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Abstract We define formal geometric quantisation for proper Hamiltonian actions by
possibly noncompact groups on possibly noncompact, prequantised symplectic mani-
folds, generalising work of Weitsman and Paradan. We study the functorial properties
of this version of formal geometric quantisation, and relate it to a recent result by the
authors via a version of the shifting trick. For (pre)symplectic manifolds of a certain
form, quantisation commutes with reduction, in the sense that formal quantisation
equals a more direct version of quantisation.
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410 P. Hochs, V. Mathai

1 Introduction

Consider a Hamiltonian action by a compact Lie group K on a possibly noncompact
prequantised symplectic manifold (N , ν), with proper momentum map. Weitsman
[23] defined the formal geometric quantisation of this action, which by definition
commutes with reduction:

Q−∞
K (N , ν) =

∑

λ∈�K+

Q(Nλ)[π K
λ ],

where�K+ is the set of dominant integral weights of K ,with respect to amaximal torus
and positive root system, and π K

λ is the irreducible representation of K with highest
weight λ ∈ �K+ . For such λ, Nλ is the symplectic reduction of the given action at
λ/ i (which is a symplectic orbifold if λ/ i is a regular value of the momentum map).
Formal geometric quantisation takes values in the abelian group

R−∞(K ) = HomZ(R(K ),Z),

where R(K ) is the representation ring of K .
Paradan [18] proved that formal geometric quantisation is functorial with respect

to Cartesian products and restriction to subgroups. These two properties imply that it
is compatible with the R(K )-module structure on R−∞(K ). Ma and Zhang [14,15],
and also Paradan [19] proved that quantisation commutes with reduction, in the sense
that

QK (N , ν) = Q−∞
K (N , ν),

for a certain definition of the quantisation QK (N , ν) ∈ R−∞(K ).
On the other hand, Landsman [9,12] proposed a definition of geometric quantisation

of a Hamiltonian action by a Lie group G on a prequantised symplectic manifold
(M, ω), if the orbit space M/G is compact.Heused theanalytic assembly map from the
Baum–Connes conjecture [2], which takes values in the K -theory group K∗(C∗

(r)G).
Here C∗

(r)G denotes either the full C∗-algebra C∗G or the reduced C∗-algebra C∗
r G of

the group G. Applying this assembly map to a Dirac operator coupled to a prequantum
line bundle yields Landsman’s definition of

QG(M, ω) ∈ K∗(C∗
(r)G). (1)

Mathai and Zhang [16] showed that Landsman’s version of quantisation commutes
with reduction at the trivial representation, at least if one multiplies the symplectic
form ω by a large enough integer. For (possibly only presymplectic) manifolds of the
form M = G ×K N , with N a compact prequantised Hamiltonian K -manifold, it was
shown in [8] that

QG(M, ω) =
∑

λ∈�K+

Q(Mλ+ρc , ωλ+ρc )[λ]. (2)
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Formal geometric quantisation for proper actions 411

Here [λ] is a certain generator of K∗(C∗
r G), ρc is half the sum of the compact positive

roots, and (Mλ+ρc , ωλ+ρc ) is the symplectic reduction of the action at (λ + ρc)/ i .
The shift over ρc appears because Spinc-quantisation is used rather than Dolbeault-
quantisation.

A common generalisation of R−∞(K ) and K∗(C∗
r G) is the K -homology group

K ∗(C∗
r G) of C∗

r G. In view of the successes for quantisation with values in R−∞(K )

and K∗(C∗
r G), it makes sense to find a definition of quantisation with values in

K ∗(C∗
r G), without assuming the group or the orbit space to be compact. In this note,

we generalise the formal quantisation studied by Weitsman and Paradan to noncom-
pact groups. For manifolds of the form M = G ×K N as in (2), but with N possibly
noncompact, we define geometric quantisation in K ∗(C∗

r G), and show that it equals
formal quantisation. Thismeans that this version of quantisation commuteswith reduc-
tion (Theorem 4.2).We study the functorial properties of formal quantisation, and give
a relation with the main result in [10] via a version of the shifting trick.

