughly speaking ϕ̃1 ∗α ϕ̃2 is Lαϕ̃1 with Lαϕ̃1([ 1−α
2 , 2−α

2 ] × Bn−1) replaced by
cl−1(ϕ̃2).

3.3 BV-operation

We define an S1-action on Ẽmb∗(S1, Sn) as was done in [8, p. 3]. This action induces
our BV-operation on H∗(Ẽmb∗(S1, Sn)).

For any (ϕ;w) ∈ Ẽmb∗(S1, Sn) and α ∈ S1, define (ϕ;w)α ∈ Ẽmb∗(S1, Sn) by

(ϕ;w)α(t) := (Aϕ(t − α); Aw(t − α)),
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BV-structures on the homology of the framed long knot space 433

where A = w(−α)−1 ∈ SO(n+1) (acting on Sn in the usual way). Since Aw(−α) =
In+1 (and hence Aϕ(−α) = ∞), (ϕ;w)α is indeed in Ẽmb∗(S1, Sn).

Lemma 3.4 The above formula defines an S1-action on Ẽmb∗(S1, Sn). That is, we
have ((ϕ;w)α)β = (ϕ;w)α+β and (ϕ;w)0 = (ϕ;w).

This action can be interpreted for ϕ̃ ∈ Ẽmb′∗(S1, Sn) via h̃ [see (2.1)];

ϕ̃α := h̃−1(h̃(ϕ̃)α).

The fundamental class of S1 induces our �-operation through the above action;

� : H∗(Ẽmb∗(S1, Sn)) → H∗+1(Ẽmb∗(S1, Sn)).

We have �2 = 0 since � is induced by an S1-action and H∗(S1) = ∧∗〈[S1]〉.
Theorem 3.5 (H∗(Ẽmb∗(S1, Sn)), ·, λ,�) is a BV-algebra.

Proof We need to prove the last equality of Definition 3.1, that is, � is a derivation
with respect to the product modulo λ;

�(xy) − �(x)y − (−1)x̃ x�(y) = (−1)x̃λ(x, y). (3.4)

This is proved in a similar way to [5, Lemma 5.2]. Define two operations�i (i = 1, 2)
as the “first/last half” of �;

�i : I × Ẽmb∗(S1, Sn) → Ẽmb∗(S1, Sn), �i (α, σ ) = σ (α+i−1)/2.

Let �2 := {0 ≤ β ≤ α ≤ 1} be the standard 2-simplex. Define


 : �2 × Ẽmb∗(S1, Sn)×2 → Ẽmb∗(S1, Sn)

by


((α, β), σ1, σ2) := (σ1 ∗α σ2)
β/2.

Choose cubical p- and q-cycles x = ∑
ai xi and y = ∑

b j y j . Then
∗(id, x, y) =∑
aib j
◦ (id�2 × xi × y j ) is a (p+q +2)-chain whose boundary comes from ∂�2.

We can see that

(i) {α = β} ⊂ ∂�2 corresponds to a (p + q + 1)-cycle homologous to �(x)y,
(ii) {α = 1} ∪ {β = 0} ⊂ ∂�2 corresponds to a (p + q + 1)-cycle homologous to

x ∗ y + �1(x ∗1 y) (see Fig. 3).
(ii) is immediate from the definition, and (i) follows from Lemma 3.6 below. Thus

x ∗ y + �1(x ∗1 y) − �(x)y ∼ 0. (3.5)
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434 K. Sakai

Fig. 3 The chain 
∗(id, x, y); the symbol × indicates the basepoint

Similarly, considering the (p + q + 2)-chain (y ∗′
α x)β/2, we have

y ∗′ x + �1(y ∗′
1 x) − �(y) ∗′

0 x ∼ 0. (3.6)

By definition we have equalities of (p + q + 1)-chains

�1(y ∗′
1 x) = �2(y ∗′

0 x) = �2(x ∗1 y). (3.7)

We also see, by exchanging u ∈ I p and v ∈ I q , that the cycle�(y)∗′
0 x is homologous

to (−1)pq�(y) ∗0 x ∼ (−1)px�(y). Substituting this and (3.7) into (3.6) we have

y ∗′ x + �2(x ∗1 y) − (−1)px�(y) ∼ 0. (3.8)

