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Abstract The Chern-Dold character of a cohomology theory E is a canonical trans-
formation E → HV to ordinary cohomology. A spectrum representing E gives
homotopy theoretic cocycles for E , while HV can be represented by singular cocy-
cles. We construct a refinement of the Chern-Dold character to a transformation of the
cocycle categories that takes the homotopical composition to the addition of singular
cocycles. This is applied to construct additive structures at the level of differential
cocycles for generalized differential cohomology.
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1 Introduction

The Chern-Dold character (see [2]) is a natural transformation from an arbitrary gen-
eralized cohomology theory E to ordinary cohomology with coefficients in the graded
coefficient vector space V ∗ = E∗(S0) ⊗Z R:
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292 M. Upmeier

ch : E∗(X) −→ H∗(X; V ) =
∏

i+ j=∗
Hi (X; V j ) (X ∈ T op∗) (1)

(cohomology, cochain groups, etc. for pointed spaces are always reduced). Hence for
E = HZwe get the standard map H∗(X,Z) → H∗(X,R). For topological K -theory,
we get the ordinary Chern character K 0/1(X) → H ev/od(X). Note that the graded
coefficient vector space V depends on the fixed choice of generalized cohomology
theory E .

Ordinary cohomology can be represented by the abelian group of singular cocy-
cles Zn(X; V ). These form the objects of a strict monoidal category of cocycles
Z n(X). Similarly, given a spectrum (En, εn) representing E (with homeomorphisms
ε
adj
n : En → �En+1, whichmay always be arranged), maps X → En give cocycles for
generalized cohomology. Loop composition in either direction gives two binary oper-
ations, identifying En with �2En+2. Endowed with these, the cocyclesMap(X, En)

for generalized cohomology form a 2-monoidal category (see Sect. 2), a more sophis-
ticated algebraic object than an abelian group.

We shall construct a refinedChern-Dold character between the cocycle categories in
such away that it preserves the algebraic structure (strict addition of singular cocycles,
loop composition). Here, the category of singular cocycles Z n(X) is viewed as a 2-
monoidal category in which both monoidal structures, given by addition of cocycles,
coincide (see Definition 7).

Theorem 1 For any generalized cohomology theory E and representing spectrum
(En, εn), there exists a natural family of 2-monoidal functors

chX : Map(X, En) → Z n(X). (2)

On isomorphism classes of objects, the functors (2) reduce to (1).

The notation is established in Sect. 2 wherewe also review the theory of 2-monoidal
categories. Theorem 1 is proven in Sect. 4.2 after having explained in Sect. 3 that the
construction of (2) passes through an intermediate step which mediates between the
algebraic and homotopical point of view.

One motivation is the following application (Sect. 5): Let En be a fixed choice
of �-spectrum representing the generalized cohomology theory E . Recall from [4,
Definitions 4.34, 4.1] that a differential n-cocycle on a manifold M (with respect to
E) consists of a continuous map c : M → En , a differential form ω ∈ �n(M; V ), and
a cochain h ∈ Cn−1(M; V ) satisfying

δh = ω − c∗ιn .

(here, ιn ∈ Zn(En; V ) denote fundamental cocycles, see Sect. 4.1. A differential
cocycle on M × [0, 1] is regarded as an equivalence between the two cocycles on the
boundary. The Hopkins-Singer differential cohomology group Ên(M) is by definition
the set of equivalences classes of differential n-cocycles on M .

Differential cocycles can also be organized into a category Ên(M). We have the
forgetful functor 2Mon → Cat along which we shall lift the functor Ê . In other
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Refinements of the Chern-Dold character... 293

words, wewill construct natural 2-monoidal structures on the categories of differential
cocycles. This is essentially a consequence of Theorem 1. Our main application is the
following (nearly equivalent) statement:

Theorem 2 For every choice of fundamental cocycles there exist reduced cochains
An ∈ Cn−1(En × En; V ) satisfying coherence relations (see Sect. 5) so that

(c1, ω1, h1) + (c2, ω2, h2) = (αn(c1, c2), ω1 + ω2, h1 + h2 + (c1, c2)
∗An) (3)

gives an abelian group structure on the Hopkins-Singer differential extension Ê.

In many cases it is important to have control of the algebraic structure at the level
of differential cocycles. This is in sharp contrast to [4], where it is proven that the
cohomology groups Ên(M) possess some abstract abelian group structure (they are
identified as the homotopy groups of a spectrum whose structure maps are only
abstractly chosen by a cofibrant replacement in a diagram model category, i.e., a
choice of functorial sections): there is then no way of deciding which differential
cocycle represents the sum.