2 Compact groups

Let K be a compact, connected Lie group, with Lie algebra k. Let �K+ be the set
of dominant integral weights of K , with respect to a maximal torus and a choice of
positive roots. For λ ∈ �K+ , let π K

λ be the irreducible representation of K with highest
weight λ. Consider the abelian group

R−∞(K ) := HomZ(R(K ),Z)

Here R(K ) denotes the representation ring of K . Note that R−∞(K ) is generated by
the elements [π K

λ ]∗, for λ ∈ �K+ , where

[π K
λ ]∗([π K

λ′ ]) = δλλ′ :=
{
1 if λ = λ′;
0 if λ �= λ′,

for all λ′ ∈ �K+ .
Let (N , ν) be a prequantised symplectic manifold, equipped with a Hamiltonian K -

action. Suppose the momentum map 	K :N → k∗ is proper. Then for every λ ∈ �K+ ,
the symplectic reduction [13] Nλ of the action at λ/ i is compact. Hence it has a
quantisation Q(Nλ) ∈ Z, where one can use Meinrenken and Sjamaar’s approach
[17] in the singular case.

Weitsman [23] introduced the formal geometric quantisation Q−∞
K (N , ν) of the

action by K on (N , ν), as

Q−∞
K (N , ν) =

∑

λ∈�K+

Q(Nλ)[π K
λ ]∗ ∈ R−∞(K ).

Paradan [18] proved that formal quantisation is functorial with respect to restriction
to subgroups, and also notes that it is functorial with respect to Cartesian products.
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412 P. Hochs, V. Mathai

To state Paradan’s result on restriction to a subgroup K ′ < K , we consider the
abelian group R−∞(K )K ′ of formal differences of equivalence classes of representa-
tions of K whose restrictions to K ′ decompose into irreducible representations of K ′
with finite multiplicities. One has

R(K ) ⊂ R−∞(K )K ′ ⊂ R−∞(K ),

and

R−∞(K )K = R−∞(K );
R−∞(K ){e} = R(K ).

Here we identify R−∞(K ) = HomZ(R(K ),Z) with the abelian group of formal
differences of equivalence classes of representations of K containing finitely many
copies of all irreducibles, via the map [π K

λ ]∗ 	→ [π K
λ ]. By definition of R−∞(K )K ′ ,

there is a well-defined restriction map

ResK
K ′ : R−∞(K )K ′ → R−∞(K ′).

Let k′ be the Lie algebra of K ′, and suppose that the momentum map 	K ′ : N →
(k′)∗ for the action by K ′ on N is still proper. A criterion for this condition is given in
Proposition 2.11 in [20]. Then Paradan showed that Q−∞

K (N , ν) ∈ R−∞(K )K ′ , and

ResK
K ′

(
Q−∞

K (N , ν)
) = Q−∞

K ′ (N , ν). (3)

In addition, for j = 1, 2, let K j be a compact, connected Lie group, and let
(N j , ν j ) be a prequantised Hamiltonian K j -manifold with proper momentum map.
Then Paradan points out that

Q−∞
K1

(N1, ν1) ⊗ Q−∞
K2

(N1, ν1) = Q−∞
K1×K2

(N1 × N2, ν1 × ν2). (4)

Note that R−∞(K ) is an R(K )-module, via the tensor product of representations. The
properties (3) and (4) together imply that, if N1 is compact,

Q−∞
K (N1, ν1) · Q−∞

K (N2, ν2) = Q−∞
K (N1 × N2, ν1 × ν2), (5)

where the dot · denotes the R(K )-module structure of R−∞(K ).
Our goal is to generalise the definition of formal geometric quantisation, and its

functoriality properties with respect to restriction and Cartesian products, to noncom-
pact groups. Then R−∞(K ) will be replaced by K -homology of group C∗-algebras.

3 K -homology of group C∗-algebras and formal quantisation

Let G be a connected Lie group containing K as a maximal compact subgroup. Let
g be the Lie algebra of G. Let C∗

r G be the reduced C∗-algebra of G. We will write
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Formal geometric quantisation for proper actions 413

d := dim(G/K ). The Connes–Kasparov conjecture, proved for almost connected
groups by Chabert et al. [4], states that there is an isomorphism of Abelian groups

D-IndG
K : R(K )

∼=−→ Kd(C∗
r G).

This isomorphism is called Dirac induction, and is given by

D-IndG
K [π K

λ ] = μG
G/K

[
Dλ

G/K

]
, (6)

for λ ∈ �K+ , where μG
G/K is the analytic assembly map [2], and Dλ

G/K is a Dirac

operator on G/K coupled to the representation π K
λ .