Then (3.5), (3.8) and the facts�1(z)+�2(z) ∼ �(z) (for any cycle z) and x ∗1 y ∼ xy
(see Remark 3.3) imply (3.4). �

Lemma 3.6 
|{α=β}×Ẽmb∗(S1,Sn)×2 : I × Ẽmb′∗(S1, Sn)×2 → Ẽmb′∗(S1, Sn), defined
by (α, ϕ̃1, ϕ̃2) 	→ (ϕ̃1 ∗α ϕ̃2)

α/2, is homotopic to (α, ϕ̃1, ϕ̃2) 	→ (ϕ̃1)
α�ϕ̃2.

Proof For ϕ̃1, ϕ̃2 ∈ Ẽmb′∗(S1, Sn), the embedding ϕ̃1 ∗α ϕ̃2 is given by (3.3), which is
equal to Lαϕ̃1 at t = −α/2 ≡ 2−α

2 . The embedding h̃(ϕ̃1 ∗α ϕ̃2)
α/2 ∈ Ẽmb∗(S1, Sn)

is h̃(ϕ̃1 ∗α ϕ̃2) rotated by an action of a matrix which is determined by the value
h̃(ϕ̃1 ∗α ϕ̃2)(−α/2) = h̃(Lαϕ̃1)(−α/2). Thus (ϕ̃1 ∗α ϕ̃2)

α/2 is homotopic to
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BV-structures on the homology of the framed long knot space 435

(t; x) 	→A(Lαϕ̃1(−α/2)) ·
(
Lαϕ̃1

(
L1−α c̃l

−1 (ϕ̃2)
(
t − α

2
, x

)))

= (Lαϕ̃1)
α/2(L1c̃l

−1(ϕ̃2)(t, x))

∼ (L0ϕ̃1)
α(L1c̃l

−1(ϕ̃2)(t, x)),

here the equality follows from l1−α(t − α
2 ) = l1(t) and l−1

1−α(u) = l−1
1 (u) − α

2 , and
then we use Lemma 3.7 below. The proof is completed by considering the homotopy
from any f ∈ EC(1, Bn−1) to L0 f given by

β 	→ ŝ−1
β ◦ f ◦ ŝβ

where ŝβ := l̂β × idBn−1 and l̂β(t) := (1 + β)t , and translating this homotopy to a

homotopy on Ẽmb∗(S1, Sn) via c̃l. �
Lemma 3.7 The map I × Ẽmb∗(S1, Sn) → Ẽmb∗(S1, Sn) given by (α, σ ) 	→
(Lασ )α/2 (where Lασ is defined through the homotopy equivalence h̃) is equal to
(α, σ ) 	→ (L0σ)α .

Proof First by definition Lασ (t) = Rα · L0σ(t − α
2 ) where Rα is the rotation by πα

in the x1xn+1-plane. Putting L0σ = (ϕ;w), we have

(Lασ )α/2(t) =
(
ARαϕ

((
t − α

2

)
− α

2

)
; ARαw

((
t − α

2

)
− α

2

))

where A = (Rαw(−α
2 − α

2 ))−1 = w(−α)−1R−1
α . Thus

(Lασ )α/2(t) = (w(−α)−1ϕ(t − α);w(−α)−1w(t − α)) = (L0σ)α(t).

�
Proposition 3.8 � is nontrivial when n ≥ 3 is odd.

Proof It is an easy consequence of the third equation from Definition 3.1 that, if
λ(x, y) �= 0, then one of �(xy), �(x) and �(y) is not zero. The non-triviality of λ is
proved in [4] (when n = 3) and in [13] (when n > 3 is odd). �

3.4 The string bracket

Similarly to [5, §6], consider the principal S1-bundle

π : ES1 × Ẽmb∗(S1, Sn) → ES1 ×S1 Ẽmb∗(S1, Sn).