2 Theory of 2-monoidal categories

The following is a special case of [6, Section 5] (or [1, 6.1]) where the units coincide:

Definition 3 A2- (C,�,�, I, ζ ) is a category C having twomonoidal structures�,�

sharing a unit I and a natural ‘interchange’ isomorphism

ζA,B,C,D : (A � B) � (C � D) → (A � C) � (B � D). (4)

We require I � I = I = I � I which along with (4) shall endow both

� : (C × C,� × �) → (C,�), � : (C × C,� × �) → (C,�) (5)

with the structure of monoidal functors.
A 2-monoidal functor F : C → D has monoidal structures F� : (C,�) → (D,�),

F� : (C,�) → (D,�) whose unit constraints F�,�(I ) = I are the identity. We
require commutative diagrams for all objects A, B,C, D

(6)
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294 M. Upmeier

Restricting to small categories C, these definitions give a category 2Mon. We call
F an equivalence if it is an equivalence of the underlying categories.

We assume familiarity with monoidal categories as presented in [8]. Equality of 2-
monoidal functors F = Gmeans that bothmonoidal structures F� = G�, F� = G�

agree. F is called strict if both F�, F� are strict. Restricting to such functors gives the
subcategory 2Monstrict. Denote by Cat (MonCat) the category of small (monoidal)
categories.

We think of a functor C : I → Cat as a (natural) family of categories (by Cat
we mean the large category of all small categories and similarly for 2Mon). By
a 2-monoidal structure on C we mean a lift to a functor Ĉ : I → 2Mon along the
forgetful functor 2Mon → Cat: for every X ∈ I we have 2-monoidal categories
CX and every morphism f ∈ I(X,Y ) gives a 2-monoidal functor C( f ) : CX → CY .
A natural transformation F : C ⇒ D between two families C,D : I → 2Mon may
be viewed as a (natural) family of 2-monoidal functors: for every X ∈ I we have a
2-monoidal functor FX : CX → DX . Naturality means that for f : X → Y in I we
get a commutative diagram in 2Mon:

CX
C( f )

��

FX �� DX

D( f )
��

CY FY
�� DY

(7)

The motivating example for the theory of 2-monoidal categories is the following:

Example 4 The fundamental groupoid 	1�
2X of the double loop space of a space

X ∈ T op∗ has monoidal structures by vertical and horizontal composition:

f � g(s, t) =
{
f (2s, t), s ≤ 1/2,

g(2s − 1, t), s ≥ 1/2,

f � g(s, t) =
{
f (s, 2t), t ≤ 1/2,

g(s, 2t − 1), t ≥ 1/2.

Here we view a double loop as a map f, g : [0, 1]2 → X . The associativity and
unit constraints are given by the standard homotopies that are used to show that the
fundamental group is indeed a group—for formulas see [9, 4.1.1]. The interchange
ζ is the identity and the common unit I is the base-point map. Since maps X → Y
preserve �,�, I we get a functor 	1�

2 : T op∗ → 2Monstrict.

There is a unique way to transport a 2-monoidal structure along an isomorphism
F : C → D of categories, turning F into a strict 2-monoidal functor [so X � Y =
F−1(FX � FY ) and FζC = ζD]. As usual, uniqueness implies functoriality: any
functor C : I → Cat naturally isomorphic to D : I → 2Mon may be uniquely lifted
along the forgetful functor to Ĉ : I → 2Mon, making every component ĈX → DX

of the transformation a strict 2-monoidal functor.
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Refinements of the Chern-Dold character... 295

Definition 5 For X ∈ T op∗, letMap(X, En) = 	1EX
n be the fundamental groupoid

of the pointed mapping space (pointed maps X → En and homotopies). The struc-
ture maps induce natural isomorphisms Map(X, En) ∼= 	1�

2EX
n+2 to 2-monoidal

categories from Example 4. Transporting, we get

Map(−, En) : T op∗ → 2Mon.

(Recall that (En, εn) is a spectrum representing the cohomology theory E).

Examples 6 (i) Let A be a topological or simplicial abelian group. On 	1A we take
� = � = +, I = 0, and the identity as the interchange. Since + and 0 are
preserved by group homomorphisms, we get a functor 	1 : sAb → 2Monstrict.

(ii) Any monoidal category (C,⊗) may be regarded as being 2-monoidal by taking
� = � = ⊗ and ζ = id. This yields a functor MonCat → 2Mon.

(iii) For every cochain complex (C∗, d) and n ∈ Z, define a strict monoidal category
Z n of n-cocycles: objects are x ∈ Cn with dx = 0. Amorphism x → y consists
of an im(d)-coset of elements u ∈ Cn−1 with du = x − y. Composition and the
monoidal structure are both given by addition. Combined with (ii) we obtain for
each n ∈ Z a functor Z n : Ch → 2Monstrict on cochain complexes.

Recall C∗(X; V ) = ∏
i+ j=∗ Ci (X; V j ) for a graded vector space V ∗. Being fixed

in our discussion as V = E∗(S0) ⊗Z R, we will simply write C∗(X) = C∗(X; V ).
Similarly, we shall write Z∗(X) = Z∗(X; V ) for the singular cocycles of X with
coefficients in V . For chains groups C∗(X), this convention is not adopted.