Let K d(C∗
r G) be the K -homology group (see e.g. [5]) of C∗

r G in degree d. Since
Kd(C∗

r G) ∼= R(K ) is torsion-free, the universal coefficient theorem [21] implies that

K d(C∗
r G) ∼= HomZ(Kd(C∗

r G),Z). (7)

In particular, R−∞(K ) = K 0(C∗
r K ). The isomorphism (7) is given by the Kas-

parov product. Pulling back along the Dirac induction map defines an isomorphism
of Abelian groups

(
D-IndG

K

)∗ : K d(C∗
r G)

∼=−→ R−∞(K ). (8)

For λ ∈ �K+ , we write [λ] for the generator D-IndG
K [π K

λ ] of K d(C∗
r G). Let [λ]∗ ∈

K d(C∗
r G) be the corresponding generator, defined by

[λ]∗([λ′]) = δλλ′ ,

for λ′ ∈ �K+ . Then

(
D-IndG

K

)∗[λ]∗ = [π K
λ ]∗. (9)

We consider Kd(C∗
r G) as a subgroup of K d(C∗

r G) via the map [λ] 	→ [λ]∗.
Using the generators [λ]∗ of K d(C∗

r G), one can generalise formal geometric quan-
tisation to actions by noncompact groups as follows. Let (M, ω) be a prequantised
symplectic manifold, equipped with a proper Hamiltonian G-action. Suppose the
momentum map 	G :M → g∗ is G-proper, in the sense that the inverse image of
every cocompact set is cocompact. (By a cocompact set we mean a set with com-
pact quotient by the group action.) Then all symplectic reductions of the action are
compact. Assume that all symplectic reductions at elements of �K+ have well-defined
quantisations; see below for a discussion of this assumption.

Definition 3.1 The formal geometric quantisation of the action by G on (M, ω) is

Q−∞
G (M, ω) =

∑

λ∈�K+

Q(Mλ)[λ]∗ ∈ K d(C∗
r G).
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414 P. Hochs, V. Mathai

Let ξ ∈ g∗ be a value of 	G . Any of the following conditions is sufficient for the
symplectic reduction Mξ to have a well-defined quantisation Q(Mξ ) ∈ Z.

1. If G is compact, one can define Q(Mξ ) using Meinrenken and Sjamaar’s methods
[17].

2. Suppose that
(a) ξ is a quasi-regular value of	G , in the sense that all G orbits in (	G)−1(G ·ξ)

have the same dimension; and
(b) the prequantum line bundle L → M is almost equivariantly locally trivial at

level ξ , in the sense that for all m ∈ (	G)−1(G · ξ), the identity component of
the stabiliser Gm acts trivially on the fibre Lm .

Then Mξ is a compact symplectic orbifold, with a prequantum line bundle induced
by L , and can be quantised. See Section 2.2 in [17].

3. As a special case of the second point, suppose that all points in (	G)−1(G · ξ)

have conjugate stabilisers, and that G · ξ is locally closed. Then by Theorem 16
in [1], the symplectic reduction Mξ is smooth.

4. Suppose G is semisimple with discrete series, and let K < G be a maximal
compact subgroup. If the stabiliser Gξ is compact, i.e. ξ is strongly elliptic, set

M̃ := (	G)−1(g∗
se),

where g∗
se is the set of strongly elliptic elements. By Corollary 2.4 and Proposi-

tion 2.6 in [22], this is a nonempty open subset of g∗. Hence M̃ is a G-invariant
open neighbourhood of (	G)−1(G · ξ) in M . By Propositions 2.8 and 2.14 in [7],
M̃ has the form

M̃ ∼= G ×K N ,

where N := (	G)−1(k∗)∩ M̃ is a Hamiltonian K -manifold, with momentummap
defined by the restriction of 	G . Hence there is a homeomorphism

Mξ = M̃ξ = Nξ ,

which is a symplectomorphism of ξ is a regular value of 	K . Hence Mξ
∼= Nξ

has a well-defined quantisation by the first point.
The generators [λ], for λ ∈ �K+ ∩ig∗

se correspond to discrete series representations,
see Remark 2.5 in [7], and also Example 5.2.

5. As a special case of the fourth point, suppose that 	G is proper, rather than just
G-proper. Then it was pointed out in [20] that 	G(M) ⊂ g∗

se, so the fourth point
applies to any value ξ of 	G .