Let p : E → ES1 ×S1 Ẽmb∗(S1, Sn) be the vector bundle of rank two associated
with π , and E0 the complement of the zero section of E . The Gysin exact sequence
for p can be written as
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· · · → Hi (Ẽmb∗(S1, Sn))
E−→ HS1

i (Ẽmb∗(S1, Sn))
c−→ HS1

i−2(Ẽmb∗(S1, Sn))
M−→ Hi−1(Ẽmb∗(S1, Sn)) → · · ·

(E is induced by E0 ↪→ E , c is given by capping the Euler class, and M is the
connecting homomorphism). Define the bracket {−,−} on HS1∗ (Ẽmb∗(S1, Sn)) by

{x, y} := (−1)x̃E(M(x)M(y)).

As a corollary of Theorem 3.5 we obtain the following.

Corollary 3.9 {−,−} is a degree two Lie bracket on H S1∗ (Ẽmb∗(S1, Sn)).

Proof The proof is the same as that of [5, Theorem 6.1], which formally uses the
BV-structure on H∗(Ẽmb∗(S1, Sn)), the fact that the map � induced by the S1-action
can be described as � = M ◦ E, and the exactness of the Gysin sequence. �

4 BV-structure on the Hochschild homology

This section is independent of the previous one. In this section we define a BV-algebra
structure on theHochschild homology HH∗(O) associated with a cyclic multiplicative
operad O in the category of graded modules.

One motivation is as follows. When n ≥ 4, the space EC(1, Bn−1) is weakly
equivalent to the homotopy totalizationof anoperad f Kn , called the framedKontsevich
operad, which is weakly equivalent to the framed little n-disks operad f Cn [14]. There
is a spectral sequence [1] converging to the homology of the homotopy totalization of
a topological multiplicative operad ( f Kn is one of such operads), and its E2-term is
the Hochschild homology associated with the homology of the operad. In general, for
any multiplicative operadO of modules, its Hochschild homology HH∗(O) admits a
Poisson algebra structure [17], and if moreover O is a cyclic operad over non-graded
modules, then HH∗(O) admits a BV-algebra structure [11,18]. For EC(1, Bn−1), the
operad O = H∗( f Cn) is a multiplicative operad of graded modules, and the Poisson
structure on HH∗(O) is proved in Salvatore’s draft to coincide with that described in
[2]. Moreover, f Cn is equivalent to a cyclic operad (of “conformal n-balls”) [3], and
it turns out that H∗( f Cn) is a cyclic multiplicative operad of graded modules. So it is
natural to ask whether HH∗(O) admits a suitable BV-algebra structure when O is a
cyclic operad of graded modules, in such a way that it coincides with that discussed
in Sect. 3 in the case of embedding spaces. Our construction is a direct analogue to
the non-graded cases.

As for operads, we follow the convention of [10].

4.1 Hochschild homology

For an operad O and x ∈ O(l), y ∈ O(m), define

x ◦i y := x(id, . . . , id, y, id, . . . , id) ∈ O(l + m − 1),
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where y sits in the i th place, and id ∈ O(1) is the identity element. When O is an
operad of graded modules, we denote by x̃ the grading of x in the graded moduleO(l),
that is, x ∈ O(l)x̃ .

LetO be amultiplicative operad [10, Definition 10.1] of gradedmodules; namelyO
is a non-symmetric operad of graded modules endowed with a morphismASSOC →
O, where ASSOC is the associative operad given by ASSOC(n) = {∗} for all
n ≥ 0. We denote the image of ASSOC(2) = {∗} → O(2) by μ ∈ O(2) and call
it the multiplication. The collection O = {O(k)}k≥0 admits a cosimplicial module
structure; the cosimplicial structure maps

di : O(k − 1) → O(k), si : O(k + 1) → O(k) (0 ≤ i ≤ k)

are defined as in [10, §10] by using μ and the unit element e ∈ O(0). The grading-
preserving map

∂k : O(k) → O(k + 1), ∂k := d0 − d1 + · · · + (−1)k+1dk+1

satisfies ∂k+1∂k = 0. Thus we obtain a cochain complex {O, ∂} with total degree

|x | := x̃ − l for x ∈ O(l)

(this agrees with the homological degree in the spectral sequence). We call this the
Hochschild complex associated with O.