Definition 7 The reduced cochain complex C∗(−; V ) from T op∗ to Ch composed
with (iii) gives the functor Z n : T op∗ → 2Monstrict.

The proofs of the following two propositions are given in “Appendix”.

Proposition 8 Let C,D, E be 2-monoidal categories and suppose F : C → D,
G : D → E are (ordinary) functors of the underlying categories. Let H = G ◦ F.

1. If F is an equivalence and F, H have 2-monoidal structures, then G has a unique
2-monoidal structure such that H = G ◦ F as 2-monoidal functors.

2. If G is an equivalence and G, H have 2-monoidal structures, then F has a unique
2-monoidal structure such that H = G ◦ F as 2-monoidal functors.

Proposition 9 Let C : I → Cat, D : I → 2Mon be functors. Suppose F : C ⇒ D is
a nat. transformation of Cat-valued functors whose components are equivalences

FX : CX ∼−→ DX , X ∈ I.

Then wemay lift C to Ĉ : I → 2Mon and promote F to a natural family of 2-monoidal
equivalences F̂X : ĈX → DX (i.e., a natural transformation F : Ĉ ⇒ D).

Of course, this also holds in the dual situation C : I → 2Mon, D : I → Cat. We
emphasize that the lift Ĉ is not unique, but can still be chosen functorially.
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296 M. Upmeier

Example 10 On the category Kan∗ of pointed Kan complexes, consider

C : Kan∗ 	1�
2−−−−−→ Cat, D : Kan∗ |·|−−→ T op∗ 	1�

2−−−−−→ 2Mon.

(FX is induced by geometric realization of points and paths in X ). Hence the funda-
mental groupoids	1�

2K for pointed Kan complexes (see [3]) can be given functorial
2-monoidal structures 	1�

2 : Kan∗ → 2Mon.

One of the main results of [6, Section 5] (or see [1, Proposition 6.11]) is that there
is an equivalence from 2Mon to braided monoidal categories:

Theorem 11 From a 2-monoidal structure C one can construct braidings on (C,�)

and (C,�). The identity functor may be viewed as a braided monoidal functor
e : (C,�) → (C,�) with unit constraint eI = id and structure maps

e�,�
A,B : A� B

ρ��λ�

←−−−−− (A� I )� (I � B) ∼= (A� I )� (I � B)
ρ��λ�

−−−−−→ A� B. (8)

(here λ�, ρ� are the unit constraints on (C,�) and similarly for �).

The double loop space�2A of a topological abelian group A (base-point 0) is again
an abelian group. Example 4 and Example 6 (i) give two different ways of viewing
the fundamental groupoid 	1�

2A as a 2-monoidal category.

Lemma 12 For every topological abelian group A, the identity functor may be
endowed canonically with the structure of a 2-monoidal functor:

(	1�
2A,�,�, const0, id) −→ (	1�

2A,+,+, 0, id). (9)

Proof Since the operations � and + are mutually distributive, (	1�
2A,�,+, id)

defines a 2-monoidal category and Theorem 11 gives a canonical monoidal structure
e�,+
f,g on the identity functor. Similarly, we get a monoidal structure e�,+

f,g . It remains

to show the commutativity of (6). Suppose γ, φ : [0, 1] → [0, 1]2 satisfy γ < φ

component-wise. For f ∈ 	1�
2A define a homotopy that places f into the rectangles

bounded by γ and φ. Viewing f as a map [0, 1]2 → A taking the boundary to zero
and extended to the plane by zero, we may write

{γ, φ} f (t, x, y) = f

(
x − γ1(t)

φ1(t) − γ1(t)
,

y − γ2(t)

φ2(t) − γ2(t)

)
.

A path homotopy γ s < φs (parameter s) gives a homotopy {γ s, φs} f of homotopies.
For paths u, v : [0, 1] → X with u(1) = v(0) let u � v denote ‘u followed by

v’. Write α(t) = (1 + t)/2, β(t) = (1 − t)/2 and c(t) = c for fixed c ∈ [0, 1].
Equation (8) defines e�,+

f,g as {(0, 0), (α, 1)} f + {(β, 0), (1, 1)}g . Similarly, e�,+
f,g =
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{(0, 0), (1, α)} f + {(0, β), (1, 1)}g . Performing the composition,

(e�,+
f,g + e�,+

h, j )e�,+
f�g,h� j

= {
(0, 0), (α, 1/2) � (1, α)

}
f + {

(0, 1/2) � (0, β), (α, 1) � (1, 1)
}
g

+ {
(β, 0) � (0, 0), (1, 1/2) � (1, α)

}
h + {

(β, 1/2) � (0, β), (1, 1)
}
j ,

(e�,+
f,h + e�,+

g, j )e�,+
f�h,g� j

= {
(0, 0), (1/2, α) � (α, 1)

}
f + {

(0, β) � (0, 0), (1/2, 1) � (α, 1)
}
g

+ {
(1/2, 0) � (β, 0), (1, α) � (1, 1)

}
h + {

(1/2, β) � (β, 0), (1, 1)
}
j .