4 Quantisation commutes with reduction

Quantisation commutes with reduction is the statement that

QG(M, ω) = Q−∞
G (M, ω), (10)
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Formal geometric quantisation for proper actions 415

for some definition of QG(M, ω) ∈ K d(C∗
r G). For a prequantised Hamiltonian

K -manifold (N , ν)with proper momentummap	K , as considered earlier, such a def-
inition was given byMa and Zhang [14,15] and Paradan [19]. They defined QK (N , ν)

via expanding (relatively) compact subsets of N . Braverman’s index theory for gen-
eralised Dirac operators on possibly noncompact manifolds [3] can be applied to give
a direct analytic definition of quantisation, provided the critical point set of the norm-
squared function of 	K is compact (which it is if N is real-algebraic and 	K is
algebraic, as noted in Lemma 3.24 of [20]). Ma and Zhang, and also Paradan, proved
that

QK (N , ν) = Q−∞
K (N , ν). (11)

A definition of QG(M, ω) ∈ K d(C∗
r G) satisfying (10) can be given if M is of

a particular form. Suppose that G is semisimple, and let g = k ⊕ p be a Cartan
decomposition. Suppose M is of the form M = G ×K N considered in [7,8], the
quotient of G × N by the K -action

k · (g, n) = (gk−1, kn),

for k ∈ K , g ∈ G and n ∈ N . As in [8], consider the G-invariant presymplectic form
(i.e. closed two-form) ω on M given by

ω[e,n]
(
T q(X + v), T q(Y + w)

) := νn(v,w) − 〈	K (n), [X, Y ]〉,

where n ∈ N , X, Y ∈ p, v,w ∈ Tn N , and q : G × N → M is the quotient map.
In general, ω may be degenerate, but all constructions relevant to quantisation and
reduction still apply. The momentum map 	G : M → g∗, given by

	G [g, n] = Ad∗(g)	K (n), (12)

for g ∈ G and n ∈ N , is G-proper if 	K is proper.
If G has discrete series representations and 	K (N ) ⊂ k∗ ↪→ g∗ lies inside the

set g∗
se of strongly elliptic elements, then ω is an actual symplectic form (see [7,

Proposition 2.4], with more details given in Proposition 12.4 in [6]). Conversely, any
Hamiltonian G-manifold (M, ω) whose momentum map takes values in the strongly
elliptic set is of the form M = G ×K N as above [7, Proposition 2.14].

In [7,8], it was shown that for compact N , quantisation commutes with induction,
in the sense that

QG(M, ω) = D-IndG
K

(
QK (N , ν)

)
.

Here QG(M, ω) ∈ K ∗
d (C∗

r G) is Landsman’s version (1) of geometric quantisation.
This shows that the following definition reduces to Landsman’s definition if N is
compact.
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416 P. Hochs, V. Mathai

Definition 4.1 For M = G ×K N as above, the geometric quantisation of the action
by G on M is

QG(M, ω) =
((
D-IndG

K

)∗)−1 (
QK (N , ν)

) ∈ K d(C∗
r G).

The formal quantisation of the action by G on (M, ω) depends on the precise
procedure used to quantise the reduced spaces Mξ . Let Q(Mξ ) be defined as the usual
index of a Dirac operator if ξ is a quasi-regular value of 	G , and as Q(Nξ ) if ξ is a
singular value (since Mξ

∼= Nξ ).

Theorem 4.2 (Quantisation commutes with reduction) If M is of the form M =
G ×K N , then (10) holds.

Proof The equality (11) implies that

QG(M, ω) =
((
D-IndG

K

)∗)−1 (
QK (N , ν)

)

=
((
D-IndG

K

)∗)−1 (
Q−∞

K (N , ν)
)
.

Because of Lemma 4.3 below, the latter expression equals Q−∞
G (M, ω). ��

Lemma 4.3 In this setting, one has

(
D-IndG

K

)∗(
Q−∞

G (M, ω)
) = Q−∞

K (N , ν).

Proof Let λ ∈ �K+ . If λ/ i is a singular value of 	G , one by definition has

Q(Mλ) = Q(Nλ). (13)

For quasi-regular values, one has an isomorphism of (pre)symplectic orbifolds

(Mλ, ωλ) ∼= (Nλ, νλ)

(see [8, Lemma 5.1]), so that, in particular, (Mλ, ωλ) is actually symplectic, rather than
just presymplectic. Hence (13) also holds in that case. The desired equality therefore
follows from (9). ��

Theorem 4.2 motivates the search for a definition of QG(M, ω) ∈ K d(C∗
r G) for

arbitrary (M, ω), generalising Definition 4.1.