Define the normalized Hochschild complex Õ by

Õ(k) :=
⋂

0≤i≤k−1

ker{si : O(k) → O(k − 1)}.

The following is a well-known fact.

Lemma 4.1 (See [7, III, Theorem 2.1] for the simplicial version) The map ∂k restricts
to ∂k : Õ(k) → Õ(k + 1). The inclusion map Õ → O is a quasi-isomorphism.

A Poisson algebra structure on the Hochschild homology HH(O) := H∗(O, ∂)

was defined in [17]; for x ∈ O(l) and y ∈ O(m), define two operations

x • y := (−1)l ỹμ(x, y) ∈ O(l + m)x̃+ỹ,

[x, y] := x ◦̄y − (−1)(|x |+1)(|y|+1)y◦̄x ∈ O(l + m − 1)x̃+ỹ,

where ◦̄ is defined by

x ◦̄y :=
∑
1≤i≤l

(−1)(m−1)(l−i)+(l−1)ỹ x ◦i y,

which should be compared with the star-operation ∗ (Sect. 3.2).

Theorem 4.2 [17] If O is a multiplicative operad of graded modules, then HH(O)

is a Poisson algebra with respect to •, [·, ·] and the degree |·|.
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4.2 Connes’ boundary operation

Suppose in addition thatO is a cyclic multiplicative operad (see [11, Definition 3.11]);
namely, O is a multiplicative operad with grading-preserving linear maps

τk : O(k) → O(k)

satisfying τ k+1
k = id, τ0(e) = e, τ2(μ) = μ and, for x ∈ O(l) and y ∈ O(m),

τl+m−1(x ◦i y) =
{

τl(x) ◦i−1 y i ≥ 2,

(−1)x̃ ỹτm(y) ◦m τl(x) i = 1.

Lemma 4.3 [11, Theorem1.4(a)] Let O be a cyclic multiplicative operad of graded
modules. The collection {τk}k≥0 of maps makes the cosimplicial module O into a
cocyclic module; that is, for 1 ≤ i ≤ k, we have

τkd
i = di−1τk−1, τks

i = si−1τk+1.

Define the operation Bk : O(k) → O(k − 1) by

Bk(x) := (−1)x̃
∑

1≤i≤k

(−1)i(k−1)τ−i
k−1s

k−1τk(1 − τk)(x). (4.1)

This map is called Connes’ boundary operation (for non-graded simplicial version,
see [9, (2.1.7.1)]). Indeed B is a boundary map:

Lemma 4.4 [9, Sect. 2] We have Bk Bk+1 = 0 and Bk+1∂k = −∂k−1Bk.

Note that τk does not descend to a map on Õ(k). But the following holds.

Lemma 4.5 [9, Sect. 2] Bk restricts to a map Bk : Õ(k) → Õ(k − 1) of the form

Bk(x) = (−1)x̃
∑

1≤i≤k

(−1)i(k−1)τ−i
k−1σk(x), (4.2)

where σk := sk−1τk .

The formula (4.1) is equal to (4.2) on Õ(k) because sk−1τ 2k = τk−1s0 as a conse-
quence of Lemma 4.3.

We have the induced map Bk on Hochschild homology by Lemma 4.4. The main
result of this section is the following.

Theorem 4.6 (HH(O), •, [·, ·], B) is a BV-algebra with respect to the grading |·|.
This theorem has been already proved for cyclic multiplicative operads of non-

graded modules [18], [11, §6]. The proof below is exactly same as that in [11, §6]
when the degrees a and b are both even.
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Proof Let x ∈ Õ(l)a , y ∈ Õ(m)b. Define Z(x, y) ∈ Õ(l + m − 1)a+b by

Z(x, y) := (−1)|x ||y|+a+b
∑

1≤ j≤l

(−1) j (l+m−1)τ
− j
l+m−1σl+m(y • x)

and define H(x, y) ∈ Õ(l + m − 2)a+b by H(x, y) := ∑
1≤ j≤p≤l−1 Hj,p(x, y),

where

Hj,p(x, y) := (−1) j (l−1)+(m−1)(p+1+l)+lbτ
− j
l+m−2σl+m−1(x ◦p− j+1 y).