These are homotopic, since any two paths in [0, 1]2 are homotopic by a linear homo-
topy, so {γ, φ} f � {γ ′, φ′} f for any γ < φ, γ ′ < φ′ and any f . ��

3 The cocycle spectrum of a space

In this section, we shall construct an auxiliary object which mediates between the
algebraic and homotopical point of view. We assume familiarity with simplicial sets
(see [3]). Recall that the Moore complex C(K )∗ of a pointed simplicial set K has the
group ZKn/Zpt as n-chains. We adopt the standard notation C(X) = C(sing X) for
X ∈ T op∗. Let L+ denote L with a disjoint base-point.

Definition 13 The n-th space of the cocycle spectrum is the simplicial vector space of
chain maps (V [−n]∗ = V n−∗ for ∗ ≥ 0 with zero differential is viewed as an object
of the category Ch≥0 of non-negative chain complexes):

Zn(K ∧ �•+) = Ch≥0
(
C(K ∧ �•+)∗, V [−n]∗

) =
∏

i+ j=n

Zi (K ∧ �•+; V j ) (10)

Being fixed, we omit V from the notation on the left of (10).

The spaces Zn(K ∧ �•+) are the mapping spaces MapCh(C(K ), V [−n]) in the
∞-category of non-negative chain complexes [5, Section 13], so the cocycle spectrum
may be regarded as a function spectrum construction. Weakly equivalent spaces were
introduced in [4], but we will see below that it is crucial to work with (10).

Recall the Alexander-Whitney and Eilenberg-Zilber chain maps

EZ : C(K ) ⊗ C(L) → C(K ∧ L), AW : C(K ∧ L) → C(K ) ⊗ C(L).

The slant product of a cochain u with a chain e is the cochain u/e defined by
(u/e)(d) = u (EZ(d ⊗ e)). Since EZ is a chain map, we get a Stokes formula

(δu/e) = δ(u/e) − (−1)|u|+|e|u/∂e. (11)

Let [�i+] ∈ Ci (�
i+) and [S1] ∈ C1(S1) denote the canonical chains (S1 = �1/∂�1).
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298 M. Upmeier

We take from [4, Definition 13] the isomorphism ‘slant product along the i-chain
[�i+]’

πi
(
Zn(K ∧ �•+), 0

) ∼= Hn−i (K ; V ), f ∈ Zn(K ∧ �i+) �→ f/[�i+]. (12)

(this fact is also proven in [9, Lemma 5.7]).

Lemma 14 There is a canonical isomorphism of simplicial sets

�Zn(K ∧ �•+) ∼= Zn(K ∧ �•+ ∧ S1). (13)

Proof The usual subdivision of the prism hi : �k+1 → �k × �1 for i = 0, . . . , k [3,
pp. 17–18] leads to a coequalizer diagram in pointed simplicial sets Set∗�:

K ∧ �k+
id∧d j+1

��

in j ��

K ∧ �k+1+
in j��∨k

j=−1 K ∧ �k+
��
��
∨k

j=0 K ∧ �k+1+
h0∨...∨hk �� K ∧ �k+ ∧ S1

K ∧ �k+
id∧d j+1

��

in j

��

K ∧ �k+1+

in j+1

��

(letting inl be the constant base-point maps if l = −1, k + 1). The reduced Moore
complex C : Set∗� → Ch≥0 is a left-adjoint and therefore preserves colimits. Hence a
k-simplex f ∈ Zn(K ∧ �k+ ∧ S1) is a chain map defined on the coequalizer of

⊕k
j=−1 C(K ∧ �k+) �� ��

⊕k
j=0 C(K ∧ �k+1+ ).

This amounts to a sequence of maps fi ∈ Zn(K ∧ �k+1+ ) which are compatible
exactly so as to represent a k-simplex of the loop space �Zn(K ∧ �•+) (a k-simplex
of a simplicial loop space �L may be described as a sequence of (k + 1)-simplices
f0, . . . , fk with di fi = di fi−1 and d0 f0 = dk+1 fk = ∗). ��
Definition 15 Letting ‘incl’ be given by the canonical 1-chain [S1], consider

C(K ∧ �•+) ⊗ Z[1] id⊗ incl �� C(K ∧ �•+) ⊗ C(S1)
EZ �� C(K ∧ �•+ ∧ S1).