5 A restriction map

We return to the case where G is any connected Lie group. Let G ′ < G be a closed,
connected subgroup that has a maximal compact subgroup K ′ contained in K . We
write d ′ := dim(G ′/K ′). Set
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Formal geometric quantisation for proper actions 417

K ∗(C∗
r G)G ′ :=

((
D-IndG

K

)∗)−1(
R−∞(K )K ′

)
.

(Note that since all maximal compact subgroups are conjugate, the ring R−∞(K )K ′
is independent of the choice of maximal compact subgroup K ′ < G ′.)

Definition 5.1 The Dirac restriction map D-ResG
G ′ is defined by commutativity of the

following diagram:

K d(C∗
r G)G ′

D-ResG
G′��

(D-IndG
K )∗ ∼=

��

K d ′
(C∗

r G ′)

(D-IndG′
K ′ )∗∼=

��
R−∞(K )K ′

ResK
K ′ �� R−∞(K ′).

Because the Dirac restriction map is modelled on the restriction map from K to K ′,
it may not contain all representation theoretic information concerning restriction of
representations from G to G ′. It does have natural functoriality properties with respect
to formal quantisation, as we will see.

Example 5.2 Suppose G is semisimple with discrete series. Then d is even. Let ρc be
half the sum of the positive roots of K . Let λ ∈ �K+ , and suppose λ is strongly elliptic.
Let πG

λ be the irreducible discrete series representation of G with Harish–Chandra
parameter λ + ρc. Then πG

λ defines a K -theory class

[πG
λ ] ∈ K0(C

∗
r G)

(see [11, Section 2.2]). In (5.3) in [8], it is noted that

[πG
λ ] = (−1)d/2[λ] = (−1)d/2 D-IndG

K [π K
λ ].

Hence the image of [πG
λ ] in K d(C∗

r G) is [πG
λ ]∗ := (−1)d/2[λ]∗ ∈ K 0(C∗

r G), and

(
D-IndG

K

)∗([πG
λ ]∗) = (−1)d/2[π K

λ ]∗.

Let �K ′
+ be the set of dominant integral weights of K ′ with respect to a maximal

torus and positive roots, compatible with the choices made for K . Write

ResK
K ′(π K

λ ) =
∑

λ′∈�K ′
+

mλ′π K ′
λ′ ,

for certain integer coefficients mλ′ . Then

(
D-IndG ′

K ′
)∗ ◦ D-ResG

G ′ [πG
λ ]∗ = ResK

K ′ ◦(
D-IndG

K

)∗[πG
λ ]∗

= (−1)d/2
∑

λ′∈�K ′
+

mλ′ [π K ′
λ′ ]∗.
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418 P. Hochs, V. Mathai

Hence

D-ResG
G ′ [πG

λ ]∗ = (−1)d/2
∑

λ′∈�K ′
+

mλ′ [λ′]∗,

by (9).

Suppose that G and G ′ are semisimple, and that M is of the form M = G ×K N
as above. Then formal geometric quantisation has the following functoriality property
with respect to Dirac restriction.

Proposition 5.3 Suppose that the momentum map for the action by G ′ on M is still
proper. Then (omitting the various symplectic forms from the notation) we have

Q−∞
G (G ×K N ) ∈ K d(C∗

r G)G ′ ,

and

D-ResG
G ′

(
Q−∞

G (G ×K N )
) = Q−∞

G ′ (G ′ ×K ′ N ).

Proof Because of the form (12) of the momentum map for the action by G ′ on M ,
this map is G ′-proper if and only if the momentum map for the action by K ′ on N is
proper. Hence, by Paradan’s result (3), one has Q−∞

K (N ) ∈ R−∞(K )K ′ , and

ResK
K ′

(
Q−∞

K (N )
) = Q−∞

K ′ (N ).

Lemma 4.3 states that

Q−∞
K (N ) = (

D-IndG
K

)∗(
Q−∞

G (G ×K N )
)
.

Hence Q−∞
G (G ×K N ) ∈ K d(C∗

r G)G ′ , and

(
D-IndG ′

K ′
)∗ ◦ D-ResG

G ′
(
Q−∞

G (G ×K N )
) = ResK

K ′ ◦(
D-IndG

K

)∗(
Q−∞

G (G ×K N )
)

= ResK
K ′

(
Q−∞

K (N )
)

= Q−∞
K ′ (N )

= (
D-IndG ′

K ′
)∗(

Q−∞
G ′ (G ′ ×K ′ N )

)
.