It is not difficult to see that the result follows from the three formulas

Bl+m(x • y) = Z(x, y) + (−1)|x ||y|Z(y, x), (4.3)

(−1)|x |
(
Z(x, y) − Bl(x) • y

) − x ◦̄y
= (−1)b∂H(x, y) + H(∂x, y) + (−1)l+b+1H(x, ∂y), (4.4)

z • w − (−1)|z||w|w • z = (−1)|z|
(
∂(z◦̄w) − (∂z)◦̄w − (−1)|z|−1z◦̄(∂w)

)
. (4.5)

Indeed, (4.3), (4.4) and (4.5) imply that

Bl+m(x • y) − (
Bl(x) • y + (−1)|x |x • Bm(y) + (−1)|x |[x, y])

= (−1)|x |+b(∂H(x, y) + (−1)bH(∂x, y) + (−1)l+1H(x, ∂y)
)

+ (−1)|x ||y|+|y|+a(∂H(y, x) + (−1)aH(∂y, x) + (−1)m+1H(y, ∂x)
)

− (−1)(|x |+1)|y|(∂(Bm(y)◦̄x) − (∂Bm(y))◦̄x − (−1)|y|Bm(y)◦̄(∂x)
)
.

The formula (4.3) follows directly from the definition, and (4.5) is [17, (3.7)]. (4.4)
follows from the following formulas, which are proved similarly as in [11, Sect. 6]:

• H(d0x + (−1)l+1dl+1x, y) = (−1)|x |Z(x, y) − x ◦̄y,
•

∑
1≤ j<p≤l

H j,p((−1)p− j d p− j x, y) = (−1)l+bH(x, d0y),

•
∑

1≤ j≤p≤l−1

Hj,p((−1)p− j+1d p− j+1x, y) = (−1)l+bH(x, (−1)m+1dm+1y),

•
∑

1≤ j≤l

H j,l((−1)l− j+1dl− j+1x, y) = (−1)|x |+1B(x) • y,

•
∑

1≤ j≤p≤l

∑
1≤i≤l

i �=p− j, p− j+1

Hj,p((−1)i di x, y) = (−1)b+1
( ∑
1≤ j≤p≤l−1

∑
1≤i≤p−1, or

p+m≤i≤l+m−2

(−1)i di H(x, y)+d0H(x, y) + (−1)l+m−1dl+m−1H(x, y)

)
,

•
∑

1≤ j≤p≤l−1
p≤i≤p+m−1

(−1)i di Hj,p(x, y) = (−1)l
∑

1≤i≤m

(−1)i H(x, di y).

�

123



440 K. Sakai

Corollary 4.7 B∗ defines a BV-algebra structure on E2-term of the Bousfield homol-
ogy spectral sequence (which converges to H∗(EC(1, Bn−1)) when n ≥ 4) and
descends to a BV-operation on E∞-term.

Proof A cyclic structure on the operad CBn of “conformal n-balls” was described in
[3]. An easy observation shows that τ∗μ = μ for the operad H∗(CBn) ∼= H∗( f Cn),
where the multiplication μ ∈ H0( f Cn(2)) ∼= Z corresponds to 1 ∈ Z. Thus H∗( f Cn)
is a cyclicmultiplicative operad of gradedmodules, and hence E2∗∗ = HH∗(H∗( f Cn))
admits a BV-algebra structure.

The Bousfield spectral sequence [1] is derived from the double complex {C∗
( f Kn(∗)), d, ∂∗}, where f Kn is the framed Kontsevich operad [14] (which is cyclic
and multiplicative), C∗ is the singular chain complex functor and d is the boundary
operator for singular chains. This spectral sequence is a spectral sequence of Poisson
algebras [12,14]. The map B∗ is defined on C∗( f Kn(∗)) by (4.1) and commutes with
both ∂ and d since τk−1 and sk−1 are induced by continuous maps defined on f C(∗);
τ is induced by the cyclic permutation of balls, and s is the forgetting map. Thus B∗
commutes with all the differentials dr on Er , r ≥ 2. �
Conjecture At least over rationals, B descends to a map on H∗(EC(1, Bn−1)) and
coincides with � discussed in Sect. 3.
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