(14)
Combining that − ⊗Z[1] is the shift [−1] with Lemma 14, pullback along (14) gives
the costructure maps (‘co’ because they map away from the loop space)

ψ : �Zn(K ∧ �•+) ∼= Zn(K ∧ �•+ ∧ S1) → Zn−1(K ∧ �•+). (15)

Proposition 16 The costructure maps ψ are natural weak equivalences.

123



Refinements of the Chern-Dold character... 299

Proof This follow from the standard fact that the suspension may be expressed as the
slant product along S1: we show that we have commutative diagrams

πk Zn(K ∧ �•+ ∧ S1)

(12) ∼=
��

πk (ψ) �� πk Zn−1(K ∧ �•+)

(12)∼=
��

Hn−k(K ∧ S1) susp

∼= �� Hn−k−1(K ).

Explicitly, for f ∈ πk Zn(K ∧ �•+ ∧ S1) we need to compare the two assignments on
chains σ ∈ Cn−k−1(K ) given by

f ◦ EZ
(
�k ⊗ EZ(σ ⊗ S1)

)
, f ◦ EZ

(
EZ(�k ⊗ σ) ⊗ S1

)
. (16)

Since EZ is coassociative up to chain homotopy, we have a homomorphism h so that
the difference is (using that f is a chain map and V∗ has zero differential)

f ◦ (∂hσ + h∂σ) = ∂ f (hσ) + f h∂σ = 0 + δ( f h)σ

Therefore, both elements in (16) represent the same cohomology class. ��
Definition 17 By the costructure maps on sing(EX

n ) we mean the isomorphisms

� sing(EX
n+1)

∼= sing(�EX
n+1)

sing(εadjn )−1∗−−−−−−→ sing(EX
n ). (17)

4 The 2-monoidal Chern-Dold transformation

Our construction of (2) will factor into three 2-monoidal functors

chX : Map(X, En)
α−→ Z n

�,�(X)
β−→ Z n+(X)

γ−→ Z n(X). (18)

We begin by explaining the new categories in (18). By Example 6 (i), addition gives a
strict 2-monoidal structure on the fundamental groupoid	1Zn(sing X ∧ �•+) that we
denote by Z n+(X). Hence the objects of Z n+(X) are singular cocycles Zn(X) while
the morphisms h : d1h → d0h are cocycles h ∈ Zn(sing X ∧ �1+). Another way to
get a 2-monoidal structure on the same category is to note that the costructure map ψ

induces equivalences of categories

	1�
2Zn+2(sing X ∧ �•+)

∼−→ 	1Z
n(sing X ∧ �•+). (19)

The left-hand side has a natural 2-monoidal structure by Example 10. According to
Proposition 9, we may choose natural 2-monoidal structures Z n

�,�(X) on the right-
hand categories, making (19) a natural 2-monoidal equivalence.
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4.1 Fundamental cocycles

Recall that fundamental cocycles are a family of singular cocycles ιn ∈ Zn(En; V )

implementing the Chern-Dold character via

ch( f ) = f ∗[ιn], ∀ f ∈ En(X) = [X, En].

By [4, 4.8], there is a choice satisfying ε∗
n ιn+1/[S1] = ιn , where εn : En ∧ S1 → En+1

are the structure maps (a more detailed proof of this assertion may be found in [9,
Section 3.1.2]). Stated differently, we have chain maps

ιn : C(En) = C(sing En) → V [−n]

fitting into commutative diagrams

C(En) ⊗ Z[1] EZ(id⊗ incl) �� C(En ∧ S1)
C(εn) �� C(En+1)

ιn+1
��

C(En)[−1]
ιn [−1]

�� V [−n − 1].
(20)

Definition 18 We define simplicial maps An : sing(EX
n ) → Zn(sing X ∧ �•+) by

An( f ) : C(sing X ∧ �k+)
C( f ad j )−−−−→ C(sing En)

ιn−→ V [−n],

where, for a k-simplex f : X ∧ |�k+| → En of sing(EX
n ), we use the unit to write

f ad j : sing X ∧ �k+ → sing X ∧ sing |�k+| = sing(X ∧ |�k+|) sing f−−−→ sing En .

Lemma 19 The maps An commute with the costructure maps:

sing(EX
n )

An �� Zn(sing X ∧ �•+)

� sing(EX
n+1)

(17)

��

�An+1

�� �Zn+1(sing X ∧ �•+).

(15)

��

Proof For f : X ∧ |�•+| ∧ S1 → En+1 let g : X ∧ |�•+| → En be the map (ε
adj
n )−1 f

with εn ◦ (g ∧ 1S1) = f . If we write K = sing X , the counit gives a simplicial map

ϕ( f ) : K ∧ �•+ ∧ S1 → sing(X ∧ |�•+| ∧ S1) → sing En+1.
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Unwinding the definitions of (15), (17), and A, we see that we need to compare

C(K ∧ �•+) ⊗ Z[1] 1⊗incl−−−→ C(K ∧ �•+) ⊗ C(S1)
EZ−−→ C(K ∧ �•+ ∧ S1)

ϕ( f )∗−−−−−−→ C(En+1)
ιn+1−−→ V [−n − 1]

with the shift by one of

C(K ∧ �•+)
ϕ(g)∗−−−−→ C(En)

ιn−−→ V [−n].