��
Remark 5.4 One would expect a restriction map ResG

G ′ to satisfy

ResG
G ′

(
Q−∞

G (M)
) = Q−∞

G ′ (M),

compare with Theorem D in [20]. Proposition 5.3 reflects a different nature of the
Dirac restriction map.
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Formal geometric quantisation for proper actions 419

6 Products of generators

In Section 5.3 of [7], a multiplicativity property of the analytic assembly map is
discussed. This will allow us to generalise the multiplicative property (4) of formal
geometric quantisation to noncompact groups. That in turn leads to a generalisation
of property (5) of formal quantisation with respect to the R(K )-module structure of
R−∞(K ).

Let G1 and G2 be locally compact groups, acting properly and cocompactly on
locally compactHausdorff spaces X1 and X2, respectively. There areKasparov product
maps on equivariant K -homology and on K -theory,

K G1∗ (X1) × K G2∗ (X2)
×−→ K G1×G2∗ (X1 × X2);

K∗(C∗
r G1) × K∗(C∗

r G2)
×−→ K∗(C∗

r (G1 × G2)).

By Theorem 5.2 in [7], the assembly maps μ
G j
X j

and μ
G1×G2
X1×X2

satisfy

μ
G1
X1

(a1) × μ
G2
X2

(a2) = μ
G1×G2
X1×X2

(a1 × a2), (14)

for all a j ∈ K
G j∗ (X j ), at least if X1 and X2 are metrisable.

Now suppose G1 and G2 are connected, semisimple Lie groups. Let K j < G j be
maximal compact subgroups, and suppose that the adjoint representations Ad : K j →
SO(p j ) lift to Spin(p j ), for Cartan decompositions g j = k j ⊕ p j . (This is always true
for certain covers of the groups G j .) Write d j := dim(G j/K j ).

Lemma 6.1 Let λ j ∈ �
K j
+ . Then one has

[λ1] × [λ2] = [(λ1, λ2)] ∈ Kd1+d2(C
∗
r (G1 × G2)).

(Note that �
K1×K2+ = �

K1+ × �
K2+ .)

Proof Let K j < G j be as above. In this setting, for G = G j and K = K j , the Dirac
operator Dλ

G/K used in the definition (6) of Dirac induction is defined explicitly as
follows. Let {X1, . . . , Xn} be a basis of p, orthonormal with respect to the Killing
form. Let �p be the standard representation of Spin(p), and let c : p → End(�p) be
the Clifford action. Let λ ∈ �K+ , and let Vλ be the representation space of π K

λ . Then

Dλ
G/K =

n∑

j=1

X j ⊗ c(X j ) ⊗ 1Vλ (15)

on

(
C∞(G) ⊗ �p ⊗ Vλ

)K
.
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In K G1×G1∗
(
(G1 × G2)/(K1 × K2)

)
, it follows from (15) that for all λ j ∈ �

K j
+ ,

[
D(λ1,λ2)

(G1×G2)/(K1×K2)

] = [
Dλ1

G1/K1
⊗ 1 + 1 ⊗ Dλ2

G2/K2

]

= [
Dλ1

G1/K1

] × [
Dλ2

G2/K2

]

Here we have used the fact that π K1×K2
(λ1,λ2)

= π
K1
λ1

⊗ π
K2
λ2

. We conclude that, because of
(14),

[(λ1, λ2)] = D-IndG1×G2
K1×K2

[π K1×K2
(λ1,λ2)

]
= μ

G1×G2
(G1×G2)/(K1×K2)

[
D(λ1,λ2)

(G1×G2)/(K1×K2)

]

= μ
G1×G2
(G1×G2)/(K1×K2)

([
Dλ1

G1/K1

] × [
Dλ2

G2/K2

])

= μ
G1
G1/K1

[
Dλ1

G1/K1

] × μ
G2
G2/K2

[
Dλ2

G2/K2

]

= [λ1] × [λ2].
��

We will use an extension of Lemma 6.1 to an equality involving the Kasparov
product map on K -homology

K ∗(C∗
r G1) × K ∗(C∗

r G2)
×−→ K ∗(C∗

r (G1 × G2)). (16)

Corollary 6.2 For all λ j ∈ �
K j
+ , one has

[λ1]∗ × [λ2]∗ = [(λ1, λ2)]∗ ∈ K d1+d2(C∗
r (G1 × G2)).