But these maps appear as the outer maps in the diagram

C(K ∧ �•+) ⊗ Z[1] g∗⊗1 ��

1⊗incl
��

C(En) ⊗ Z[1]
1⊗incl

��

ιn⊗1 �� V [−n] ⊗ Z[1]

C(K ∧ �•+) ⊗ C(S1)
g∗⊗1 ��

EZ
��

C(En) ⊗ C(S1)

EZ
��

(20)

C(K ∧ �•+ ∧ S1)

f∗

��
(g∧1)∗ �� C(En ∧ S1)

(εn)∗ �� C(En+1)

ιn+1

��

which commutes by naturality of EZ and the compatibility (20). ��

4.2 Proof of Theorem 1

The proof is divided into three steps:

Lemma 20 The maps An induce a natural family of 2-monoidal functors

	1An = αX : Map(X, En) → Z n
�,�(X).

Proof Lemma 19 asserts that the diagram of ordinary categories underlying

Map(X, En)
αX �������������� Z n

�,�(X)

	1�
2EX

n+2

∼=
��

	1�
2(An−2) �� 	1�

2Zn+2(sing X ∧ �•+)

��

(19)

��

commutes. On the bottom is the 2-monoidal functor 	1�
2 from Example 10 and

the vertical functors are 2-monoidal by definition of the 2-monoidal structure on the
categories upstairs. Proposition 8 states that there is a unique way to put a 2-monoidal
structure αX on 	1A so as make this diagram commute in 2Mon. Uniqueness allows
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us to conclude the naturality (in X ) of this structure from the naturality of the 2-
monoidal structure on the other arrows. ��
Lemma 21 The identity functor 	1Zn(sing X ∧ �•+) has a unique (hence natural)
2-monoidal structure βX making the diagram

Z n
�,�(X)

βX ��������������� Z n+(X)

(
	1�

2Zn+2(sing X ∧ �•+),�,�
)

(9)
��

∼ (19)

��

(
	1�

2Zn+2(sing X ∧ �•+),+,+)
	1(ψ�ψ)

��

commute as a diagram of 2-monoidal categories and functors.

The right vertical map is 2-monoidal since ψ is linear. The proof of Lemma 21 is
now immediate from Proposition 8.

Both categories Z n+(X),Z n(X) have the same objects Zn(X) and we let γX be
the identity on objects. To a morphism f ∈ Zn(sing X ∧ �1+) inZ n+(X) from d1 f to
d0 f we assign the class of the cochain f/[�1] ∈ Cn−1(X; V )/ im(δ).

Lemma 22 γX : Z n+(X) → Z n(X) is a well-defined strict 2-monoidal functor.

Proof In the fundamental groupoid, a composition f ◦ g = h is ‘witnessed’ by a
2-simplex σ ∈ Zn(sing X ∧�2+), meaning ∂σ = g− h + f . Hence (11) implies that

(−1)nδ(σ/[�2]) = σ/∂[�2] = g/[�1] − h/[�1] + f/[�1]

is a coboundary, which proves that γX is a functor. To show that γX is well-defined, let
σ be a homotopy from d0σ = f to d1σ = f ′ with d2σ = 0. Then (−1)nδ(σ/[�2]) =
f/[�1] − f ′/[�1] + 0 exhibits the required coboundary. Since taking slant products
is linear, γX is strict 2-monoidal. ��

Combining Lemmas 20, 21, 22, we define chX to be the composite 2-monoidal
functor γXβXαX . Explicitly, chX is given on objects and morphisms as follows:

chX : Map(X, En) → Z n(X),

{
objects f : ch( f ) = f ∗ιn,
morphismsH : f � g : ch(H) = H∗ιn/[�1].

In particular, chX recovers (1) on isomorphism classes of objects. αX , βX , γX are
natural in X , so this holds for chX , too. This completes the proof. ��

5 Application to differential cohomology

We begin by unravelling parts of Theorem 1 into more elementary form. As shown in
[6, Section 5], there is an equivalence 2Mon → MonCatbraid to braided monoidal
categories. Hence we regard Map(X, En) as having just a single monoidal structure
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� and a natural braid (given by Theorem 11) and the functors chX from Theorem 1
as having a natural braided monoidal structure s.

Fix the standard homotopies showing that π0�
2En+2 is an abelian group (so the

associator a = apr1,pr2,pr3 in Map(E×3
n , En), braid s = spr1,pr2 in Map(E×2

n , En),
and unit constraint r = rid inMap(En, En)):

a : E×3
n × I → En, αn ◦ (αn × id) � αn ◦ (id×αn),

s : E×2
n × I → En, αn ◦ flip � αn,

r : En × I → En, αn ◦ (id, const) � id .

The monoidal structure � was induced by horizontal concatenation of loops:

αn : En × En ≈ �2En+2 × �2En+2 → �2En+2 ≈ En .

Then (either by direct inspection or using the naturality in X ), the associativity and
unit constraints a, r as well as the braid s on the categoriesMap(X, En) are given by
post-composition with the above homotopies.

Theorem 23 There exist reduced cochains An ∈ Cn−1(En × En; V ) satisfying

δAn = pr∗1 ιn + pr∗2 ιn − α∗
n ιn (21)

and coherent in the sense that (‘≡’ means ‘up to coboundary’)

pr∗12 An + (αn × 1)∗An ≡ pr∗23 An + (1 × αn)
∗An + ch(a), associative

flip∗An ≡ An + ch(s), commutative

(idEn , const)
∗An ≡ ch(r). unit

(Recall that ch(h) = h∗ιn/[0, 1] = ∫10 h∗ιn for morphisms/homotopies h).

Proof The data of a monoidal functor

chX : (Map(X, En),�) → (Z n(X),+).

includes morphisms relating �,+; that is, elements ch�

c,d ∈ Cn−1(X)/ im(δ) with

δ ch�

c,d = ch( f � g) − ch( f ) − ch(g). (22)

Naturality gives commutative diagrams of braided monoidal functors

(Map(X, En),�)
ch �� (Z n(X),+)

(Map(Y, En),�)

Map( f,En)

��

ch
�� (Z n(Y ),+)

Z n( f )

��
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which means

f ∗ ch�

c,d = ch�

f ∗c, f ∗d in Cn−1(X)/ im(δ), c, d : Y → En . (23)

A braided monoidal functor has to satisfy various coherence conditions:

ch(( f � g) � h)

ch(a)

��

ch f �g,h�� ch( f � g) + ch(h)
ch f,g �� (ch( f ) + ch(g)) + ch(h)

ch( f � (g � h))
ch f,g�h

�� ch( f ) + ch(g � h)
chg,h

�� ch( f ) + (ch(g) + ch(h)).

ch( f ) + ch(const) ch( f ) + 0

ch( f � const)

ch�

f,const

��

ch(r)
�� ch( f )

ch( f ) + ch(g) ch(g) + ch( f )

ch( f � g)

ch f,g

��

ch(s)
�� ch(g � f )

chg, f

��

Set c = pr1, d = pr2 : En × En → En in (22) to define

An = ch�
pr1,pr2

. (24)

With this notation, the commutativity of the first coherence diagram reads

ch�

g,h + ch�

f,g�h + ch(a) ≡ ch�

f,g + ch�

f�g,h inCn−1(X)/ im(δ). (25)

If we set f = pr1, g = pr2, h = pr3 : En × En × En → En , naturality (23) asserts

f = (1 × αn)
∗ pr1, g � h = (1 × αn)

∗ pr2 ⇒ ch�

f,g�h ≡ (1 × αn)
∗ ch�

pr1,pr2
,

g = pr∗23 pr1, h = pr∗23 pr2 ⇒ ch�

g,h ≡ pr∗23 ch�
pr1,pr2

,

f � g = (αn × 1)∗ pr1, h = (α × 1)∗ pr2 ⇒ ch�

f�g,h ≡ (αn × 1)∗ ch�
pr1,pr2

,

f = pr∗12 pr1, g = pr∗12 pr2 ⇒ ch�

f,g ≡ pr∗12 ch�
pr1,pr2

.

Inserting these equalities and (24) into (25) gives

pr∗23 An + (1 × αn)
∗An + ch(a) ≡ pr∗12 An + (αn × 1)∗An

Similarly, the second coherence diagram for f = pr1 asserts

ch(r) ≡ ch�

pr1,const
(23)≡ (id, const)∗ chpr1,pr2 = (id, const)∗An

The third diagram for f = pr1, g = pr2 says, using naturality (23) for pr2 =
flip∗ pr1, pr1 = flip∗ pr2:
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flip∗An + ch(s) ≡ flip∗ ch f,g + ch(s) ≡ chg, f + ch(s) ≡ ch f,g = An

��
Theorem 23 contains exactly the coherence conditions needed to prove that (3)

gives an abelian group structure. The key observation is (see [9, 3.10, 3.13]):

Proposition 24 (i) Given a homotopy C : c0 � c1 of maps, a form ω ∈ �n
cl(M; V ),

and cochain h ∈ Cn−1(M; V ) with δh = ω − c∗
0ιn, we have an equivalence

(c0, ω, h) ∼ (c1, ω, h − ch(C)).