Proof Let λ j , μ j ∈ �
K j
+ . Then

[(λ1, λ2)]∗
([(μ1, μ2)]

) = δλ1μ1δλ2μ2 = [λ1]∗
([μ1]

) · [λ2]∗
([μ2]

)
. (17)

The isomorphism (7) is induced by the Kasparov product, i.e. for λ ∈ �K+ , the homo-
morphism

[λ]∗ : KK (C, C∗
r G) → Z

is given by taking the Kasparov product with [λ]∗ ∈ KK (C∗
r G,C). Hence the right

hand side of (17) equals
([μ1] ×C∗

r G1 [λ1]∗
) · ([μ2] ×C∗

r G2 [λ2]∗
)

= ([μ1] × [μ2]
) ×C∗

r G1⊗C∗
r G2

([λ1]∗ × [λ2]∗
)
,

where we have used the associativity properties of the Kasparov product. By
Lemma 6.1, the latter expression equals

[(μ1, μ2)] ×C∗
r G1⊗C∗

r G2

([λ1]∗ × [λ2]∗
) = ([λ1]∗ × [λ2]∗

)([(μ1, μ2)]
)
.

��
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7 Module structures

Corollary 6.2 implies that formal quantisation is multiplicative. For j = 1, 2, let
(M j , ω j ) be equivariantly prequantised proper Hamiltonian G j -manifolds, with G j -
proper momentum maps. Suppose the groups G j are connected and semisimple.

Corollary 7.1 One has

Q−∞
G1×G2

(M1 × M2, ω1 × ω2)

= Q−∞
G1

(M1, ω1) × Q−∞
G2

(M2, ω2) ∈ K d1+d2(C∗
r (G1 × G2)).

Proof Let λ j ∈ �
K j
+ . As noted by Paradan [18], one has an equality of symplectic

reductions

(
(M1 × M2)(λ1,λ2), (ω1 × ω2)(λ1,λ2)

) ∼= (
(M1)λ1 × (M2)λ2 , (ω1)λ1 × (ω2)λ2

)
,

if λ1/ i and λ2/ i are regular values of the respective momentum maps.
Since the manifolds (M j )λ j are compact, one has

Q
(
(M1)λ1

)
Q

(
(M2)λ2

) = Q
(
(M1)λ1 × (M2)λ2

) ∈ Z.

Hence, because �
K1×K2+ = �

K1+ × �
K2+ =: �+, Corollary 6.2 implies that

Q−∞
G1×G2

(M1 × M2, ω1 × ω2) =
∑

(λ1,λ2)∈�+
Q

(
(M1 × M2)(λ1,λ2)

)[(λ1, λ2)]∗

=
∑

(λ1,λ2)∈�+
Q

(
(M1)λ1

)
Q

(
(M2)λ2

)[λ1]∗ × [λ2]∗

= Q−∞
G1

(M1, ω1) × Q−∞
G2

(M2, ω2).

��
The compatibility property (5) of formal quantisation with the R(K )-module struc-

ture on R−∞(K ) can be generalised to noncompact groups. It is possible to equip
K d(C∗

r G)with a Kd(C∗
r G)-module structure in the following way. For a ∈ Kd(C∗

r G)

we have a∗ ∈ K d(C∗
r G), via the inclusion map defined by [λ] 	→ [λ]∗ on generators.

If b ∈ K d(C∗
r G), then we have

a∗ × b ∈ K 0(C∗
r (G × G)),

where × denotes the Kasparov product (16). Corollary 6.2 implies that

(
D-IndG×G

K×K

)∗
(a∗ × b) = (

D-IndG
K

)∗
(a∗) ⊗ (

D-IndG
K

)∗
(b)

∈ R(K ) ⊗ R−∞(K ) ⊂ R(K × K )�(K ).

where �(K ) < K × K is the diagonal subgroup. So
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a∗ × b ∈ K 0(C∗
r (G × G))�(G),

which is the domain of the Dirac restriction map

D-ResG×G
�(G) : K 0(C∗

r (G × G))�(G) → K d(C∗
r G).

Definition 7.2 The Kd(C∗
r G)-module structure of K d(C∗

r G) is defined by

a · b := D-ResG×G
�(G)(a

∗ × b), (18)

for a and b as above.