(ii) For a cocycle (c, ω, h) and g ∈ Cn−2(M; V ) we have (c, ω, h) ∼ (c, ω, h + δg).

5.1 Proof of Theorem 2

Applying part (i) to the homotopies a, r, s above and then part (ii) to the coherence
equations in Theorem 23 shows that (3) descends to an associative, unital, and com-
mutative operation on equivalence classes.

It remains to show that we have inverses. Pick maps νn : En → En representing
negation in E-cohomology and a homotopy h : idn �νn = αn(idn, νn) � const. For

Nn = ch(h) − (id, νn)
∗An

we have δNn = −ιn − νnιn . Applying Proposition 24 to the homotopy h then shows
that (c, ω, h) + (νn ◦ c,−ω,−h + c∗Nn) is equivalent to zero. ��

Appendix

From [7] (or see [9, Appendix A]) we recall the following well-known fact:

Theorem 25 (Doctrinal Adjunction) Suppose (F,G, ε, η) is an adjoint equivalence
in which F : C → D is a monoidal functor. Then there exists a unique monoidal
structure on G that makes (F,G, ε, η) a monoidal adjoint equivalence.

Lemma 26 Suppose G ◦ F = H are functors, where F, H are monoidal and F is an
equivalence. There exists a unique monoidal structure on G so that G ◦ F = H as
monoidal functors. (similarly, if G is an equivalence, G, H monoidal).

Proof If a monoidal structure on G exists, we must have HC1,C2 = G(FC1,C2) ◦
GFC1,FC2 and H1 = G(F1) ◦ G1. Hence GE1,E2 is determined on the image
of F . For general E1, E2 pick isomorphisms ϕi : Ei → FCi . Naturality gives
GFC1,FC2 ◦ (Gϕ1 ⊗ Gϕ2) = G(ϕ1 ⊗ ϕ2) ◦ GE1,E2 , so GE1,E2 is uniquely deter-
mined. To prove existence, place F in an adjoint equivalence (F, R, ε, η) which, by
doctrinal adjunction, may viewed as a monoidal adjunction.We have a natural isomor-

phism Gε : HR = GFR
∼=−−→ G. There is a unique monoidal structure on G making

Gε a monoidal transformation (monoidal structures on functors may be uniquely
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transported along natural isomorphisms). The composition of a monoidal transfor-
mation with a monoidal functor is again monoidal. Therefore Hη : H → HRF ,
GεF : HRF → GF are monoidal transformations which compose to the identity,
by the zig-zag identities for (F, R, ε, η). But this just means H = GF as monoidal
functors. ��

Proof of Proposition 8

We prove only 1. since 2. follows by a dual argument. Placing F in an adjoint equiv-
alence (F, R, ε, η), Lemma 26 gives us two monoidal structures on G satisfying
G� ◦ F� = H� and G� ◦ F� = H�. Since H, F preserve ζ , we have [omitting
the vertical maps in (6) from the notation]

ζEH A1,H A2,H A3,H A4
= HζCA1,A2,A3,A4

= GF(ζCA1,A2,A3,A4
) = G(ζDFA1,FA2,FA3,FA4

).

Hence G preserves the interchange on the image of F . In general, we may pick
isomorphisms Xi ∼= FAi (F is essentially surjective). Naturality of the interchange
then implies that G preserves ζDX1,X2,X3,X4

. Hence G is 2-monoidal. ��
We will use the following well-known fact (see [9, Appendix A]):

Proposition 27 Let (F,G, ε, η) be an adjoint equivalence from C to D and assume
that D is a monoidal category. Then there exists a monoidal structure on C making
(F,G, ε, η) a monoidal adjoint equivalence.

(for example, one can set C1 ⊗ C2 = G(FC1 ⊗ FC2), IC = GID).

Applied to both monoidal structures of a 2-monoidal category D, we obtain two
monoidal adjunctions (F�,G�, ε, η) and (F�,G�, ε, η). As (6) is a diagram of iso-
morphisms and F is bijective on Hom-sets, there is a unique interchange ζC making F
a 2-monoidal functor. The verification of the diagrams (5) expressing the compatibility
of ζC with associativity and unit constraints can, F being faithful, be reduced to the
corresponding properties of ζD.

Proof of Proposition 9

Placing the equivalences Fi : Ci → Di into an adjoint equivalence (Fi ,Gi , εi , ηi ) [8,
Proposition 1.1.2], the preceding remark gives 2-monoidal structures Ĉi on Ci and F̂i
on every Fi . It remains to define 2-monoidal structures on every C( f ) : Ci → C j for
morphisms f : i → j in I. The naturality of F̂i means that

Ĉi
C( f ) ��

F̂i
��

Ĉ j

F̂ j

��
Di D( f )

�� D j

should commute as a diagram in 2Mon. Proposition 8 implies that there is a unique
such 2-monoidal structure on C( f ). Uniqueness implies functoriality. ��
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