Lemma 7.3 Dirac induction is compatible with the R(K )-module structure of
R−∞(K ) and the Kd(C∗

r G)-module structure of K d(C∗
r G), in the sense that

(
D-IndG

K

)∗(D-IndG
K [π ] · b

) = [π ] · (
D-IndG

K

)∗
(b),

for all finite-dimensional representations π of K , and all b ∈ K d(C∗
r G).

Remark 7.4 This lemma in particular implies that (18) indeed defines a module struc-
ture.

Proof of Lemma 7.3 It is enough to check the equality for irreducible π = π K
λ1

and

generators b = [λ2]∗ of K d(C∗
r G), for λ j ∈ �K+ . Then, using Corollary 6.2 and (9),

one finds that

(
D-IndG

K

)∗(D-IndG
K [π ] · b

) = (
D-IndG

K

)∗ ◦ D-ResG×G
G

([λ1]∗ × [λ2]∗
)

= (
D-IndG

K

)∗ ◦ D-ResG×G
G [(λ1, λ2)]∗

= ResK×K
K ◦(

D-IndG×G
K×K

)∗[(λ1, λ2)]∗
= ResK×K

K

[
π K×K

(λ1,λ2)

]∗

= ResK×K
K

[
π K

λ1
⊗ π K

λ2

]∗

= [π K
λ1

] · [π K
λ2

]∗
= [π ] · (D-IndG

K

)∗
(b).

��
Proposition 5.3, Corollary 7.1 and Lemma 7.3 have the following consequence. Let

(N j , ν j ) be prequantised Hamiltonian K -manifolds. Suppose N1 is compact, and the
momentummap for the action by K on N2 is proper. Then, with respect to the module
structure of Definition 7.2,

Q−∞
G (G ×K N1) · Q−∞

G (G ×K N2) = Q−∞
G

(
G ×K (N1 × N2)

)
.
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8 The shifting trick

As in [10], consider a G-invariant metric on the trivial bundle M ×g∗ → M , equipped
with the G-action

g · (m, ξ) = (g · m,Ad∗(g)ξ),

for g ∈ G, m ∈ M and ξ ∈ g∗. Denote the induced norm on the fibre at m by ‖ · ‖m .
Let H be the associated norm-squared function of the momentum map 	G :

H(m) = ‖	G(m)‖2m .

Consider the one-form d1H ∈ 
1(M) defined by

(d1H)m = dm
(
m′ 	→ ‖	G(m′)‖2m

)
.

Let Crit1(H) be the set of zeroes of d1H. Under the assumptions that Crit1(H)/G is
compact and G is unimodular, the invariant quantisation

Q(M, ω)G ∈ Z

was defined in [10]. It was proved that for p ∈ N large enough,

Q(M, pω)G = Q(M0, pω0), (19)

and conjectured that this equality holds for p = 1. (Here (M0, ω0) is the symplectic
reduction of the action at 0 ∈ g∗.)

Let λ ∈ �K+ . Consider the reduction map RG
λ : K d(C∗

r G) → Z given by taking
the multiplicity of [λ]∗ (i.e. by applying elements to [λ]). Let O−

λ := Ad∗(G)λ/ i be
the coadjoint orbit through λ/ i , equipped with minus the standard Kirillov–Kostant–
Souriau symplectic form. Let ωλ ∈ 
2(M × O−

λ ) be the induced product symplectic
form. LetHλ be the functionH defined above, for the diagonal action byG on M×O−

λ .
Suppose the conjecture that (19) holds for p = 1 is true, which is the case for example
if the action is free. Then one has the following version of the shifting trick.

Proposition 8.1 If Crit1(Hλ)/G is compact, then, if λ/ i is a regular value of 	G,

RG
λ

(
Q−∞

G (M, ω)
) = Q

(
M × O−

λ , ωλ
)G

.

Proof See Corollary 5.12 in [10]. ��
Under the stronger assumption (which may be restrictive) that Crit1(Hλ)/G is

compact for all λ, one can define a semi-formal version of quantisation as

Qsemi
G (M, ω) =

∑

λ∈�K+

Q
(
M × O−

λ , ωλ
)G [λ]∗.
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424 P. Hochs, V. Mathai

This version of quantisation has the advantage that it is well-defined regardless of how
singular the reduced spaces Mλ may be. In the special case where λ/ i is a regular value
of 	G for all λ, then Proposition 8.1 implies that semi-formal quantisation commutes
with reduction, in the sense that Qsemi

G (M, ω) = Q−∞
G (M, ω). (But note that this is

only true if (19) holds for p = 1.)
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